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Abstract
In this paper, we extend the deterministic single-group MSIRS epidemic model to a
multi-group model, and we also extend the deterministic multi-group framework to a
stochastic one and formulate it as a stochastic differential equation. In the
deterministic multi-group model, the basic reproduction number R0 is a threshold
that completely determines the persistence or extinction of the disease. By using
Lyapunov function techniques, we show that if R0 > 1, then the disease will prevail,
the infective condition persists and the endemic state is asymptotically stable in a
feasible region. If R0 ≤ 1, then the infective condition disappears and the disease dies
out. For the stochastic version, we perform a detailed analysis on the asymptotic
behavior of the stochastic model, which also depends on the value of R0, when
R0 > 1, we determine the asymptotic stability of the endemic equilibrium by
measuring the difference between the solution and the endemic equilibrium of the
deterministic model in time-averaged data. Numerical methods are used to illustrate
the dynamic behavior of the model and to solve the systems.

Keywords: multi-group MSIRS model; stochastic perturbation; graph theory;
Brownian motion

1 Introduction
Many models of the outbreak and spread of disease have been analyzed mathematically
and applied to specific diseases, and these models have provided some useful and valid
reference data for the characteristics of disease transmission. Based on the results of these
theoretical analyses, one can predict the future course of an outbreak and evaluate the
strategies used to control an epidemic. In , Kermack and McKendrick investigated
the classic SIR epidemic model and proved the existence of a threshold []; thereafter, the
number of studies on epidemiological modeling has rapidly increased, and a tremendous
variety ofmodels have now been formulated,mathematically analyzed, and applied to var-
ious infectious diseases. These models have involved many aspects of infectious diseases,
such as stage of infection, age structure, vertical transmission, spatial spread, loss of vac-
cine and disease-acquired immunity, vaccination, and quarantine [–]. Compartments
with the labels S, E, I, and R (susceptible, exposed, infectious, and recovered) are often
used for the epidemiological classes. For some infections, including measles, infants are
not born into the susceptible compartment but are immune to the disease for the first few
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months of life due to protection from maternal antibodies. Thus it is reasonable to add
an M class (maternally derived immunity) at the beginning of the model. In [], Hethcote
discuss the MSEIR model in detail. Threshold theorems involving the basic reproduction
number R, the contact number σ , and the replacement number R are surveyed for the
classic MSEIR epidemic []. Based on theMSEIRmodel in [], Lou andMa also proposed
a class of single-group MSIRS models [], which are formulated as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dM
dt = b(N – S) – (δ + d)M,
dS
dt = bS + τR + δM –

∑n
j=

βSI
N – dS,

dI
dt =

βSI
N – (d + γ )I,

dR
dt = γ I – (d + τ )R,
dN
dt = (b – d)N , k = , , . . . ,n.

(.)

In this MSIRS model, the flow of disease transmission is as follows. A mother has been
infected, and some IgG antibodies are transferred across the placenta, so that her new-
born infant has temporary passive immunity to an infection. The class M contains infants
with passive immunity. After the maternal antibodies disappear from the body, the infant
moves to the susceptible class S. Infants who do not have any passive immunity, because
their mothers were never infected, also enter the class S of susceptible individuals; next
the susceptible enters the I class while they are infectious and then move to the recovered
class R upon temporary recovery. The MSIRS model for infections that do not confer
permanent immunity (i.e., an infection does not leave a long-lasting immunity, and thus
individuals who have recovered return to being susceptible), the individual enters the sus-
ceptible class S (for a detailed introduction, see []).
Considering the different contact patterns, a distinct number of sexual partners, or dif-

ferent geography, among other variables, it is more appropriate to divide individual hosts
into groups in the modeling of an epidemic disease. Therefore, it is reasonable to propose
multi-group models to describe the transmission dynamics of diseases in heterogeneous
host populations. In fact, there are already many scholars who focus their studies on the
various forms of multi-group epidemic models [–]. Kuniya investigated the global sta-
bility of a multi-group SVIR epidemicmodel and considered the heterogeneity of the pop-
ulation and the effect of immunity induced by vaccination []. Muroya et al. also proved
the global stability of an endemic equilibrium of amulti-group SIRS epidemicmodel using
varying population sizes by extending the Lyapunov function techniques, which is one of
the main mathematical challenges in analyzing multi-groupmodels []. Recently, Li et al.
more closely examined these multi-group models [–]. They first proposed a graph-
theoretic approach to the method of global Lyapunov functions and used it to establish
global stability of the interior equilibrium for more general models []. In the present
paper, based on system (.), we divide the population of size N(t) into n distinct groups,
and then the n-group (n≥ ) MSIRS epidemic models are formulated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dMk
dt = bk(Nk – Sk) – (δk + dM

k )Mk ,
dSk
dt = bkSk + τkRk + δkMk –

∑n
j=

βkjSk (t)Ij(t)
Nj

– dS
kSk ,

dIk
dt =

∑n
j=

βkjSk (t)Ij(t)
Nj

– (dI
k + γk)Ik ,

dRk
dt = γkIk(t) – (dR

k + τk)Rk ,
dNk
dt = (bk – dk)Nk , k = , , . . . ,n.

(.)
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Because the natural births and deaths are not balanced, that is, bk �= dk , the total popula-
tion of the model is of an exponentially changing size. Thus, it is more difficult to analyze
mathematically because the population size Nk is an additional variable that is governed
by a differential equation. In accordancewith Guo et al. [], we investigate the asymptotic
behavior of system (.). When studying epidemic systems, we are interested in two prob-
lems: one is when the disease will die out, and the other is when the disease will prevail
and persist in a population. For a deterministic system, we solve the problems by deter-
mining the stability of the two equilibria under different conditions. However, note that
because of environmental noises, the deterministic approach has some limitations in the
mathematical modeling of the transmission of an infectious disease; as a result, several au-
thors have begun to consider the effect of white noise in epidemic models, which involves
a parameter perturbation and perturbations around the positive endemic equilibrium of
the epidemic models [–]. Beretta et al. proved the stability of the epidemic model
using stochastic time delays influenced by the probability under certain conditions [].
Such stochastic perturbations were first proposed in [, ] and later were successfully
used in many other papers for many different systems (see, e.g., [–]). Yuan et al. []
and Yu et al. [] both investigated epidemic models with fluctuations around the positive
equilibrium, and they proved the locally stochastically asymptotic stability of the positive
equilibrium. Ji et al. also considered a multi-group SIR model with stochastic perturba-
tion and deduced the globally asymptotic stability of the disease-free equilibrium when
R ≤ , which means the disease will die out; the determined that when R > , the disease
will prevail, which is measured through the difference between the solution and the en-
demic equilibrium of the deterministic model using time-averaged data []. Imhof and
Walcher [] considered a stochastic chemostatmodel and they proved that the stochastic
model led to extinction, even though the deterministic counterpart predicted persistence.
In our previous work, we considered an SEIR epidemic model with constant immigration
and random fluctuation around the endemic equilibrium, and we performed a detailed
analysis on the asymptotic behavior of the stochastic model []; we also investigated a
two-group epidemicmodel with distributed delays and randomperturbation []. Because
of the similarity between the transmission of human infectious diseases and the transmis-
sion of malicious objects in a computer network, we used the epidemicmodels to describe
the transmission of malicious objects in the cyber world []. In the current paper, to ex-
amine the influence of white noise on system (.), we also consider a stochastic version
of the MSIRS model by perturbing the deterministic system (.) using white noise and
assuming that the perturbations are around the positive endemic equilibrium of the epi-
demic models. While some papers study the effect of stochastic perturbation on epidemic
models, we are not aware of any literature addressing this issue in MSIRS epidemic mod-
els. This paper is an attempt to fill this gap.
This paper is organized as follows. We begin in Section  by providing the necessary

