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Abstract
For nonlinear stochastic equations dx(t) = [Ax(t) + f (t, x(t),λ)]dt + g(t, x(t),λ)dω(t) with
parameter λ in a Hilbert space, we show the existence and uniqueness of mild
solutions. Provided that f satisfies a locally Lipschitz condition and g is a uniformly
Lipschitz function, some sufficient conditions for p (p ≥ 2) moment locally
exponential stability as well as almost surely exponential stability of mild solutions are
obtained under a sufficiently small initial value ξ . Meanwhile, we also consider
parameter dependence of stable mild solutions for the stochastic system if f , g are
sufficiently small Lipschitz perturbations in the parameter λ.

Keywords: mild solutions; exponential stability; parameter dependence

1 Introduction
Stochastic differential equation has attracted a great attention from both theoretical and
applied disciplines since it has been successfully applied to problems in mechanics, eco-
nomics, physics and several fields in engineering. For details, see [–] and the refer-
ences therein. In recent years, existence, uniqueness, stability, invariant measures and
other quantitative and qualitative properties of solutions to stochastic partial differen-
tial equations have been extensively considered by many authors. For example, in ,
Haussmann [] studied asymptotic stability of Itô equations in infinite dimensions. Cara-
ballo [] extended the results from Haussmann to stochastic partial differential equations
with delay. In [], Mao considered exponential stability in the mean square sense for the
strong solutions of linear stochastic differential equations. Caraballo and Real [] con-
sidered the stability for the strong solutions of semilinear stochastic evolution equations
based on the ideas in []. Govindan [, ] studied the existence and stability of mild so-
lutions for stochastic partial differential equations by the comparison theorem. Caraballo
and Liu [] discussed the exponential stability for mild solutions of stochastic partial
differential equations with delays by employing the well-known Gronwall inequality and
stochastic analysis technique under the Lipschitz condition. Liu andMao [] established
Razuminkhin-type exponential stability for mild solution of stochastic partial functional
differential equations. Da Prato et al. [] and Dawson [] developed this topic by the
semigroup approach []. In [], Taniguchi et al. discussed the existence, uniqueness and
asymptotic behavior of solutions to stochastic partial functional differential equations in
a Hilbert space.

©2014 Pan; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2014/1/276
mailto:plj1977@126.com
http://creativecommons.org/licenses/by/2.0


Pan Advances in Difference Equations 2014, 2014:276 Page 2 of 13
http://www.advancesindifferenceequations.com/content/2014/1/276

Recently, Burton [] has successfully extended the fixed point theorem to study the
stability for deterministic systems. By employing the contraction mapping principle and
stochastic analysis, Luo [] has obtained some sufficient conditions which ensure expo-
nential stability in p (p ≥ ) moment and almost sure exponential stability for mild so-
lutions of stochastic partial differential equations with delays. Following the ideas of Luo,
Sakthivel and Luo investigated the existence and asymptotic stability in the pthmoment of
mild solutions of nonlinear impulsive stochastic differential equations with infinite delay
in [].
Our main objective is to obtain local stability of mild solutions for stochastic parameter

systems, with two novelties when compared with the former work in this area:
. We consider p (p≥ )th moment locally exponential stability as well as almost

surely exponential stability of mild solutions under sufficiently small nonlinear
perturbations and sufficiently small initial value.

. We first discuss parameter dependence of stable mild solutions under sufficiently
small Lipschitz perturbation in the parameter space Y .

The rest of this paper is organized as follows. In Section , stochastic differential equa-
tions with parameter are presented together with some definitions of mild solutions. In
Section , existence, uniqueness, stability and parameter dependence ofmild solutions are
derived. An example is given to illustrate our results in Section . At last, we present some
conclusions of our paper in Section .

