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Abstract

In this paper, we study the existence of a class of higher-order singular semipositone
fractional differential systems with coupled integral boundary conditions and
parameters. By using the properties of the Green'’s function and the Guo-Krasnosel'skii
fixed point theorem, we obtain some existence results of positive solutions under
some conditions concerning the nonlinear functions. The method of this paper is a
unified method for establishing the existence of positive solutions for a large number
of nonlinear differential equations with coupled boundary conditions. In the end,
examples are given to demonstrate the validity of our main results.
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1 Introduction
Coupled boundary conditions arise in the study of reaction-diffusion equations, Sturm-
Liouville problems, mathematical biology and so on; see [1-4]. Leung [5] studied the fol-

lowing reaction-diffusion system for prey-predator interaction:

us(t,x) = o1Au + u(zz +f(u, v)), t>0,xeQCR",

Vi(t,x) = o2 AV + V(—r +g(u, v)), t>0,xe QCR",

subject to the coupled boundary conditions

ou av
— =0, — —p(u)—q(v)=0 onde,
an an

2
where A = Z?:l 337%, a, r, o1, 09 are positive constants, f, g : R? — R have Holder continu-
ous partial derivatives up to second order in compact sets, 7 is a unit outward normal at
9 and p and g have Holder continuous first derivatives in compact subsets of [0, +00).

The functions u(t, x), v(¢, x) respectively represent the density of prey and predator at time
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¢t > 0 and at position x = (x, ..., ;). Similar coupled boundary conditions are also studied
n [6] for a biochemical system.

Existence theory for boundary value problems of ordinary differential equations is well
studied. However, differential equations with fractional order are a generalization of the
ordinary differential equations to non-integer order. This generalization is not a mere
mathematical curiosity but rather has interesting applications in many areas of science
and engineering such as electrochemistry, control, porous media, electromagnetism, etc.
There has been a significant development in the study of fractional differential equations
in recent years; see, for example, [7-13]. Wang et al. [14] researched a coupled system of
nonlinear fractional differential equations

D% u(t) +£(t,v(t) =0
DEv(t) +g(t,u(t) =0, 0<t<1,

u(©0)=v(0)=0,  wu()=au§),  vQl)=>bv(),

wherel<o,8<2,0<a,b<1,0<£&<1,f,g:[0,1] x [0,+00) — [0, +00) are continuous
functions, Dy, D’ o+ are also two standard Riemann-Liouville fractional derivatives. By us-
ing the Banach fixed point theorem and nonlinear differentiation of Leray-Schauder type,
the existence and uniqueness of positive solutions are obtained.

In [15], Yang considered the positive solutions to boundary values problem for a coupled
system of nonlinear fractional differential equations as follows:

“u(t) + a()f (¢ v(t) =0
DPy(t) + b(t)g(t,u(t)) =0, 0<t<l,

u©0)=0,  w@)=fyc@u)dt, v0)=0, 1) = [, uew@)dt,

where 1 <o,8 <2,a,b:(0,1) — [0, +00) are continuous, &, i : [0,1] — [0, +00) are non-
negative and integrable functions, f, g : [0,1] x [0, +00) — [0, +00) are continuous, and D%,
DF are standard Riemann-Liouville fractional derivatives. By applying the Banach fixed
point theorem, nonlinear differentiation of Leray-Schauder type and the fixed point theo-
rems of cone expansion and compression of norm type, sufficient conditions for the exis-
tence and nonexistence of positive solutions to a general class of integral boundary value
problems for a coupled system of fractional differential equations are obtained.

Inspired by the above mentioned work and wide applications of coupled boundary con-
ditions in various fields of sciences and engineering, in this paper, we research the exis-
tence result to a class of singular semipositone fractional differential systems with coupled
integral boundary conditions of the type

D‘giu(t) + AMfiE u(t), v(e)) =

Dg2v(t) + Azfg(t u(t),v(t)) = 0<t<l,
1 (L1)
M(O) =i/ (0)=---=u"2(0 ) u(l) = fo v(s) dA(s),
(0) =v(0) = -~ = v"2(0) = 0, v(1) = s [y uls) dAs(s),

where A; > 0 is a parameter, n — 1< a; <n,n>2, Dg‘; is the standard Riemann-Liouville
derivative. ;> 0 is a constant, A; is right continuous on [0, 1), left continuous at £ = 1, and
nondecreasing on [0,1], A;(0) = 0, fol x(s) dA;(s) denotes the Riemann-Stieltjes integrals of
x with respect to A, f; : (0,1) x [0, +00) x [0, +00) — (—00, +00) is a continuous function
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and may be singular at ¢ = 0,1 for i = 1,2. By a positive solution of system (1.1), we mean
that (#,v) € C[0,1] x C[0,1], (u,v) satisfies (1.1) and u(¢) > 0, v(¢) > 0 for all £ € (0,1].

