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Abstract
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1 Introduction
In this note we give a complete list of all continuous solutions f : (, +∞) → (, +∞) of the
equation

f (x) = γ
[
f (x)

]αxβ , (.)

where α, β and γ >  are given real numbers; here and throughout, f  denotes the second
iterate of f . Themotivation for writing this note was two problems concerning continuous
solutions f : (, +∞)→ (, +∞) of some special cases of equation (.) (see [, Problem ,
p.] and [, Problem , p.]) as well as conference reports and papers on both problems
(see [, ] and [–]). Let us mention that the problem from booklet [] is wrongly solved
in this booklet. To see that the problem from [] concerns really equation (.) observe
that from Remark . below it follows that in the case where β �=  equation (.) can be
rewritten in the form

f (x)
[
f –(x)

]–β = γ xα .

Remark . Assume β �= . Then every continuous solution f : (, +∞) → (, +∞) of
equation (.) is strictly monotone and maps (,+∞) onto (,+∞).

Proof Fix x, y ∈ (, +∞) and assume that f (x) = f (y). Then by (.) we get

γ
[
f (x)

]αxβ = f (x) = f (y) = γ
[
f (y)

]αyβ = γ
[
f (x)

]αyβ ,

and since β �= , we obtain x = y. Thus f is injective. This jointly with continuity implies
strict monotonicity.
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Now suppose that, contrary to our claim, limx→ f (x) ∈ (, +∞). Then, by the continuity
of f and (.), we obtain

f
(
lim
x→

f (x)
)
= lim

x→
f (x) = lim

x→
γ
[
f (x)

]αxβ ∈ {,+∞},

a contradiction. Thus limx→ f (x) ∈ {,+∞}. In the same manner we can prove that
limx→+∞ f (x) ∈ {,+∞}. �

2 Main results
To give a complete list of all continuous solutions f : (, +∞) → (, +∞) of equation (.),
we will split our consideration into the following three cases: β = , α =  �= β and α �=
 �= β . It turns out that the description of all continuous solutions of equation (.) in the
first case is quite easy; whereas in the third case it is much more complicated than in the
second one.

2.1 The case β = 0
If β = , then equation (.) reduces to the equation

f (x) = γ
[
f (x)

]α . (.)

Equation (.) was examined in [–]; cf. also [, ] and the references therein.
We begin with a (rather obvious and simple) characterization of general solutions

f : (, +∞)→ (, +∞) of equation (.).

Proposition . A function f : (, +∞)→ (, +∞) satisfies (.) if and only if

f (x) = γ xα (.)

for all x ∈ f ((, +∞)).

Proof (⇒) If a function f : (, +∞) → (, +∞) satisfies (.), then for every x = f (z) ∈
f ((, +∞)) we have f (x) = f (z) = γ [f (z)]α = γ xα .
(⇐) Fix a function f : (, +∞) → (, +∞) satisfying (.) for all x ∈ f ((, +∞)). Then, for

every x ∈ (, +∞), we have f (x) ∈ f ((, +∞)). Now, putting f (x) in place of x in (.), we
obtain (.). �

From Proposition . we obtain the following description of all continuous solutions
f : (, +∞)→ (, +∞) of equation (.).

Corollary . Let f : (, +∞) → (, +∞) be a continuous solution of equation (.). Then
either f has form (.) for all x ∈ (, +∞) or there exists a proper subinterval I (open or
closed or closed on one side; possible infinite or degenerated to a single point) of the half-
line (, +∞) satisfying

γ xα ∈ I for all x ∈ I (.)
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such that f has form (.) for all x ∈ I ,

lim
x→y

f (x) = γ yα for all y ∈ {inf I, sup I} \ {,+∞} (.)

and

f
(
(, +∞) \ I) ⊂ I. (.)