2 Preliminaries
LetH be a real separable Hilbert space with the inner product (·, ·) and the norm ‖ · ‖, and
let K be another real separable Hilbert space with the inner product (·, ·)K and the norm
‖ · ‖K . L(K ,H) denotes the space of bounded operators from K to H . Let (�,F ,P) be a
complete probability space equipped with a complete family of right-continuous increas-
ing sub σ -algebras {Ft , t ≥ } satisfying Ft ⊂ F .
Let βn(t), n = , , . . . , be a sequence of real-valued one-dimensional standard Brownian

motions mutually independent over (�,F ,P). Set

w(t) =
∞∑
n=

√
λnβn(t)ξn, t ≥ ,

where λn ≥  (n = , , . . .) are nonnegative real numbers and {ξn} (n = , , . . .) is a complete
orthonormal basis in K . LetQ ∈ L(K ,K ) be an operator defined byQξn = λnξn with a finite
trace Tr(Q) =

∑∞
n= λn <∞. Then the above K-valued stochastic process ω(t) is called aQ-

Wiener process.
Let ϕ ∈ L(K ,H) and define

‖ϕ‖L = Tr
(
ϕQϕ∗) =

{ ∞∑
n=

‖√λnϕξn‖
}
.

If ‖ϕ‖L < ∞, then ϕ is called a Q-Hilbert-Schmidt operator, where L(K ,H) denotes the
space of all Q-Hilbert-Schmidt operators ϕ : K →H .
We denote by Lp(�,H) (p ≥ ) the collection of all strongly-measurable, p-integrable

H-valued variables with the norm ‖x(·)‖Lp = (E‖x(·;ω)‖pH)

p , where E is defined by E(h) =∫

�
h(ω)dP.
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We consider the following stochastic differential equations with parameter in a Hilbert
space:

dx(t) =
[
Ax(t) + f

(
t,x(t),λ

)]
dt + g

(
t,x(t),λ

)
dω(t), t ≥ ,

x() = ξ ,
()

where ξ is an H-valued random variable, A is the infinitesimal generator of a semigroup
of bounded linear operators S(t), t ≥ , f : R+ × H × Y → H , g : R+ × H × Y → L(K ,H)
are all Borel measurable, Y is a Banach space (which is the parameter space).
Now, we recall the mild solutions for Eq. () as follows.

Definition . A stochastic process {x(t, ξ ,λ) : t ∈ [,T],λ ∈ Y },  ≤ T < ∞, is called a
mild solution of Eq. () if
(a) x(t, ξ ,λ) is adapted to Ft , t ≥ ;
(b) x(t, ξ ,λ) ∈H has a càdlàg path on t ∈ [,T] almost surely;
(c) for arbitrary t ∈ [,T],

x(t, ξ ,λ) = S(t)ξ +
∫ t


S(t – s)f

(
s,x(s),λ

)
ds +

∫ t


S(t – s)g

(
s,x(s),λ

)
dω(s). ()

We assume that the following conditions hold:
(i) A is the infinitesimal generator of a semigroup of bounded linear operators S(t),

t ≥ , and there existM ≥ , η >  such that ‖S(t)‖H ≤Me–ηt for t ≥ ;
(ii) there exist constants c > , q >  such that for t ≥ , x, y ∈H , λ,μ ∈ Y ,

∥∥f (t,x,λ) – f (t, y,λ)
∥∥
H ≤ c‖x – y‖H

(‖x‖qH + ‖y‖qH
)
,

and

∥∥f (t,x,λ) – f (t,x,λ)
∥∥
H ≤ c‖λ –μ‖H‖x‖q+H ;

(iii) there exists d >  such that for t ≥ , x, y ∈H , λ,μ ∈ Y ,

∥∥g(t,x,λ) – g(t, y,λ)
∥∥
L

≤ d‖x – y‖H ,

and

∥∥g(t,x,λ) – g(t,x,μ)
∥∥
L

≤ d‖λ –μ‖Y‖x‖H ;

(iv) q +  ≤ p;
(v) pMpdpCp( 

η )
p
 < , where Cp = (p(p – ))p.