To the best knowledge of the authors, there is seldom earlier literature studying frac-
tional differential system with coupled integral boundary conditions like system (1.1), es-
pecially when f(¢, 4, v) (i = 1,2) may be sign-changing, and may be singular at £ = 0 and
¢t = 1. Motivated by the results mentioned above, this paper attempts to fill part of this gap
in the literature.

2 Preliminaries and lemmas
For convenience of the reader, we present some necessary definitions about fractional cal-

culus theory.

Definition 2.1 [16, 17] Let « > 0 and let u be piecewise continuous on (0, +00) and inte-

grable on any finite subinterval of [0, +00). Then, for ¢ > 0, we call

Ifou(t) = ﬁ /0 (¢ —8)* u(s)ds

the Riemann-Liouville fractional integral of u of order «.

Definition 2.2 [16,17] The Riemann-Liouville fractional derivative of order o« >0, n—1 <

o <n, n € Nis defined as

o e — L (AN [T grant
DOM(t)_F(n—a)( t> /O(t s) u(s) ds,

where N denotes the natural number set, the function u(t) is # times continuously differ-

entiable on [0, +00).

Lemma 2.1 [16, 17] Let o > 0, if the fractional derivatives D7 Lyu(t) and D, u(t) are con-

tinuous on [0, +00), then
I§. DG, u(t) = u(t) + at® ot oyt
where c1, ¢, ..., ¢y € (—00, +00), n is the smallest integer greater than or equal to «.

Lemma 2.2 Assume that the following condition (Hy) holds.
(Ho)
1 1
k1 = / taz_l dAl(t) >0, k2 = / tal_l dAz(t) >0, 1- ,bLlleklkg > 0.
0 0
Let h; € C(0,1) N L(0,1) (i = 1,2), then the system with the coupled boundary conditions
D u(t) + m(t) =0, Dyiv(t) + ha(8) =0, 0<t<l,

w0)=w(0) = =u"D(0)=0,  u(l)=pu [, v(s)dAs(s), (21)
v(0) =vV(0)= - =v"D(0)=0, V(1) =y fy uls) dAx(s)
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has a unique integral representation

ult) = [y Ku(t,9)hi(s)ds + [ Hi(t,5)ha(s) ds,

We) = [y Ko(t,s)ha(s)ds + [y Ho(t, s)hi(s) ds, @2)

where

k tal—l 1
Ki(ts) = Farlat / Gult,5) dAs () + Gu(t,s),
1 - ppakiks Jo

I toq—l

Hi(t,s) = ————
1(6:6) 1 — pipakiks

1
/0 Galt,5)dAL (1),

(2.3)

k totz—l 1
Kaltys) = F2rfol™ / Galt,s) dAL(D) + Galt,s),
1- ppakiks Jo

W totz—l

Hy(t,s) = ———
2(t:3) 1 — pypokiky

1
/0 Gult,s) dAs (1),

and

Gi(t,S) =

1 Q-9 t—(-s5), 0<s<t<l, |
i=1,2.

C(e) | (21 -s)], 0<t<s<l,
Proof System (2.1) is equivalent to the system of integral equations
1
u(t) = u(l)et +/ Gi(t, )l (s) ds, (2.4)
0
1
v(t) = v + / Go(t, 8)hy(s) ds. (2.5)
0

Integrating (2.4) and (2.5) with respect to dA,(t) and dA;(t) respectively, we have

1 1 1,1
./ou(t)dAZ(t):u(l)/o t"‘“ldAz(t)+/0 /0 Gi(t, ) (s) ds dA,(t),

1 1 1 pl
/(;v(t)dAl(t)zv(l)/O t"‘z_ldAl(t)+/0 /0 Go(t,8)hy(s) ds dA;(¢).