background with respect to the deterministic multi-group MSIRS model and introduce
some results of the graph theory used by Guo et al. in epidemic models. We establish
the global dynamics of the disease-free state by using the basic reproduction number and
present one of our main results (Theorem .) in Section . We derive the asymptotic
stability of a unique epidemic state in Section  (see Theorem .). In Section , we de-
rive the stochastic version from the deterministic model (.) and perform an analysis of
the asymptotic behavior of the stochastic model by means of the method of Lyapunov
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functions and graph theory in Theorem .. Numerical methods are used to simulate the
dynamic behavior of the model. The effect of the rate of immunity loss is also analyzed in
the deterministic models and the corresponding stochastic models in Section . Finally,
we provide the conclusion of our article in Section .

2 Deterministic multi-groupMSIRSmodels
To investigate the dynamical behavior, the first concern is whether the solution has a global
existence. Moreover, for a population dynamics model, whether the value is nonnegative
is also considered. Hence in this section we first show that the solution of system (.) is
global and nonnegative.
The parameters in the model (.) are summarized in Table .
The disease transmission diagram is depicted in Figure .
We assume that dM

k = dS
k = dI

k = dR
k = dk > , bk > , bk – dk = qk > , and that the rest of

the parameters be nonnegative for all k. It is clear that the population size changes in an
exponentially increasing manner. In particular, βkj =  if there is no transmission of the
disease between compartments Sk and Ij.
The fractions of the population in the classes ofMk , Sk , Ik , Rk areMk = Mk

Nk
, Sk = Sk

Nk
, Ik =

Ik
Nk

, Rk = Rk
Nk

, respectively. Note that the number of infectives Ik could go to infinity even
though the fraction Ik goes to zero if the population size Nk grows faster than Ik . To avoid

Table 1 Summary of notation

Notation Explanation

Mk Passively immune infants in kth group
Sk Susceptibles in the kth group
Ik Infectives in the kth group
Rk Recovered people with immunity in the kth group
Nk Total population size in the kth group
bk Fraction at which new-borns of group k have the passive immunity
βkj Rate of disease transmission between susceptible individuals in the

kth group and infectious individuals in the jth group
dMk , d

S
k , d

I
k , d

R
k Mortality rates of susceptible, infectious and recovered individuals in

the kth group, respectively
τk The rate of immunity loss in the kth group
δk Rate of the transfer out of the passively immune class in the kth group
γk Recovery rate of infectious individuals in the kth group

Figure 1 The transfer diagram for MSIRS model (1.2).
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this ambiguity, we focus on the behavior of the fractions in the epidemiological classes. It
is convenient to convert to differential equations for the fractions in the epidemiological
classes with simplifications by using the differential equation for Nk ; we then calculate

dMk

dt
=

dMk
dt
Nk

– qkMk ,
dSk
dt

=
dSk
dt
Nk

– qkSk ,

dIk
dt

=
dIk
dt
Nk

– qkIk ,
dRk

dt
=

dRk
dt
Nk

– qkRk .

Furthermore, eliminating the differential equation for Sk by using Sk = –Mk – Ik –Rk and
using bk – dk = qk > , the ordinary differential equations for the MSIRS model becomes

⎧⎪⎨⎪⎩
dMk
dt = –δkMk + (dk + qk)Ik + (dk + qk)Rk ,

dIk
dt =

∑n
j= βkj( –Mk – Ik – Rk)Ij – (dk + γk + qk)Ik ,

dRk
dt = γkIk – (dk + qk + τk)Rk , k = , , . . . ,n.

(.)

Equilibrium solutions (M∗
 , I∗ ,R∗

 , . . . ,M∗
n, I∗n ,R∗

n) ∈ Rn of system (.) obey the following
equation:

⎧⎪⎨⎪⎩
 = –δkM∗

k + (dk + qk)I∗k + (dk + qk)R∗
k ,

 =
∑n

j= βkj( –M∗
k – I∗k – R∗

k)I
∗
j – (dk + γk + qk)I∗k ,

 = γkI∗k – (dk + qk + τk)R∗
k , k = , , . . . ,n.

(.)

Then it is easy to verify that the trivial solution of system (.) is given by P =
(M

 , I ,R
 , . . . ,M

n , In ,R
n) ∈ Rn

+ , where M
k = Ik = R

k = , k ∈ {, . . . ,n}. It is clear that
S = · · · = Sn = . In epidemiology it is called the disease-free equilibrium, at which the
population remains in the absence of disease. Nontrivial solutions of system (.) with
I∗k >  for some k ∈ {, . . . ,n} are called endemic equilibria, at which the disease persists.
Our main task is to find some conditions that determine whether the disease dies out (i.e.,
the fraction Ik goes to zero) or remains endemic (i.e., the fraction Ik remains positive) for
system (.).
We can check that the right sides of (.) are smooth, so that solution of system (.)

with initial condition (M(), I(),R(), . . . ,Mn(), In(),Rn()) ∈ Rn
+ has a unique solu-

tion and remain nonnegative. Therefore in what follows we consider system (.) in Rn
+ .

A suitable bounded region in the nonnegative cone of Rn
+ for system (.) is

� =
{
(M, I,R, . . . ,Mn, In,Rn) ∈ Rn

+ |≤Mk , Ik ,Rk ,Mk + Ik + Rk ≤ , ≤ k ≤ n
}
.

Because no solution paths leave through any boundary, it can be verified that region � is
positively invariant for system (.) and the model is well posed. Our results in this paper
will be stated for system (.) in �.
Let

◦
�=

{
(M, I,R, . . . ,Mn, In,Rn) ∈ Rn

+ | <Mk , Ik ,Rk ,Mk + Ik + Rk < ,  ≤ k ≤ n
}
.

It is clear that
◦
� is the interior of �.
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Set

F =

⎛⎜⎜⎝
β · · · βn
...

. . .
...

βn · · · βnn

⎞⎟⎟⎠
and

V = diag(dk + γk + qk) =

⎛⎜⎜⎜⎜⎝
d + γ + q  · · · 

 d + γ + q · · · 
...

...
. . .

...
  · · · dn + γn + qn

⎞⎟⎟⎟⎟⎠ .

Then the next generation matrix is

FV – =

⎛⎜⎜⎝
β

d+γ+q
· · · βn

dn+γn+qn
...

. . .
...

βn
d+γ+q

· · · βnn
dn+γn+qn

⎞⎟⎟⎠ ,

and hence the basic reproduction number R is

R = ρ
(
FV –) =max

{|λ|;λ ∈ σ
(
FV –)}, (.)

where ρ(·) and σ (·) denote the spectral radius and the set of eigenvalues of a matrix, re-
spectively. Since it can be verified that system (.) satisfies conditions (A)-(A) of The-
orem  of [], we have the following proposition.