For example, if

f (t,x,λ) =
m∑
j=

n∑
i=

λjfi(t,x),
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and

g(t,x,λ) =
m∑
j=

n∑
i=

λjgi(t,x)

for some functions fi, gi : R+ ×H →H , and there exist constants ci > , di > , i = , , . . . ,n,
q >  such that for t ≥ , x, y ∈H ,

∥∥fi(t,x) – fi(t, y)
∥∥
H ≤ ci‖x – y‖H

(‖x‖qH + ‖y‖qH
)
,

and

∥∥gi(t,x) – gi(t, y)
∥∥
L

≤ di‖x – y‖H

for each t ≥ , x, y ∈H , then conditions (ii) and (iii) hold for λ, μ in a small neighborhood
of zero.
Set B(δ) = {x ∈ H : E‖x‖pH ≤ δ}, δ > . Then we have the following definitions of locally

exponential behavior for mild solutions.

Definition . Let p ≥  be an integer, mild solution x(t, ξ ,λ) of Eq. () is said to be pth
moment locally exponentially stable if there exist γ > , L ≥  such that

E
∥∥x(t, ξ ,λ)∥∥H ≤ Le–γ tE‖ξ‖pH

for any initial value ξ ∈ B(δ), λ ∈ Y and t ≥ .

Definition . The mild solution x(t, ξ ,λ) of Eq. () is said to be almost surely exponen-
tially stable if for any initial value ξ ∈ B(δ) and for any λ ∈ Y , there exists ν >  such that

lim sup
t→+∞


t
log

∥∥x(t, ξ ,λ)∥∥H ≤ –ν, a.s.

Lemma . [] For any r ≥  and for arbitrary L(K ,H)-valued predictable process Φ(·),

sup
s∈[,t]

E
∥∥∥∥
∫ s


Φ(u)dω(u)

∥∥∥∥
r

≤ Cr

(∫ t



(
E
∥∥Φ(s)

∥∥r
L

) 
r ds

)r

, t ≥ ,

where Cr = (r(r – ))r .

3 Stability and parameter dependence
In this section, we present and prove our main results. We consider the set Z(δ) = {(t, ξ ) :
 ≤ t ≤ T , ξ ∈ B(δ)}.

Theorem . Assume that (i)-(v) hold. Then, for any δ >  sufficiently small and for any
λ ∈ Y , given (t, ξ ) ∈ Z(δ), there exists a unique stochastic process x(t, ξ ,λ) satisfying ().
Moreover, the following properties hold:
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. There exists  < α < pη such that

pMpdpCp

[
p

(pη – α)

] p

< ; ()

. x(t, ξ ,λ) is pth moment locally exponentially stable, that is, there exists L ≥  such
that

E
∥∥x(t, ξ ,λ)∥∥p

H ≤ Le–αtE‖ξ‖pH ()

for any λ ∈ Y and (t, ξ ) ∈ Z(δ);
. There exists K >  such that

E
∥∥x(t, ξ ,λ) – x(t, ξ ,μ)

∥∥p
H ≤ K‖λ –μ‖pY e–αt ()

for any λ,μ ∈ Y and (t, ξ ) ∈ Z(δ).

Proof By (iv), it follows that there exists  < α < η such that () holds. We consider the
space χ of all F -adapted processes x = x(t, ξ ,λ) : [, +∞)× B(δ)× Y →H such that
. x(, ξ ,λ) = ξ for any λ ∈ Y ;
. the norm ‖x‖χ = 

M supt≥[eαtE‖x(t, ξ ,λ)‖pH] satisfies ‖x‖χ ≤ δ.
We can easily see that χ is a complete metric space. Define an operator Jλ : χ → χ by

Jλ(x)(t, ξ ) = S(t)ξ () +
∫ t


S(t – s)f

(
s,x(s, ξ ,λ),λ

)
ds

+
∫ t


S(t – s)g

(
s,x(s, ξ ,λ),λ

)
dω(s)

=
∑
i=

Ii(t) ()

for any x ∈ χ . We first verify the continuity of Jλ in χ . Let x ∈ χ , t ≥ , and |ε| be suffi-
ciently small, then

E
∥∥Jλ(x)(t + ε) – Jλ(x)(t)

∥∥p
H ≤ p–

∑
i=

E
∥∥Ii(t + ε) – Ii(t)

∥∥p
H . ()