Moreover:
(i) If α < –, then I = {γ 

–α };
(ii) If α = –, then cl I = [A, γ

A ] with arbitrary A ∈ (,√γ ];
(iii) If α ∈ (–, ), then cl I = [A,B] with arbitrary A ∈ (,γ 

–α ] and B ∈ [γ 
–α , +∞);

(iv) If α ∈ [, ), then either cl I = [,B] or cl I = [A,B] or cl I = [A, +∞) with arbitrary
A ∈ (,γ 

–α ] and B ∈ [γ 
–α , +∞);

(v) If α =  < γ , then cl I = [A, +∞) with arbitrary A ∈ (, +∞);
(vi) If α =  = γ , then no restriction on I ;
(vii) If α =  > γ , then cl I = (,B] with arbitrary B ∈ (, +∞);
(viii) If α ∈ (, +∞), then either I = {γ 

–α } or cl I = [,B] or cl I = [A, +∞) with arbitrary
A ∈ [γ 

–α , +∞) and B ∈ (,γ 
–α ].

Proof Put I = f ((, +∞)).
If I = (,+∞), then (.) holds for all x ∈ (, +∞) by Proposition .. Therefore, to the

end of the proof, we assume that I �= (,+∞).
Since f is continuous, it follows that I is an interval. By Proposition . we see that (.)

holds for all x ∈ I . Thus (.) holds. Condition (.) follows from the continuity of f and
condition (.) is a consequence of the definition of I . This completes the proof of the
main part of the result.
To prove the moreover part put A = inf I and B = sup I . Since I �= (,+∞), it follows that

 < A or B < +∞.
Assume first that α < .
We will show that  < A and B < +∞.
If B = +∞, then (.) implies  = limx→B γ xα ∈ cl I , which contradicts I �= (,+∞). Simi-

larly, if A = , then (.) implies +∞ = limx→A+ γ xα ∈ cl I , which contradicts I �= (,+∞).
Applying condition (.), we get  < A ≤ γBα and γAα ≤ B < +∞. Hence γAα ≤ B ≤

γ – 
α A 

α .
(i) If α < –, then γ


–α ≤ A ≤ B≤ γ


–α .

(ii) If α = –, then γ

A ≤ B ≤ γ

A .
(iii) If α ∈ (–, ), then A≤ γ


–α ≤ B.

Assume now that α ≥ .
Then (.) yields A≤ γAα provided that A >  and γBα ≤ B provided that

B < +∞.
(iv) If α ∈ [, ), then A≤ γ


–α if A >  and γ


–α ≤ B if B < +∞.

(v) If α =  < γ , then B = +∞ and no restriction on A.
(vi) If α =  = γ , then no restriction on A and B.
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(vii) If α =  > γ , then A =  and no restriction on B.
(viii) If α > , then A≥ γ


–α if A >  and B ≤ γ


–α if B < +∞. �

As a consequence of Corollary ., we have the following direct construction of all con-
tinuous solutions f : (, +∞)→ (, +∞) of equation (.) (cf. [, Theorem .]).

Corollary . Let I be a suitably chosen interval from Corollary . for a given α ∈ R, and
let f : I → I be a function given by f(x) = γ xα . Then every extension of f to a continuous
function f : (, +∞) → (, +∞) satisfying (.) is a solution of equation (.).

2.2 The case α = 0 �= β

If α =  �= β , then equation (.) reduces to the equation

f (x) = γ xβ . (.)

Charles Babbage was probably the first who looked for solutions of equation (.) in the
case where β = γ =  (see []). For the case where γ = –β = , see [–]; cf. also [].
Equation (.) is a particular case of the equation of iterative roots (see [, , –]).
According to known results on the equation of iterative roots, we can formulate a theorem
on continuous solutions f : (, +∞) → (, +∞) of equation (.).
Denote by I(x, y) the closed interval [min{x, y},max{x, y}] with x, y ∈ (, +∞).

Theorem .

(i) Assume β < . Then equation (.) has no continuous solution f : (, +∞) → (, +∞).
(ii) Assume β = γ = .

(ii) Then the formula f (x) = x defines the unique continuous solution f : (, +∞) →
(, +∞) of equation (.).

(ii) If f : (, +∞)→ (, +∞) is a continuous and decreasing solution of equation (.),
then there exists x ∈ (, +∞) such that f (x) = x and f maps (,x] bijec-
tively onto [x, +∞). Conversely, if x ∈ (, +∞), then every decreasing bijection
f : (,x] → [x, +∞) such that f (x) = x can be uniquely extended to a continu-
ous and decreasing solution f : (, +∞) → (, +∞) of equation (.).