Proposition . For system (.), the disease-free equilibrium P is locally asymptotically
stable if R <  while it is unstable if R > .

3 Asymptotic stability of the disease-free equilibrium
In the study of population systems, extinction and persistence are two of the most impor-
tant issues. We will discuss the extinction of the deterministic MSIRS model (.) in this
section, that is, we will find some conditions that determine when the disease dies out (i.e.,
the fraction Ik goes to zero) for system (.). First, following [, ], we prepare a matrix
whose spectral radius has a similar threshold property to that of R. Let

V –F =

⎛⎜⎜⎝
β

d+γ+q
· · · βn

d+γ+q
...

. . .
...

βn
dn+γn+qn · · · βnn

dn+γn+qn

⎞⎟⎟⎠ .

Then the following lemma immediately follows.

Lemma . ρ(V –F ) ≤  if and only if R ≤ .

Using Lemma ., we obtain the following theorem, which is one of the main results of
this paper. This proof is similar to that of [, ].

http://www.advancesindifferenceequations.com/content/2014/1/270
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Theorem . Assume B = (βkj) is irreducible. If R ≤ , then the disease-free equilibrium
P of system (.) is globally asymptotically stable in� and there does not exist any endemic
equilibrium P∗.

Proof From Lemma . we have ρ(V –F ) ≤ . Following [, ], we define the matrix-
valued function

M(M, I,R) =

⎛⎜⎜⎝
β(–M–I–R)

d+γ+q
· · · βn(–M–I–R)

d+γ+q
...

. . .
...

βn(–Mn–In–Rn)
dn+γn+qn · · · βn(–Mn–In–Rn)

dn+γn+qn

⎞⎟⎟⎠
on Rn

+ , where M = (M, . . . ,Mn)T , I = (I, . . . , In)T and R = (R, . . . ,Rn)T . Note that M(M,
I,R) = V –F , where M = (M

 , . . . ,M
n)T , I = (I , . . . , In )T , R = (R

 , . . . ,R
n)T , and

first we claim that there does not exist any endemic equilibrium P∗ in �. Suppose that
(M, I,R) �= (M, I,R). Then we have  <M(M, I,R) < V –F . Since nonnegative matrix
M(M, I,R)+V –F is irreducible, it follows from the Perron-Frobenius theorem (see [])
that ρ(M(M, I,R)) < ρ(V –F ) ≤ . This implies that equation M(M, I,R)I = I has only
the trivial solution I = , where I = (I, . . . , In)T . Hence the claim is true.
Next we claim that the disease-free equilibrium P is globally asymptotically stable in �.

From the Perron-Frobenius theorem (see Theorem .. of []) it follows that the non-
negative irreducible matrix V –F has a strictly positive left eigenvector 
 := (
, . . . ,
n) ≥
 associated with the eigenvalue ρ(V –F ). Let us define a Lyapunov function

L(I) =
n∑
i=


i
Ii

di + γi + qi
(.)

on Rn
+, whose derivative along the trajectories of system (.) is

L′(I) =
n∑
i=


i

( ( –Mi – Ii – Ri)
∑n

j= βijIj
di + γi + qi

– Ii
)

= 
 · (M(M, I,R) – En
)
I

≤ 
 · (V –F – En
)
I

= 
 · (ρ(V –F
)
– 
)
I, (.)

where En and · denote the n × n identity matrix and the inner product of vectors, re-
spectively. If ρ(V –F ) ≤ , then 
 · (ρ(V –F ) – )I ≤ . Suppose that ρ(V –F ) < . Then
L′(I) =  if and only if I = . Suppose that ρ(V –F ) = . Then it follows from (.) that
L′(I) =  implies


 ·M(M, I,R) = 
 · I. (.)

Hence, if (M, I,R) �= (M, I,R), then 
 · M(M, I,R) < 
 · (V –F ) = ρ(V –F )
 = 
 and
thus I =  is the only solution of (.). Summarizing the statements, we see that L′(I) =  if
and only if I =  or (M, I,R) = (M, I,R), which implies that the compact invariant subset
of the set where L′(I) =  is only the singleton {P} ⊂ �. Thus, from the LaSalle invariance

http://www.advancesindifferenceequations.com/content/2014/1/270


Wang et al. Advances in Difference Equations 2014, 2014:270 Page 8 of 25
http://www.advancesindifferenceequations.com/content/2014/1/270

principle [], it follows that the disease-free equilibrium P is globally asymptotically
stable in �. �

4 Asymptotical stability of an endemic equilibrium in the deterministic MSIRS
model

Wediscuss the persistence of the deterministicMSIRSmodel (.) in this section, our goal
is to find some conditions that determine when the disease remains endemic (i.e., the frac-
tion Ik remains positive) for system (.). First, we introduce some specifics of the graph
theory that are useful for the proofs of asymptotic stability of an endemic equilibrium in
this section and the next section.
The matrix B = (βkj) denotes the contact matrix. Associated to B, one can construct a

directed graph L =G(B) whose vertex k represents the kth group, k = , . . . ,n. A directed
edge exists from vertex k to vertex j if and only if βkj > . Throughout the paper, we assume
that B is irreducible, which is equivalent to G(B) being strongly connected. Biologically,
this is the same as assuming that any two groups k and j have a direct or indirect route of
transmission.More specifically, individuals in Ij can infect ones in Sk directly or indirectly.
We define

βkj = βkjS∗
k I

∗
j = βkj

(
 –M∗

k – I∗k – R∗
k
)
I∗j , βkj > ,  ≤ k, j ≤ n, (.)

where (M∗
 , I∗ ,R∗

 , . . . ,M∗
n, I∗n ,R∗

n) is the endemic equilibrium solution of system (.). Now
consider the linear system

Bς = , (.)

where

B =

⎡⎢⎢⎢⎢⎣
∑

i�= βi –β · · · –βn

–β
∑

i�= βi · · · –βn
...

...
. . .

...
–βn βn · · · ∑

i�=n βni

⎤⎥⎥⎥⎥⎦ ,

and let L = G(B) denote the directed graph associated with matrix B (and (βkj)n×n), and
Cjk denote the cofactor of the (j,k) entry ofB.
We have the following fundamental lemma [].

Lemma . (Kirchhoff’s Matrix-Tree theorem) Assume (βkj)n×n is irreducible and n ≥ .
Then the following results hold:
() The solution space of system (.) has dimension , with a basis

(ς,ς, . . . ,ςn) = (C,C, . . . ,Cnn).
() For ≤ k ≤ n,

Ckk =
∑
T∈Tk

W (T) =
∑
T∈Tk

∏
(r,m)∈E(T)

βrm > ,

where Tk is the set of all directed spanning subtrees of L that are rooted at vertex k,
W (T) is the weight of a directed tree T , and E(T) denotes the set of directed arcs in a
directed tree T .

http://www.advancesindifferenceequations.com/content/2014/1/270
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Let R be defined in (.). If R > , it follows from Proposition . that the disease-free
equilibrium P is unstable. From a uniform persistence result of [, , , , ], we can
deduce that the instability of P implies the uniform persistence of system (.) in

◦
�, the

following proposition for system (.) is known in the literature, and its proof is standard
(see [, , , , ]).