Obviously,

E
∥∥Ii(t + ε) – Ii(t)

∥∥p
H → , i = , , ()

as ε → . By Lemma ., we have

E
∥∥I(t + ε) – I(t)

∥∥p
H

≤ p–E
∥∥∥∥
∫ t



(
S(t + ε – s) – S(t – s)

)
g
(
s,x(s, ξ ,λ),λ

)
dω(s)

∥∥∥∥
p

H

+ p–E
∥∥∥∥
∫ t+ε

t
S(t + ε – s)g

(
s,x(s, ξ ,λ),λ

)
dω(s)

∥∥∥∥
p

H
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≤ p–Cp

(∫ t



(
E
∥∥(
S(t + ε – s) – S(t – s)

)
g
(
s,x(s, ξ ,λ),λ

)∥∥p
L

) 
p ds

) p


+ p–Cp

(∫ t+ε

t

(
E
∥∥S(t + ε – s)g

(
s,x(s, ξ ,λ),λ

)∥∥p
L

) 
p ds

) p
 → , ()

as ε → , where Cp = (p(p – ))p. Thus

∥∥Jλ(x)(t + ε) – Jλ(x)(t)
∥∥

χ
→ , ()

as ε → ,which implies that Jλ is continuous inχ on [,T]. For each x, y ∈ χ and  ≤ t ≤ T ,
by the Hölder inequality,

E
∥∥x∗y

∥∥
H ≤ (

E‖x‖rH
) 
r
(
E‖y‖sH

) 
s , x, y ∈H ,


r
+

s
= , ()

where ∗ represents the transpose, and the Lyapunov inequality

(
E‖x‖mH

) 
m ≤ (

E‖x‖nH
) 
n , x ∈H ,  <m ≤ n < +∞ ()

and (ii), we have

E
∥∥f (s,x(s, ξ ,λ),λ)

– f
(
s, y(s, ξ ,λ),λ

)∥∥
H

≤ cE
[∥∥x(s, ξ ,λ) – y(s, ξ ,λ)

∥∥
H

(∥∥x(s, ξ ,λ)∥∥q
H +

∥∥y(s, ξ ,λ)∥∥q
H

)]
≤ c

(
E
∥∥x(s, ξ ,λ) – y(s, ξ ,λ)

∥∥q+
H

) 
q+

[(
E
∥∥x(s, ξ ,λ)∥∥q+

H

) q
q+ +

(
E
∥∥y(s, ξ ,λ)∥∥q+

H

) q
q+

]
≤ c

(
E
∥∥x(s, ξ ,λ) – y(s, ξ ,λ)

∥∥p
H

) 
p
[(
E
∥∥x(s, ξ ,λ)∥∥p

H

) q
p +

(
E
∥∥y(s, ξ ,λ)∥∥p

H

) q
p
]

≤ c(M)
q+
p e–

(q+)αs
p δ

q
p
(∥∥x(s, ξ ,λ) – y(s, ξ ,λ)

∥∥
χ

) 
p . ()

By (iii), we obtain

E
∥∥g(s,x(s, ξ ,λ),λ)

– g
(
s, y(s, ξ ,λ),λ

)∥∥p
L

≤ dpE
∥∥x(s, ξ ,λ) – y(s, ξ ,λ)

∥∥p
H

≤ Mdpe–αs∥∥x(s, ξ ,λ) – y(s, ξ ,λ)
∥∥

χ
. ()

Then, by (), () and Lemma ., we have

E
∥∥Jλ(x)(t, ξ ) – Jλ(y)(t, ξ )

∥∥p
H

≤ p–
[
E
∥∥∥∥
∫ t


S(t – s)

(
f
(
s,x(s, ξ ,λ),λ

)
– f

(
s, y(s, ξ ,λ),λ

))
ds

∥∥∥∥
p

H

+ E
∥∥∥∥
∫ t


S(t – s)

(
g
(
s,x(s, ξ ,λ),λ

)
– g

(
s,x(s, ξ ,λ),λ

))
dω(s)

∥∥∥∥
p

H

]