(iii) Assume β =  �= γ .

(iii) Let x ∈ (, +∞). If f : (, +∞) → (, +∞) is a continuous and increasing solution
of equation (.), then f maps I(x, f (x)) bijectively onto I(f (x),γ x).Conversely,
if x ∈ Int I(x,γ x), then every increasing bijection f : I(x,x) → I(x,γ x) can
be uniquely extended to a continuous and increasing solution f : (, +∞) →
(, +∞) of equation (.).

(iii) Equation (.) has no continuous and decreasing solution from f : (, +∞) →
(, +∞).

(iv) Assume  < β �= .

(iv) Let x ∈ (,γ


–β ) and let y ∈ (γ


–β , +∞). If f : (, +∞) → (, +∞) is a continu-
ous and increasing solution of equation (.), then f maps I(x, f (x))∪ I(y, f (y))
bijectively onto I(f (x),γ xβ

 ) ∪ I(f (y),γ yβ
 ). Conversely, if x ∈ Int I(x,γ xβ

 )
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and y ∈ Int I(y,γ yβ
 ), then every increasing bijection f : I(x,x) ∪ I(y, y) →

I(x,γ xβ
 ) ∪ I(y,γ yβ

 ) can be uniquely extended to a continuous and increasing
solution f : (, +∞) → (, +∞) of equation (.).

(iv) If f : (, +∞)→ (, +∞) is a continuous and decreasing solution of equation (.),
then f maps (,γ


–β ] bijectively onto [γ


–β , +∞) and γ [f (x)]β = f (γ xβ ) for all

x ∈ (, +∞). Conversely, every decreasing bijection f : (,γ


–β ] → [γ


–β , +∞)
such that γ [f(x)]β = f(γ xβ ) for all x ∈ (,γ


–β ] can be uniquely extended to a

continuous and decreasing solution f : (, +∞) → (, +∞) of equation (.).

Proof All the assertions can be derived from [, Chapter XV]) as it has been noticed
earlier. However, most of the assertions have evident proofs, so we present them for the
convenience of the reader.
(i) Suppose that, contrary to our claim, equation (.) has a continuous solution

f : (, +∞) → (, +∞). Then the second iterate f  of f is strictly increasing. Now by (.)
we conclude that β > , a contradiction.
(ii) It is clear that the identity function on (,+∞) satisfies (.). Suppose the contrary,

and let f : (, +∞)→ (, +∞) be another increasing solution of equation (.). Then there
exists x ∈ (, +∞) such that f (x) �= x. By the monotonicity of f , we conclude that f (x) �= x,
which contradicts (.).
(ii) The first assertion is clear. To prove the second one, fix a decreasing bijection

f : (,x] → [x, +∞) such that f (x) = x and extend it to a function f : (, +∞) →
(, +∞) putting f (x) = f – (x) for all x ∈ (x, +∞). It is easy to see that f is a decreasing
bijection satisfying (.).
(iii) The first assertion is evident. The second one can be deduced from [, Lem-

ma .].
(iii) Suppose, to derive a contradiction, that f : (, +∞) → (, +∞) is a continuous and

decreasing solution of equation (.). Then there exists x ∈ (, +∞) such that f (x) = x.
Hence f (x) = x �= γ x, a contradiction.
(iv) The first assertion is easy to verify. The second one can be inferred from [, The-

orem .].
(iv) Let f be a continuous and decreasing solution of equation (.). Then there exists

x ∈ (, +∞) such that f (x) = x. Hence by (.) we get x = f (x) = γ xβ
 , and thus x =

γ


–β . Consequently, f maps (,γ


–β ] bijectively onto [γ


–β , +∞). Moreover, (.) yields
f (γ xβ ) = f (x) = γ [f (x)]β for all x ∈ (, +∞). To prove the second part of the assertion,
fix a decreasing bijection f : (,γ


–β ] → [γ


–β , +∞) such that γ [f(x)]β = f(γ xβ ) for all

x ∈ (,γ


–β ] and extend it to a function f : (, +∞) → (, +∞) putting f (x) = f – (γ xβ ) for
all x ∈ (γ


–β , +∞). It is easy to calculate that f is a decreasing bijection satisfying (.).