Proposition . Assume B = (βkj) is irreducible. Then the following statement applies. If
R > , then P is unstable and system (.) is uniformly persistent in �.

The uniform persistence of (.), together with uniform boundedness of solutions in
◦
�,

implies the existence of an endemic equilibrium of system (.) in
◦
�. Summarizing the

statements, we have the following corollary.

Corollary . Assume B = (βkj) is irreducible. If R > , then system (.) has at least one
endemic equilibrium.

Moreover, based on the result of the existence of endemic equilibrium, we can prove the
following theorem, which is one of the main results of this paper.

Theorem. Assume that B = (βkj) is irreducible. IfR > , then system (.) has a unique
endemic equilibrium P∗ which is asymptotically stable.

Proof When n = , system (.) becomes

⎧⎪⎨⎪⎩
dM/dt = –δM + (d + q)I + (d + q)R,
dI/dt = β( –M – I – R)I – β(M + I + R)I – (d + γ + q)I,
dR/dt = γkI – (d + q + τ )R.

(.)

For this single-group model, Lou andMa proved that the endemic equilibrium P∗ is glob-
ally asymptotically stable, which of course is asymptotically stable. Here, we will consider
the case of n ≥ . First, using the change the variables of M̃k = Mk – M∗

k , Ĩk = Ik – I∗k ,
R̃k = Rk – R∗

k and system (.) can be written as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dM̃k
dt = –δkM̃k + (dk + qk )̃Ik + (dk + qk )̃Rk ,

d̃Ik
dt =

∑n
j= βkj( –M∗

k – I∗k – R∗
k )̃Ij

–
∑n

j= βkj(M̃k + Ĩk + R̃k)(I∗j + Ĩj) – (dk + γk + qk )̃Ik ,
dR̃k
dt = γk̃ Ik – (dk + qk + τk )̃Rk , k = , , . . . ,n.

(.)

Note thatB is the Laplacian matrix of the matrix (βkj)n×n. Because (βkj)n×n is irreducible,
thematrices (βkj)n×n andB are also irreducible. The column sums of the Laplacianmatrix
B are zero. Therefore, it follows from Lemma . that the solution space of the linear
systemBς =  has dimension , with a basis

ς := (ς,ς, . . . ,ςn)T = (C,C, . . . ,Cnn)T ,

http://www.advancesindifferenceequations.com/content/2014/1/270
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where Ckk denotes the cofactor of the kth diagonal entry ofB. For such ς = (ς,ς, . . . ,ςn),
we define the Lyapunov function

W (M, I,R) :=
n∑
k=

ςk

I∗k

n∑
j=

βkjI∗j

[
(τk + δk)M̃

k
(dk + qk)(τk + δk + dk + qk + γk)

+
(τk + δk )̃R

k
γk(τk + δk + dk + qk + γk)

+
(M̃k + R̃k)

(τk + δk + dk + qk + γk)

]
+

n∑
k=

ςk

I∗k
Ĩk , (.)

W ′(M, I,R) :=
n∑
k=

ςk

I∗k

n∑
j=

βkjI∗j

[
(τk + δk)M̃k

˙̃Mk

(dk + qk)(τk + δk + dk + qk + γk)

+
(τk + δk )̃Rk

˙̃Rk

γk(τk + δk + dk + qk + γk)

+
(M̃k + R̃k)( ˙̃Mk + ˙̃Rk)

(τk + δk + dk + qk + γk)

]
+

n∑
k=

ςk

I∗k
Ĩk ˙̃Ik

=W +W,

where

W =
n∑
k=

ςk

I∗k

n∑
j=

βkjI∗j

[
(τk + δk)M̃k

˙̃Mk

(dk + qk)(τk + δk + dk + qk + γk)
+

(τk + δk )̃Rk
˙̃Rk

γk(τk + δk + dk + qk + γk)

+
(M̃k + R̃k)( ˙̃Mk + ˙̃Rk)

(τk + δk + dk + qk + γk)

]
,

W =
n∑
k=

ςk

I∗k
Ĩk ˙̃Ik .

We calculate

W =
n∑
k=

ςk

I∗k

n∑
j=

βkjI∗j

[
–

(τk + δk)δkM̃
k

(dk + qk)(τk + δk + dk + qk + γk)
+

(τk + δk)M̃k̃Ik
τk + δk + dk + qk + γk

+
(τk + δk)M̃kR̃k

τk + δk + dk + qk + γk
+

(τk + δk )̃Rk̃Ik
τk + δk + dk + qk + γk

–
(dk + qk + γk )̃R

k
γk(τk + δk + dk + qk + γk)

–
δkM̃

k
τk + δk + dk + qk + γk

–
τkR̃

k
τk + δk + dk + qk + γk

+
(dk + qk + γk)(M̃k + R̃k )̃Ik

τk + δk + dk + qk + γk

–
(τk + δk)M̃kR̃k

τk + δk + dk + qk + γk

]

=
n∑
k=

ςk

I∗k

n∑
j=

βkjI∗j

[
–

(τk + δk + dk + qk)δkM̃
k

(dk + qk)(τk + δk + dk + qk + γk)
+ M̃k̃Ik + R̃k̃Ik

–
(dk + qk + γk + γkτk )̃R

k
γk(τk + δk + dk + qk + γk)

]
,
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W =
n∑
k=

ςk

I∗k
Ĩk

( n∑
j=

βkj
(
 –M∗

k – I∗k – R∗
k
)̃
Ij

–
n∑
j=

βkj(M̃k + Ĩk + R̃k)
(
I∗j + Ĩj

)
– (dk + γk + qk )̃Ik

)

=
n∑
k=

ςk

I∗k
[–

n∑
j=

βkjI∗j Ĩ

k +

n∑
j=

βkj
(
 –M∗

k – I∗k – R∗
k
)̃
Ik̃Ij

–
n∑
j=

βkj
( –M∗

k – I∗k – R∗
k)I

∗
j

I∗k
Ĩk

–
n∑
j=

βkjI∗j (M̃k + R̃k )̃Ik –
n∑
j=

βkj̃Ik(M̃k + Ĩk + R̃k )̃Ij

=
n∑
k=

ςk

I∗k

[( n∑
j=

βkj
(
 –M∗

k – I∗k – R∗
k
)
I∗k I

∗
j
Ĩk
I∗k

Ĩj
I∗j

–
n∑
j=

βkj
(
 –M∗

k – I∗k – R∗
k
)
I∗k I

∗
j

(
Ĩk
I∗k

)
)

–
n∑
j=

βkjI∗j Ĩ

k –

n∑
j=

βkjI∗j (M̃k + R̃k )̃Ik –
n∑
j=

βkj̃Ik(M̃k + Ĩk + R̃k )̃Ij

]

=
n∑
k=

ςk

I∗k

[( n∑
j=

βkjI∗k
vk
I∗k

Ĩj
I∗j

–
n∑
j=

βkjI∗k

(
Ĩk
I∗k

)
)
–

n∑
j=

βkjI∗j Ĩ

k

–
n∑
j=

βkjI∗j (M̃k + R̃k )̃Ik –
n∑
k=

βkj̃Ik(M̃k + Ĩk + R̃k )̃Ij

]
.