≤ p–
[(∫ t


E
∥∥S(t – s)

(
f
(
s,x(s, ξ ,λ),λ

)
– f

(
s, y(s, ξ ,λ),λ

))∥∥
H ds

)p

+Cp

(∫ t



(
E
∥∥S(t – s)

(
g
(
s,x(s, ξ ,λ),λ

)
– g

(
s,x(s, ξ ,λ),λ

))∥∥p
L

) 
p ds

) p

]
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≤ p–
[
E
(∫ t


Me–η(t–s)∥∥f (s,x(s, ξ ,λ),λ)

– f
(
s, y(s, ξ ,λ),λ

)∥∥
H ds

)p

+Cp

(∫ t



(
Mpe–pη(t–s)E

∥∥g(s,x(s, ξ ,λ),λ)
– g

(
s,x(s, ξ ,λ),λ

)∥∥p
L

) 
p ds

) p

]

≤
[
p+qMp+q+cpδqe–ηpt

(∫ t


eηs– (q+)αs

p ds
)p

+ pMp+dpCpe–pηt
(∫ t


e
pηs–αs

p ds
) p


]
‖x – y‖χ

≤
{
p+qMp+q+cpδq

∣∣∣∣ p
pη – α(q + )

∣∣∣∣
p

+ pMp+dpCp

[
p

(pη – α)

] p

}

× e–αt‖x – y‖χ . ()

Therefore

∥∥Jλ(x) – Jλ(y)
∥∥

χ
≤ θ‖x – y‖χ ,

where θ = p+q–Mp+qcpδq| p
pη–α(q+) |p + p–MpdpCp[ p

(pη–α) ]
p
 . Taking δ sufficiently small

so that θ < 
 , the operator Jλ becomes a contraction. In addition, we can obtain

∥∥Jλ(x)∥∥χ ≤ ∥∥S(t)ξ∥∥χ + θ‖x‖χ ≤ 

δ +



δ = δ. ()

This shows that Jλ(χ ) ⊂ χ . Thus, there exists a unique function x ∈ χ such that Jλ(x) = x.
By the above inequality, we have ‖x‖χ ≤ ‖ξ‖pH

(–θ ) , which means that () holds. Writing yλ =
x(·, ξ ,λ), we have

yλ – yμ = Jλyλ – Jμyμ = Jλyλ – Jλyμ + Jλyμ – Jμyμ ()

for any λ,μ ∈ Y . Thus

‖yλ – yμ‖χ ≤ θ‖yλ – yμ‖χ + ‖Jλyμ – Jμyμ‖χ . ()

It follows that

‖yλ – yμ‖χ ≤ ( – θ )–‖Jλyμ – Jμyμ‖χ . ()

Using the Lyapunov inequality

(
E‖x‖mH

) 
m ≤ (

E‖x‖nH
) 
n , x ∈H ,  <m ≤ n < +∞, ()

from (ii), (iii) and (), we get

a(s) = E
∥∥f (s,x(s, ξ ,μ),λ)

– f
(
s,x(s, ξ ,μ),μ

)∥∥
H

≤ c‖λ –μ‖YE
∥∥x(s, ξ ,μ)∥∥q+

H
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≤ c‖λ –μ‖Y
(
E
∥∥x(s, ξ ,μ)∥∥p

H

) q+
p

≤ c(Lδ)
q+
p e–

(q+)s
p ‖λ –μ‖Y ()

and

b(s) = E
∥∥g(s,x(s, ξ ,μ),λ)

– g
(
s,x(s, ξ ,μ),μ

)∥∥p
L

≤ dp‖λ –μ‖pYE
∥∥x(s, ξ ,μ)∥∥p

H

≤ dpLδe–αs‖λ –μ‖pY . ()

Thus

∥∥(Jλyμ)(t) – (Jμyμ)(t)
∥∥

χ

=


M
sup
t≥

[
eαtE

∥∥(Jλyμ)(t) – (Jμyμ)(t)
∥∥P
H

]

≤ p–

M
sup
t≥

{
eαt

[
E
∥∥∥∥
∫ t


S(t – s)