�

2.3 The case α �= 0 �= β

In this case an explicit description of all continuous solutions f : (, +∞) → (, +∞) of
equation (.) is much more involved than in both the previous cases. We begin with an
observation which allows us to rewrite equation (.) in an equivalent form.
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Lemma . If f : (, +∞) → (, +∞) is a solution of equation (.), then the function
g : R→R given by g(x) = log f (ex) satisfies

g(x) = logγ + αg(x) + βx. (.)

Conversely, if g : R → R is a solution of equation (.), then the function f : (, +∞) →
(, +∞) given by f (x) = eg(logx) satisfies (.).

Equation (.) is a special case of the polynomial-like iterative inhomogeneous equation

N∑
n=

anf n(x) = b, (.)

where all an’s and b are real numbers and f is an unknown self-mapping; here f n de-
notes the nth iterate of f . For the theory of equation (.) and its generalizations, we refer
the readers to [–]. The problem of finding all continuous solutions of equation (.)
seems to be very difficult. It is completely solved in [] for N = , but it is still open even
in the case where N =  (see []). It turns out that the nature of continuous solutions
of equation (.) depends on the behavior of complex roots r, . . . , rN of its characteristic
equation

∑N
n= αnrn = . This characteristic equation is obtained by putting f (x) = rx into

(.) with b = ; in this way we can determine all linear solutions of the homogeneous
counterpart of equation (.), and then all affine solutions of equation (.). Therefore,
to formulate our result on continuous solutions f : (, +∞) → (, +∞) of equation (.),
denote by r and r the complex roots of the equation

r – αr – β = .

By our assumption, we have r + r = α �=  and rr = –β �= .
Combining Lemma . with the results from [], we get the following theorem.

Theorem .

(i) Assume r, r ∈ C \ R. Then equation (.) has no continuous solution f : (, +∞) →
(, +∞).

(ii) Assume r, r ∈R \ {}. Let ξ = γ


(r–)(r–) and f, f : (, +∞)→ (, +∞) be defined by

f(x) = γ
– 
r– xr , f(x) = γ

– 
r– xr .

(ii) Assume either  < r < r or  < r < r < . Let  < x < ξ < y. If f : (, +∞) →
(, +∞) is a continuous solution of equation (.), then f (ξ ) = ξ , f =
f |I(x,f (x))∪I(y,f (y)) is continuous,

f(x) ∈ I
(
f(x), f(x)

)
, f  (x) = γ

[
f(x)

]αxβ
 , (.)

f(y) ∈ I
(
f(y), f(y)

)
, f  (y) = γ

[
f(y)

]αyβ
 (.)

http://www.advancesindifferenceequations.com/content/2014/1/271
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and
(
y
x

)r
≤ f(y)

f(x)
≤

(
y
x

)r
(.)

for all x, y ∈ I(x, f (x)) ∪ I(y, f (y)). Conversely, every continuous function
f : I(x, f(x)) ∪ I(y, f(y)) → R such that (.) and (.) are satisfied and
(.) holds for all x, y ∈ I(x, f(x)) ∪ I(y, f(y)) can be uniquely extended to a
continuous solution f : (, +∞)→ (, +∞) of equation (.).

(ii) Assume  < r <  < r. Let x > . If f : (, +∞) → (, +∞) is a continu-
ous solution of equation (.), then either f |(,ξ ] ∈ {f|(,ξ ], f|(,ξ ]} and f |(ξ ,+∞) ∈
{f|(ξ ,+∞), f|(ξ ,+∞)} or f = f |I(x,f (x)) is continuous,

f(x) /∈ I
(
f(x), f(x)

)
, f  (x) = γ

[
f(x)

]αxβ
 (.)

and (.) holds for all x, y ∈ I(x, f (x)). Conversely, every continuous function
f : I(x, f(x)) → R such that (.) is satisfied and (.) holds for all x, y ∈
I(x, f(x)) can be uniquely extended to a continuous solution f : (, +∞) →
(, +∞) of equation (.).