It follows from the arithmetic-geometric mean inequality that

Ik
I∗k

Ĩj
I∗j

≤ 


(
Ĩk
I∗k

)

+



(
Ĩj
I∗j

)

,

therefore

W ≤
n∑
k=

ςk

[ n∑
j=

βkj

(



(
Ĩk
I∗k

)

+



(
Ĩj
I∗j

)

–
(
Ĩk
I∗k

))]

–
n∑
k=

ςk

I∗k

[ n∑
j=

βkjI∗j Ĩ

k +

n∑
j=

βkjI∗j (M̃k + R̃k )̃Ik +
n∑
k=

βkj̃Ik(M̃k + Ĩk + R̃k )̃Ij

]

=



n∑
k=

ςk

[ n∑
j=

βkj

((
Ĩj
I∗j

)

–
(
Ĩk
I∗k

))]

–
n∑
k=

ςk

I∗k

[ n∑
j=

βkjI∗j Ĩ

k +

n∑
j=

βkjI∗j (M̃k + R̃k )̃Ik

+
n∑
k=

βkj̃Ik(M̃k + Ĩk + R̃k )̃Ij

]
. (.)
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Note that from (.), (.), and Lemma ., we have

n∑
j=

β̄jkςj =
n∑
k=

β̄kiςk =
n∑
j=

β̄kjςk . (.)

It follows that

n∑
k=

ςk

n∑
j=

β̄kj

(
Ĩj
I∗j

)

=
n∑
j=

ςj

n∑
k=

β̄jk

(
Ĩk
I∗k

)

=
n∑
k=

(
Ĩk
I∗k

) n∑
j=

β̄jkςj

=
n∑
k=

(
Ĩk
I∗k

) n∑
j=

β̄kjςk =
n∑
k=

ςk

n∑
j=

β̄kj

(
Ĩk
I∗k

)

. (.)

Substituting this into (.) yields

W ≤ –
n∑
k=

ςk

I∗k

[ n∑
j=

βkjI∗j Ĩ

k +

n∑
j=

βkjI∗j (M̃k + R̃k )̃Ik +
n∑
k=

βkj̃Ik(M̃k + Ĩk + R̃k )̃Ij

]
, (.)

thus,

W ′(M, I,R) =W +W

= –
n∑
k=

ςk

I∗k

n∑
j=

βkjI∗j

[
(τk + δk + dk + qk)δkM̃

k
(dk + qk)(τk + δk + dk + qk + γk)

+
(dk + qk + γk + γkτk )̃R

k
γk(τk + δk + dk + qk + γk)

+ Ĩk

]

–
n∑
k=

ςk

I∗k

n∑
k=

βkj̃Ik(M̃k + Ĩk + R̃k )̃Ij

≤W +

(
–

n∑
k=

ςk

I∗k

n∑
k=

βkj̃Ik(M̃k + Ĩk + R̃k )̃Ij

)
,

where

W := –
n∑
k=

ςk

I∗k

n∑
j=

βkjI∗j

[
(τk + δk + dk + qk)δkM̃

k
(dk + qk)(τk + δk + dk + qk + γk)

+
(dk + qk + γk + γkτk )̃R

k
γk(τk + δk + dk + qk + γk)

+ Ĩk

]
.

We denote Yk = (M̃k , Ĩk , R̃k) and Y = (Y, . . . ,Yn); then

|Yk| =
√
M̃

k (t) + Ĩk + R̃
k , |Y| =

( n∑
k=

|Yk|
)/

.
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It is clear that (–
∑n

k=
ςk
I∗k

∑n
k= βkj̃Ik(M̃k + Ĩk + R̃k )̃Ij) is an infinitesimal of higher order of

|Y| for |Y| → . Let

ω = min
k∈{,...,n}

{
ςk

I∗k

n∑
j=

βkjI∗j
(τk + δk + dk + qk)δk

(dk + qk)(τk + δk + dk + qk + γk)
,

ςk

I∗k

n∑
j=

βkjI∗j
(dk + qk + γk + γkτk)

γk(τk + δk + dk + qk + γk)
,
ςk

I∗k

}
.

Thus

W ′(M, I,R) ≤ –ω

n∑
k=

|Yk| + o
(|Y|). (.)

Hence W ′(M, I,R) is negative-definite in a sufficiently small neighborhood of Y = 0 for
t ≥ .However, it is easy to seeW (M, I,R) is a positive-definite decrescent function, which
implies the endemic equilibrium P∗ is asymptotically stable. �

5 Stochastic stability of the endemic equilibrium of amulti-group stochastic
MSIRSmodel

In this section, we consider the stochastic version of the deterministic MSIRS model. Un-
der the assumption that R >  and B = (βkj)n×n is irreducible, we know from Section 
that there exists a unique positive endemic equilibrium P∗ in

◦
�. Furthermore, we assume

stochastic perturbations on the Mk(t), Ik(t), Rk(t) are of white-noise type, which are di-
rectly proportional to deviations Mk(t), Ik(t), and Rk(t) from the values of M∗

k , I
∗
k , R

∗
k , re-

spectively. Thus, system (.) results in

⎧⎪⎨⎪⎩
dMk
dt = –δkMk + (dk + qk)Ik + (dk + qk)Rk + σk(Mk –M∗

k )
dBk
dt ,

dIk
dt =

∑n
j= βkj( –Mk – Ik – Rk)Ij – (dk + γk + qk)Ik + σk(Ik – I∗k )

dBk
dt ,

dRk
dt = γkIk – (dk + qk + τk)Rk + σk(Rk – R∗

k)
dBk
dt , k = , , . . . ,n,

(.)

where Bk(t), Bk(t), and Bk(t) are independent standard Brownian motions and σ 
ik > 

represent the intensities of Bik(t) (i = , , ), respectively. Obviously, the stochastic sys-
tem (.) has the same equilibrium points as system (.). Next, let us now proceed
to discuss asymptotic stability of system (.). In this paper, unless otherwise specified,
let (,F , {Ft}t≥t ,P) be a complete probability space with a filtration {Ft}t≥t satisfy-
ing the usual conditions (i.e. it is increasing and right continuous while F contains
all P-null sets). Let Bik(t) be the Brownian motions defined on this probability space.
If R > , then the stochastic system (.) can be centered at its endemic equilibrium
P∗ = (M∗

 , I∗ ,R∗
 , . . . ,M∗

n, I∗n ,R∗
n), by the change of variables

uk =Mk –M∗
k , vk = Ik – I∗k , wk = Rk – R∗

k ,
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we obtain the following system:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
duk
dt = –δkuk + (dk + qk)vk + (dk + qk)wk + σkuk

dBk
dt ,

dvk
dt =

∑n
j= βkj( –M∗

k – I∗k – R∗
k)vj

–
∑n

j= βkj(uk + vk +wk)(I∗j + vj) – (dk + γk + qk)vk + σkvk
dBk
dt ,

dwk
dt = γkvk – (dk + qk + τk)wk + σkwk

dBk
dt , k = , , . . . ,n.

(.)