(
f
(
s,x(s, ξ ,μ),λ

)
– f

(
s,x(s, ξ ,μ),μ

))
ds

∥∥∥∥
p

H

+ E
∥∥∥∥
∫ t


S(t – s)g

(
s,x(s, ξ ,μ),λ

)
– g

(
s,x(s, ξ ,μ),μ

)
dω(s)

∥∥∥∥
p

H

]}

≤ p–

M
sup
t≥

{
eαt

[(∫ t


E
∥∥S(t – s)

(
f
(
s,x(s, ξ ,μ),λ

)
– f

(
s,x(s, ξ ,μ),μ

))∥∥
H ds

)p

+Cp

(∫ t



(
E
∥∥S(t – s)

(
g
(
s,x(s, ξ ,μ),λ

)
– g

(
s,x(s, ξ ,μ),μ

))∥∥p
L

) 
p ds

) p

]}

≤ p–Mp– sup
t≥

{
eαt

[(∫ t


e–η(t–s)a(s)ds

)p

+Cp

(∫ t



(
e–pη(t–s)b(s)

) 
p ds

) p

]}

≤ p–Mp– sup
t≥

{
eαt

[
cp(Lδ)q+

(∫ t


e
–pηt+pηs–(q+)αs

p ds
)p

+ LδdpCp

(∫ t



(
e–pη(t–s)–αs) 

p ds
) p


]}

‖λ –μ‖pY

≤ θ‖λ –μ‖pY , ()

where θ = p–Mp–cp(Lδ)q+| p
pη–α(q+) |p + p–Mp–dpCpLδ[ p

(pη–α) ]
p
 . Therefore

‖yλ – yμ‖χ ≤ θ

 – θ
‖λ –μ‖pY , ()

which yields (). This completes the proof of the theorem. �

Remark . From the proof of Theorem., if we take δ sufficiently small so that θ < 
 , the

mild solutions () with δ-domain initial value are p moment locally exponentially stable.
In this case, the property of pmoment stability is local.
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Theorem . Assume that (i)-(v) hold. Then, for any δ >  sufficiently small,mild solution
x(t, ξ ,λ) of () is almost surely exponentially stable, that is, there exists  < α < pη such that

lim sup
t→+∞


t
log

∥∥x(t, ξ ,λ)∥∥H ≤ –
α

p
, a.s., ()

for any λ ∈ Y and ξ ∈ B(δ). Furthermore,

lim sup
t→+∞


t
log

‖x(t, ξ ,λ) – x(t, ξ ,μ)‖H
‖λ –μ‖Y ≤ –

α

p
, a.s., ()

for any λ,μ ∈ Y , λ 
= μ and ξ ∈ B(δ).

Proof For any fixed positive real number εN >  (N = , , . . .),

P
(

sup
N≤t≤N+

∥∥x(t, ξ ,λ)∥∥H > εN

)

≤
(


εN

)p

E
(

sup
N≤t≤N+

∥∥S(t –N)x(N , ξ ,λ)
∥∥p
H

)

+
(


εN

)p

E
(

sup
N≤t≤N+

∥∥∥∥
∫ t

N
S(t – s)f

(
s,x(s, ξ ,λ),λ

)
ds

∥∥∥∥
p)

+
(


εN

)p

E
(

sup
N≤t≤N+

∥∥∥∥
∫ t

N
S(t – s)g

(
s,x(s, ξ ,λ),λ

)
dω(s)

∥∥∥∥
p

H

)

=
∑
i=

Ii. ()

By (i) and (), we have

I ≤
(


εN

)p

MpE
∥∥x(N , ξ ,λ)

∥∥p
H ≤

(

εN

)p

MpLδe–αN . ()

It follows from (ii) and () that

E
∥∥f (s,x(s, ξ ,λ),λ∥∥

H ≤ cE
∥∥x(s, ξ ,λ)∥∥q+

≤ c
(
E
∥∥x(s, ξ ,λ)∥∥p) q+

p ≤ c(Lδ)
q+
p e–

(q+)αs
p . ()