(ii) Assume either r < r < – or – < r < r < . Let x > ξ . If f : (, +∞) → (, +∞)
is a continuous solution of equation (.), then f (ξ ) = ξ and f = f |I(x,f (x)) is con-
tinuous,

f(x) ∈ I
(
f(x), f(x)

)
, f  (x) = γ

[
f  (x)

]αxβ
 , (.)

and (.) holds for all x, y ∈ I(x, f (x)). Conversely, every continuous function
f : I(x, f  (x)) → R such that (.) is satisfied and (.) holds for all x, y ∈
I(x, f  (x)) can be uniquely extended to a continuous solution f : (, +∞) →
(, +∞) of equation (.).

(ii) Assume either r < r = – or – = r < r < . Then every continuous solution
f : (, +∞)→ (, +∞) of equation (.) is of the form

f (x) =

⎧⎪⎨
⎪⎩
ar+ξ –rxr for x ∈ (,a–ξ ],
ξ x– for x ∈ (a–ξ ,aξ ),
a–r–ξ –rxr for x ∈ [aξ , +∞)

with some a ∈ [, +∞].
(ii) Assume either r <  < r or r < – < r < . Then f and f are the only continuous

solutions from (, +∞) to (, +∞) of equation (.).

(iii) Assume r =  �= r. Let f : (, +∞)→ (, +∞) be defined by

f(x) = γ
– 
r– x.

(iii) Assume r >  �= γ . If f : (, +∞) → (, +∞) is a continuous solution of equation
(.), then f = f |I(x,f (x)) is continuous,

f(x) ≤ f(x), f  (x) = γ
[
f(x)

]αxβ
 (.)
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and

y
x

≤ f(y)
f(x)

≤
(
y
x

)r
(.)

for all x, y ∈ I(x, f (x)). Conversely, every continuous function f : I(x, f(x)) →
R such that (.) is satisfied and (.) holds for all x, y ∈ I(x, f(x)) can be
uniquely extended to a continuous solution f : (, +∞) → (, +∞) of equation
(.).

(iii) Assume  < r <  �= γ . If f : (, +∞) → (, +∞) is a continuous solution of equa-
tion (.), then f = f |I(x,f (x)) is continuous,

f(x) ≥ f(x), f  (x) = γ
[
f(x)

]αxβ
 (.)

and

(
y
x

)r
≤ f(y)

f(x)
≤ y

x
(.)

for all x, y ∈ I(x, f (x)). Conversely, every continuous function f : I(x, f(x)) →
R such that (.) is satisfied and (.) holds for all x, y ∈ I(x, f(x)) can be
uniquely extended to a continuous solution f : (, +∞) → (, +∞) of equation
(.).

(iii) Assume r >  and γ = . Then every continuous solution f : (, +∞) → (, +∞)
of equation (.) is of the form

f (x) =

⎧⎪⎨
⎪⎩
a–rxr for x ∈ (,a],
x for x ∈ (a,b),
b–rxr for x ∈ [b, +∞)

with some  ≤ a≤ b ≤ +∞.
(iii) Assume r <  and γ �= . Then f is the unique continuous solution from (, +∞)

to (, +∞) of equation (.).
(iii) Assume r <  and γ = . Then f is a continuous solution of equation (.) and

every other continuous solution f : (, +∞) → (, +∞) of equation (.) is of the
form

f (x) = axr

with some a ∈ (, +∞).

(iv) Assume r = r.

(iv) Assume r �= . Then the formula

f (x) = γ
– 
r– xr

defines the unique continuous solution f : (, +∞)→ (, +∞) of equation (.).
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(iv) Assume r =  �= γ . Then equation (.) has no continuous solution f : (, +∞) →
(, +∞).

(iv) Assume r = γ = .Then every continuous solution f : (, +∞) → (, +∞) of equa-
tion (.) is of the form

f (x) = ax

with some a ∈ (, +∞).
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