It is clear that the stability of equilibriumof system (.) is equivalent to the stability of zero
solution of system (.). Considering the d-dimensional stochastic differential equation
[, ]

dx(t) = f
(
x(t), t

)
dt + g

(
x(t), t

)
dB(t), t ≥ t. (.)

If the assumptions of the existence-and-uniqueness theorem are satisfied, then, for any
given initial value x(t) = x ∈R

d , (.) has a unique global solution denoted by x(t; t,x).
For the purpose of stability we assume in this section f (0, t) =  and g(0, t) =  for all t ≥ t.
So (.) admits a solution x(t) ≡ 0, which is called the trivial solution or the equilibrium
position.
Let κ denote the family of all continuous nondecreasing functions μ : R+ → R+ such

that μ() =  and μ(r) >  if r > . For  < h ≤ ∞ and Sh = {x ∈ R
d, |x| < h}, denote

C,(Sh × [t,∞);R+) the family of all nonnegative functions V (x, t) on Sh × [t,∞) which
are continuously twice differentiable in x and once in t. Define the differential operator L
associated with (.) by

L =
∂

∂t
+

d∑
i=

fi(x, t)
∂

∂xi
+



d∑
i,j=

[
gT (x, t)g(x, t)

]
ij

∂

∂xixj
.

If L acts on a function V ∈ C,(Rd × [t,∞);R+), then

LV (x, t) = Vt(x, t) +Vt(x, t)f (x, t) +


trace

[
gT (x, t)Vxx(x, t)g(x, t)

]
.

Definition .
() The trivial solution of (.) is said to be stochastically stable or stable in probability if

for every pair of ε ∈ (, ) and r > , there exists a δ = δ(ε, r, t) >  such that

P
{∣∣x(t; t,x)∣∣ < r for all t ≥ t

}≥  – ε

whenever |x| < δ. Otherwise, it is said to be stochastically unstable.
() The trivial solution is said to be stochastically asymptotically stable if it is

stochastically stable and for every ε ∈ (, ), there exists a δ = δ(ε, t) >  such that

P
{
lim
t→∞x(t; t,x) = 

}
≥  – ε

whenever |x| < δ.

http://www.advancesindifferenceequations.com/content/2014/1/270
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() The trivial solution is said to be stochastically asymptotically stable in the large if it
is stochastically stable and for all x ∈ R

d

P
{
lim
t→∞x(t; t,x) = 

}
= .

Definition . A continuous nonnegative function V (x, t) is said to be decrescent if for
some μ ∈ κ :

V (x, t) ≤ μ
(∣∣x(t)∣∣) for all (x, t) ∈ Sh × [t,∞).

Before presenting the main theorem we put forward a lemma from [].

Lemma . [] If there exists a positive-definite decrescent function V (x, t) ∈ C,(Sh ×
[t,∞);R+) such that LV (x, t) is negative-definite, then the trivial solution of (.) is
stochastically asymptotically stable.

From the above lemma, we can obtain the stochastically asymptotically stability of equi-
librium as follows.

Theorem . Assume thatB = (βkj) is irreducible and R > . Then, if the following con-
dition is satisfied:

σ 
k < δk , σ 

k < 
n∑
j=

βkjI∗j , σ 
k <

(dk + qk + τk)(τk + δk) + τkγk
τk + δk + γk

, (.)

the endemic equilibrium P∗ is stochastically asymptotically stable.

Proof It is easy to see that we only need to prove the zero solution of (.) is stochas-
tically asymptotically stable. Let xk(t) = (uk(t),vk(t),wk(t))T ∈ R, k = , . . . ,n and x(t) =
(x(t), . . . ,xn(t))T ∈ Rn. We define the Lyapunov function V (x(t)) as follows:

V (x) =



n∑
k=

(
akuk + bkvk + ckw

k + ek(uk +wk)
)
, (.)

where ak > , bk > , ck >  are real positive constants to be chosen later. Then it can be
described as the quadratic form

V (x) =



n∑
k=

xTk Qxk ,

where

Q =

⎛⎜⎝ak + ek  ek
 bk 
ek  ck + ek

⎞⎟⎠
is a symmetric positive-definite matrix. So it is obviously that V (x) is positive-definite
decrescent. For the sake of simplicity, (.) may be divided into four functions: V (x) =

http://www.advancesindifferenceequations.com/content/2014/1/270
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V(x) +V(x) +V(x) +V(x), where

V(x) =



n∑
k=

akuk , V(x) =



n∑
k=

bkvk ,

V(x) =



n∑
k=

ckw
k , V(x) =




n∑
k=

ek(uk +wk).

Using Itô’s formula, we compute

LV =
n∑
k=

akuk
(
–δkuk + (dk + qk)vk + (dk + qk)wk

)
+



n∑
k=

akσ 
ku


k

= –
n∑
k=

ak
(

δk –


σ 
k

)
uk +

n∑
k=

ak
(
(dk + qk)ukvk + (dk + qk)ukwk

)
. (.)

Similarly, from Itô’s formula, we obtain

LV =
n∑
k=

bkvk

( n∑
j=

βkj
(
 –M∗

k – I∗k – R∗
k
)
vj –

n∑
j=

βkj(uk + vk +wk)
(
I∗j + vj

)

– (dk + γk + qk)vk

)
+



n∑
k=

bkσ 
kv


k

= –
n∑
k=

bk

(( n∑
j=

βkjI∗j –


σ 
k

)
vk +

n∑
j=

βkj
(
 –M∗

k – I∗k – R∗
k
)
vkvj

–
n∑
j=

βkj
( –M∗

k – I∗k – R∗
k)I

∗
j

I∗k
vk –

n∑
j=

βkjI∗j (uk +wk)vk

–
n∑
j=

βkjvk(uk + vk +wk)vj

)

=
n∑
k=

bk

( n∑
j=

βkj
(
 –M∗

k – I∗k – R∗
k
)
I∗k I

∗
j
vk
I∗k

vj
I∗j

–
n∑
j=

βkj
(
 –M∗

k – I∗k – R∗
k
)
I∗k I

∗
j

(
vk
I∗k

)
)

–
n∑
k=

bk

(( n∑
j=

βkjI∗j –


σ 
k

)
vk –

n∑
j=

βkjI∗j (uk +wk)vk

+
n∑
j=

βkjvk(uk + vk +wk)vj

)

=
n∑
k=

bk

( n∑
j=

βkjI∗k
vk
I∗k

vj
I∗j

–
n∑
j=

βkjI∗k

(
vk
I∗k

)
)
–

n∑
k=

bk

( n∑
j=

βkjI∗j –


σ 
k

)
vk

–
n∑
k=

bk
n∑
j=

βkjI∗j (uk +wk)vk –
n∑
k=

bk
n∑
j=

βkjvk(uk + vk +wk)vj
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≤
n∑
k=



bk

( n∑
j=

βkjI∗k

((
vk
I∗k

)

+
(
vj
I∗j

))
–

n∑
j=

βkjI∗k

(
vk
I∗k

)
)

–
n∑
k=

bk
n∑
j=

βkjI∗j (uk +wk)vk

–
n∑
k=

bk
n∑
j=

βkjvk(uk + vk +wk)vj –
n∑
k=

bk

( n∑
j=

βkjI∗j –


σ 
k

)
vk

=



n∑
k=

bk

( n∑
j=

βkjI∗k

(
vj
I∗j

)

–
n∑
j=

βkjI∗k

(
vk
I∗k

)
)
–

n∑
k=

bk
n∑
j=

βkjI∗j (uk +wk)vk

–
n∑
k=

bk
n∑
j=

βkjvk(uk + vk +wk)vj –
n∑
k=

bk

( n∑
j=

βkjI∗j –


σ 
k

)
vk . (.)