This implies that

I ≤ cpMp(Lδ)q+
(


εN

)p

sup
N≤t≤N+

∥∥∥∥
∫ t

N
e–η(t–s)e–

(q+)αs
p ds

∥∥∥∥
p

≤ cpMp(Lδ)q+
(


εN

)p∣∣∣∣ p
pη – (q + )α

∣∣∣∣
p

e–αN . ()

From (iii) and (), we have the following estimation:

E
∥∥g(s,x(s, ξ ,λ),λ∥∥p

L
≤ dpE

∥∥x(s, ξ ,λ)∥∥p
H ≤ dpLδe–αs, ()
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and

I ≤MpCp

(

εN

)p

sup
N≤t≤N+

(∫ t

N

(
e–pη(t–s)E

∥∥g(s,x(s, ξ ,λ),λ)∥∥p
L

) 
p ds

) p


≤MpdpCpLδ

(

εN

)p

sup
N≤t≤N+

(∫ t

N

(
e–pη(t–s)e–αs) 

p ds
) p



≤MpdpCpLδ

(

εN

)p[ p
(pη – α)

] p

e–αN . ()

Substituting (), () and () into (), we have

P
{

sup
N≤t≤N+

∥∥x(t, ξ ,λ)∥∥H > εN

}
≤ κ

(

εN

)p

e–αN , ()

where κ = MpLδ + cpMp(Lδ)q+| p
pη–(q+)α |p + MpdpCpLδ[ p

(pη–α) ]
p
 . As εN is an arbitrarily

given real number, let εN = e–
αN
p such that

P
{

sup
N≤t≤N+

∥∥x(t, ξ ,λ)∥∥H > e–
αN
p

}
≤ κpe–

αN
 . ()

Consequently, from the Borel-Cantelli lemma, there exists T(ω) >  such that for any t ≥
T(ω),

∥∥x(t, ξ ,λ)∥∥p
H ≤ e–

αt
p , a.s. ()

It remains to verify that () holds. The argument is similar to the above proof of (). For
any εN >  (N = , , . . .),

P
(

sup
N≤t≤N+

‖x(t, ξ ,λ) – x(t, ξ ,μ)‖H
‖λ –μ‖Y > εN

)

≤
(


εN

)p

E
(

sup
N≤t≤N+

‖S(t –N)(x(N , ξ ,λ) – x(N , ξ ,μ))‖pH
‖λ –μ‖pY

)

+
(


εN

)p

E
(

sup
N≤t≤N+

‖ ∫ t
N S(t – s)(f (s,x(s, ξ ,λ),λ) – f (s,x(s, ξ ,μ),μ))ds‖p

‖λ –μ‖pY

)

+
(


εN

)p

E
(

sup
N≤t≤N+

‖ ∫ t
N S(t – s)(g(s,x(s, ξ ,λ),λ) – g(s,x(s, ξ ,μ),μ))dω(s)‖pH

‖λ –μ‖pY

)

=
∑
i=

I ′i . ()

From (i) and (), we obtain

I ′ ≤
(


εN

)p

MpKe–αN . ()
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By (), () and (ii), applying inequalities () and (), we get

E
∥∥f (s,x(s, ξ ,λ),λ)

– f
(
s,x(s, ξ ,μ),μ

)∥∥
H

≤ E
∥∥f (s,x(s, ξ ,λ),λ)

– f
(
s,x(s, ξ ,μ),λ

)∥∥
H

+ E
∥∥f (s,x(s, ξ ,μ),λ)

– f
(
s,x(s, ξ ,μ),μ

)∥∥
H

≤ cE
[∥∥x(s, ξ ,λ) – x(s, ξ ,μ)

∥∥
H

(∥∥x(s, ξ ,λ)∥∥q +
∥∥x(s, ξ ,μ)∥∥q)]

+ cE‖λ –μ‖Y
∥∥x(s, ξ ,μ)∥∥q+

H

≤ c
(
E
∥∥x(s, ξ ,λ) – x(s, ξ ,μ)