Let bk = Ckk
I∗k

, so ςk = bkI∗k . It follows fromBς =  and β jk = βjk( –M∗
j – I∗j – R∗

j )I∗k that

n∑
j=

β̄jkςj =
n∑
k=

β̄kjςk ,

which implies

n∑
k=

bk
n∑
j=

β̄kjI∗k

(
vj
I∗j

)

=
n∑
k=

bk
n∑
j=

β̄kjI∗k

(
vk
I∗k

)

.

Hence inequality (.) becomes

LV ≤ –
n∑
k=

bk
n∑
j=

βkjI∗j (uk +wk)vk –
n∑
k=

bk
n∑
j=

βkjvk(uk + vk +wk)vj

–
n∑
k=

bk

( n∑
j=

βkjI∗j –


σ 
k

)
vk ,

LV =
n∑
k=

ckwk
(
γkvk – (dk + qk + τk)wk

)
+



n∑
k=

ckσ 
kw


k

= –
n∑
k=

ck
(
dk + qk + τk –



σ 
k

)
w

k +
n∑
k=

ckγkvkwk ,

LV =
n∑
k=

ek(uk +wk)
(
–δkuk + (dk + qk + γk)vk – τkwk

)
+



n∑
k=

ek
(
σ 
ku


k + σ 

kw

k
)

= –
n∑
k=

ekδkuk –
n∑
k=

ekτkw
k –

n∑
k=

ek(τk + δk)ukwk

+
n∑
k=

ek(dk + qk + γk)(uk +wk)vk +



n∑
k=

ek
(
σ 
ku


k + σ 

kw

k
)
.
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Then we compute

LV = LV + LV + LV + LV

≤ –
n∑
k=

(ak + ek)
(

δk –


σ 
k

)
uk –

n∑
k=

bk

( n∑
j=

βkjI∗j –


σ 
k

)
vk

–
n∑
k=

[
ck(dk + qk + τk) + ekτk –



(ck + ek)σ 

k

]
w

k

+
n∑
k=

ckγkvkwk +
n∑
k=

ak
(
(dk + qk)ukvk + (dk + qk)ukwk

)
–

n∑
k=

bk
n∑
j=

βkjI∗j (uk +wk)vk

–
n∑
k=

ek(τk + δk)ukwk +
n∑
k=

ek(dk + qk + γk)(uk +wk)vk

–
n∑
k=

bk
n∑
j=

βkjvk(uk + vk +wk)vj

= –
n∑
k=

(ak + ek)
(

δk –


σ 
k

)
uk –

n∑
k=

bk

( n∑
j=

βkjI∗j –


σ 
k

)
vk

–
n∑
k=

[
ck(dk + qk + τk) + ekτk –



(ck + ek)σ 

k

]
w

k

+
n∑
k=

[
ckγk – bk

n∑
j=

βkjI∗j + ek(dk + qk + γk)

]
vkwk

+
n∑
k=

[
ak(dk + qk) – bk

n∑
j=

βkjI∗j + ek(dk + qk + γk)

]
ukvk

+
n∑
k=

[
ak(dk + qk) – ek(τk + δk)

]
ukwk –

n∑
k=

bk
n∑
j=

βkjvk(uk + vk +wk)vj.

We can choose ak , ck , ek such that

ak(dk + qk) – ek(τk + δk) = ,

ak(dk + qk) – bk
n∑
j=

βkjI∗j + ek(dk + qk + γk) = ,

ckγk – bk
n∑
j=

βkjI∗j + ek(dk + qk + γk) = ,

i.e.,

ak =
∑n

j= βkjI∗j (τk + δk)
(dk + qk)(τk + δk + dk + qk + γk)

bk ,
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ek =
∑n

j= βkjI∗j
τk + δk + dk + qk + γk

bk ,

ck =
∑n

j= βkjI∗j (τk + δk)
γk(τk + δk + dk + qk + γk)

bk ,

then

LV ≤ –
n∑
k=

(ak + ek)
(

δk –


σ 
k

)
uk –

n∑
k=

bk

( n∑
j=

βkjI∗j –


σ 
k

)
vk

–
n∑
k=

ck
(
dk + qk + τk +

τkγk

τk + δk
–

τk + δk + γk

(τk + δk)
σ 
k

)
w

k

–
n∑
k=

bk
n∑
j=

βkjvk(uk + vk +wk)vj

= V –
n∑
k=

bk
n∑
j=

βkjvk(uk + vk +wk)vj, (.)

where

V =
n∑
k=

(
Akuk +Bkvk + Ckw

k
)
,

Ak = (ak + ek)
(

δk –


σ 
k

)
, Bk = bk

( n∑
j=

βkjI∗j –


σ 
k

)
,

Ck = ck
(
dk + qk + τk +

τkγk

τk + δk
–

τk + δk + γk

(τk + δk)
σ 
k

)
,

and the proofs above show that if the condition (.) is satisfied, thenAk ,Bk , Ck are positive
constants. Let

λ = min
k∈{,...,n}

{Ak ,Bk ,Ck},

then λ > . From (.), one sees that

LV ≤ –λ

n∑
k=

(∣∣xk(t)∣∣ + o
(∣∣xk(t)∣∣))

= –λ
∣∣x(t)∣∣ + o

(∣∣x(t)∣∣), (.)

where |xk(t)| =
√
uk(t) + vk(t) +w

k(t), |x(t)| = (
∑n

k= |xk(t)|)/ and o(|x(t)|) is an in-
finitesimal of higher order of |x(t)| for t → ∞. Hence LV (x, t) is negative-definite in a
sufficiently small neighborhood of x = 0 for t ≥ . According to Lemma ., we therefore
conclude that the zero solution of (.) is stochastically asymptotically stable. The proof
is complete. �
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6 Numerical simulation
Numerical methods are used to solve the systems (.) and (.) and to depict the behavior
of the passively immune, infectious, and recovered with respect to time. We numerically
simulate the solution of systems (.) and (.) when n = . In this case, we have

M =

⎡⎣ β
dI+q+γ

β
dI+q+γ

β
dI+q+γ

β
dI+q+γ

⎤⎦ :=

[
βK βK

βK βK

]

and

R = ρ(M) =
βK + βK +

√
(βK – βK) + ββKK


.

The system parameters are given by

β = ., β = ., d = ., q = .,

δ = ., τ = ., γ = .,

β = ., β = ., d = ., q = .,

δ = ., τ = ., γ = ..

Hence, we obtain M∗
 = ., I∗ = ., R∗

 = ., M∗
 = ., I∗ = ., and

R∗
 = .. It is easy to compute that

R = . > .