∥∥p
H

) 
p
[(
E
∥∥x(s, ξ ,λ)∥∥p) q

p +
(
E
∥∥x(s, ξ ,μ)∥∥p) q

p
]

+ c‖λ –μ‖YE
(∥∥x(s, ξ ,μ)∥∥p

H

) q+
p

≤ c
[
K


p (Lδ)

q
p + (Lδ)

q+
p

]
e–

(q+)αs
p ‖λ –μ‖Y . ()

This implies that

I ′ ≤ cpMp
(


εN

)p[
K


p (Lδ)

q
p + (Lδ)

q+
p

]p
sup

N≤t≤N+

∥∥∥∥
∫ t

N
e–η(t–s)e–

(q+)αs
p ds

∥∥∥∥
p

≤ cpMp
(


εN

)p[
K


p (Lδ)

q
p + (Lδ)

q+
p

]p∣∣∣∣ p
pη – (q + )α

∣∣∣∣
p

e–αN . ()

It follows from (), () and (iii) that

E
∥∥g(s,x(s, ξ ,λ),λ)

– g
(
s,x(s, ξ ,μ),μ

)∥∥P
L

≤ P–
[
E
∥∥g(s,x(s, ξ ,λ),λ)

– g
(
s,x(s, ξ ,μ),λ

)∥∥P
L

+ E
∥∥g(s,x(s, ξ ,μ),λ)

– g
(
s,x(s, ξ ,μ),μ

)∥∥P
L

]
≤ p–dp[E∥∥x(s, ξ ,λ) – x(s, ξ ,μ)

∥∥P
H + ‖λ –μ‖pYE

∥∥x(s, ξ ,μ)∥∥P
H

]
≤ p–dpδ(L +K )e–αs‖λ –μ‖pY . ()

So

I ′ ≤ p–dpMpδCp(L +K )
(


εN

)p

sup
N≤t≤N+

(∫ t

N

(
e–pη(t–s)e–αs) 

p ds
) p



≤ p–dpMpδCp

(

εN

)p

(L +K )
[

p
(pη – α)

] p

e–αN . ()

Substituting (), () and () into (), we have

P
(

sup
N≤t≤N+

‖x(t, ξ ,λ) – x(t, ξ ,μ)‖H
‖λ –μ‖Y > εN

)
≤ κ

(

εN

)p

e–αN , ()

where κ = MpKδ + cpMp( 
εN
)p[K


p (Lδ)

q
p + (Lδ)

q+
p ]p| p

pη–(q+)α |p + p–dpMpδCp(L + K )×
[ p
(pη–α) ]

p
 . We can proceed to the remaining proof in a similar manner. �
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4 Example
In this section, an example is provided to illustrate our results.

Example . Consider the following stochastic partial equation:

dZ(t,x) =
[

∂

∂x
Z(t,x) +

λZ(t,x)
 + |Z(t,x)|

]
dt +

λZ(t,x)
( + |Z(t,x)|) dω(t), t ≥ ,

Z(t, ) = Z(t,π ) = , t ≥ ,

Z(,x) = ξ (x),

()

where ω(t) is a standard one-dimensional Brownian motion, λ ∈ Y = [  ,

 ] is a parameter.

Let A = ∂

∂x with the domain

D(A) =
{
u ∈H :

∂

∂u
,

∂

∂u
∈H ,u() = u(π ) = 

}
, ()

then ‖S(t)‖H ≤ e–t , ∀t ≥ , which implies thatM = . It is easy to see that (ii)-(iii) hold and
c = , q = , d = 

 . Taking p = , we may show that pdpCp( 
π )

p
 < . Then the mild solu-

tion of Eq. () has locally stable behavior and parameter dependence for δ >  sufficiently
small.

5 Conclusion
This paper is devoted to locally stable behavior and parameter dependence for stochastic
differential equations. Our results are derived under sufficiently small Lipschitz pertur-
bation in the parameter system. Meanwhile, a lot of stochastic inequality techniques are
used to estimate the bound of mild solution. The future research topics would be extend-
ing locally stable behavior and parameter dependence to the stochastic delayed parameter
system.
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