Moreover, we choose M() = ., I() = ., R() = ., M() = ., I() = .,
R() = . as the initial values, and we keep all these initial values and parameter values
unchanged in each example unless otherwise stated. In the absence of noise, we simulate
the asymptotic stability of the endemic equilibrium of the deterministic system (.) in
Figure .
By Lemma ., we see that the endemic equilibrium P∗ of the deterministic model (.)

is asymptotically stable. The computer simulations shown in Figure  clearly support this
result.
Next, we show the numerical simulation of the stochastic system (.). Given the dis-

cretization of system (.) for t = , t, t, . . . ,nt, and k = , .

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Mk,i+ =Mk,i + (–δkMk,i + (dk + qk)Ik,i + (dk + qk)Rk,i)t
+ σk(Mk,i –M∗

k )
√tεk,i,

Ik,i+ = Ik,i + (βk( –Mk,i – Ik,i – Rk,i)I,i + βk( –Mk,i – Ik,i – Rk,i)I,i
– (dk + γk + qk)Ik,i)t + σk(Ik,i – I∗k )

√tεk,i,
Rk,i+ = Rk,i + (γkIk,i + (dk + qk + τk)Rk,i)t + σk(Rk,i – R∗

k)
√tεk,i,

(.)

where the time increment t > , and εk,i, εk,i, and εk,i are N(, )-distributed indepen-
dent random variables, which can be generated numerically by pseudo-random number
generators.
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Figure 2 Deterministic trajectories of the MSIRS model (2.1) for the initial conditionsM1(0) = 0.35,
I1(0) = 0.2, R1(0) = 0.1,M2(0) = 0.2, I2(0) = 0.35, and R2(0) = 0.05.

Figure 3 Stochastic trajectories of the MSIRS model (5.1) for σ11 = 0.37, σ21 = 0.5, σ31 = 0.2,
σ12 = 0.35, σ22 = 0.5, σ32 = 0.3, and �t = 10–3.

To determine the effect of the noise intensity, we consider three series of different val-
ues. Figure  corresponds to σ = ., σ = ., σ = ., σ = ., σ = ., and
σ = ., and it is easy to verify the noise intensity and system parameters obey condi-
tion (.). We can therefore conclude, by Theorem ., that the endemic equilibrium P∗

of stochastic model (.) is asymptotically stable. The computer simulations shown in Fig-
ure  agree well with the mathematical result. Figure  corresponds to σ = ., σ = .,
σ = ., σ = ., σ = ., and σ = ., and the comparison of Figures  (left) and 
(left) suggests that the fluctuations of at least one of the curves increase as the noise level
increases. The same situation occurs for the comparison of Figures  (right) and  (right).
Note that condition (.) is just a sufficient condition.When this condition is not satisfied,
the stochastic system (.) may or may not be stable. For example, the intensities of the
Brownian motions σ = ., σ = ., σ = ., σ = ., σ = ., and σ = . do not
obey the condition (.), but we can see from Figure  that the endemic equilibrium of
the stochastic system (.) is still asymptotically stable. If we choose σ = ., σ = .,
σ = ., σ = ., σ = ., and σ = ., then the solution of the stochastic sys-
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Figure 4 Stochastic trajectories of MSIRS model (5.1) for σ11 = 5.5, σ21 = 7.5, σ31 = 5.5, σ12 = 5.3,
σ22 = 6.8, and σ32 = 5.7.

Figure 5 Stochastic trajectories of the MSIRS model (5.1) for σ11 = 43.5, σ21 = 46.5, σ31 = 51.3,
σ12 = 65.3, σ22 = 52.2, and σ32 = 43.3.

tem (.) is not asymptotically stable but rather explodes to infinity in a finite time (see
Figure ).
To better understand the long time behavior of the deterministic and stochastic systems,

we show the phase space portraits for the deterministic and MSIRS stochastic endemic
model in Figures  and , respectively. For the stochastic case, Figure  corresponds to σ =
., σ = ., σ = ., σ = ., σ = ., and σ = ., in which the noise intensity
and system parameters obey the condition (.). Therefore, by Theorem ., the endemic
equilibrium P∗ of stochastic model (.) is asymptotically stable; we can see from Figure 
that an oscillation appears under environmental driving forces, which actually affect the
deterministic curves shown in Figure . These two trajectories in Figure  still maintains
the same overall trend as those of Figure , and they reach the same equilibrium points as
the deterministic version. The simulations agree with our results.
The major difference between theMSIRS model and theMSIRmodel is that theMSIRS

model does not confer permanent immunity to individuals in the model. Thus, let us an-
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Figure 6 Phase space portrait for the deterministic MSIRS endemic model.

Figure 7 Phase space portrait for the MSIRS endemic model with stochastic perturbations.

Table 2 Values of P∗, when fixing τ2 = 0.1 and changing τ1

M∗
1 I∗1 R∗

1 M∗
2 I∗2 R∗

2

τ1 = 0.05 0.1763 0.2405 0.2886 0.1717 0.2247 0.3120
τ1 = 0.1 0.1704 0.2840 0.2272 0.1760 0.2303 0.3198
τ1 = 0.15 0.1669 0.3129 0.1877 0.1786 0.2336 0.3244
τ1 = 0.2 0.1646 0.3336 0.1601 0.1802 0.2358 0.3275

Table 3 Values of P∗, when fixing τ1 = 0.05 and changing τ2

M∗
1 I∗1 R∗

1 M∗
2 I∗2 R∗

2

τ2 = 0.1 0.1763 0.2405 0.2886 0.1717 0.2247 0.3120
τ2 = 0.15 0.1803 0.2459 0.2951 0.1689 0.2529 0.2748
τ2 = 0.2 0.1832 0.2498 0.2998 0.1668 0.2754 0.2459
τ2 = 0.25 0.1853 0.2527 0.3032 0.1653 0.2939 0.2226

alyze the impact of the rate τk of passive immune loss on the MSIRS model by assigning
different values to it, as provided in Tables  and  by calculating the equilibrium of system
(.), which is, of course, an equilibrium of system (.).
Analyzing the data in Tables  and , it shows that the higher the value τk of the rate of

immunity loss is, the higher the value I∗j (j = , . . . ,n) of the endemic equilibrium is. Thus,
it will be of great importance for health management to take some effective measures to
diminish the rate the immunity loss. For example, when the antibody concentration of
a recovered person decreased, he can be required to undergo vaccination to achieve the
protective antibody levels.
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7 Conclusion
This paper presented a mathematical study describing the dynamical behavior of an
MSIRS epidemic model. Our purpose was based on analyzing this behavior using both
a deterministic model and a stochastic model. This result differs from the previous re-
sults obtained in [, ] for single-group MSIRS models. We proved that the deterministic
model has a unique endemic equilibrium, which is asymptotically stable if the reproduc-
tion numberR is greater than one; this means that the disease will persist at the endemic
equilibrium level if it is initially present and the disease die out if R ≤ . Furthermore,
concerning the stochastic model, we obtained sufficient conditions for stochastic asymp-
totical stability of the endemic equilibrium P∗ by using a suitable Lyapunov function and
other stochastic analysis techniques. The investigation of this stochastic model revealed
that the stochastic stability of P∗ depends on the magnitude of the intensity of the noise
as well as the parameters involved within the model system.
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