Therefore, we can get

1 1
L) - kv = f / Galt,5)s(s) ds dA (1), (2.6)
1251 o Jo

1 pl
—kzu(1)+iv(1)=/ / Gi(t, $)h1(s) ds dA,(t). (2.7)
w2 o Jo
Note that

11— ppakiky
U142

#0.

Page 4 of 24
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Thus, system (2.6) and (2.7) has a unique solution for #(1) and v(1). By Cramer’s rule and

simple calculations, it follows that

_ 1251 Lot

u(l) = TTunkk ik (/0 /0 Gy (t,8)hy(s) ds dA; ()
1 1

+ ok / f Gu(t,5)hi(s) dsdAzm), 2.8)

v(l) = / / Gi(8,8)h(s) ds dA;(t)

1- M1M2k1/<2 <
+M1k2/0 /0 Gg(t,S)hz(S) deAl(t)) (29)

Substituting (2.8) and (2.9) into (2.4) and (2.5), we have

PP Ui <//Gt Vi (s) ds dAy (£)
u = S S
1— pupiakiky 2 2ls !

+u2/<1/ / Gi(t, 8)h1(s) dsdAz(t)> +/ Gi(t,s)hi(s) ds
0o Jo 0
1 1
= / I(l(t,s)hl(s)ds+/ H;(t,8)hy(s) ds,
Mzt%l (/fGtsh (s)dsdA,(¢)
T1- 1 pokiky ! ! 2
+ ks / / G2<t,s>h2(s)dsdA1(t))+ / Galt, s)hals) ds
o Jo 0
1 1
:/ Kz(t,s)hz(s)ds+/ Hy(t,s)h1(s) ds.
0 0
So (2.2) holds. The proof is completed. d

Lemma 2.3 Fort,s € [0,1], the functions K;(t,s) and H(t,s) (i = 1,2) defined as (2.3) satisfy

Ki(t,s), Ha(t,5) < ps(1 —s)17%, Ky(t,s), H(t,s) < ps(1 —s)®7L, (2.10)

]<1(t: S);Hl(t7 S) = ptalil; [(2(t15)yH2(trS) = pta271¢ (211)

Ki(t,s) > ot*17ts(1 — s)4171, Hy(t,s) > ot*> 1s(1 —5)4171, (2.12)

Ks(t,s) > ot*71s(1 — s)2 7L, Hi(t,s) > ot ts(1 — 5)@27L, (2.13)
where

1 wipki w
p = max { [(eg-1) (lfﬂmzklkz fO dAs(t) +1), [ (ag-1)(1-p1 paki k) 0 100), }

L (t2mke  ga, () +1) dAz(t)

M2
[(ag-1) M- pokiks ? Tl -1)(1~p1 ki ka) fO

Maaky _ £yp-1 251 _ £yl
© = min NC MngklkZ fo (1=t~ dAx (), T(ap)(A-prpokik2) fo pEeedA,(8), .
24417 fo — )t 1 dA; (¢) 1=t 1dAy(¢)

___ Mmamky I 5 —
[(ag)(1-p ki ko) 7 T(a1)A-pypokiky) fo
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Proof By [18, Lemma 3.2], for any ¢,s € [0,1], we have

(1 — £)roilg(1 — s)%i-1 s(1—s)%!

(o) < Gi(t,s) < T D) i=1,2. (2.14)

So, by (2.3) and (2.14), we have

/ totlfl 1
Ki(t.) = S0 [ 66,920+ 669
1 - wipakiks Jo
k toq—l 1 1-— o1-1 1-— a1-1
< ki / s(1-s) dAz(t)+s( 5)
1-papakiky Jo Tl —1) [ - 1)
1 ok g1 /1 ) -1
< dA,(t) +1 )s(1 — )"
a1 —1) (1 — mpakiky Jo 7
1 H1ptaky /1 ) -1
< dA>(£) +1 )s(1—s)™
(e - 1) (1 — pakiks Jo O
< ps(1 - sy, (2.15)
MZtaz_l 1
H,(t,s) = —/ Gi(t,s) dAs(t)
’ 1 - ppakiks Jo ! 2

1- a1—1 totz—l 1
< s(1-s) M2 / dAy(0)
Mo —1) 1-ppekiks Jo

M2 1 ) e
- <F(a1_1)(1—M1M2k1k2)/0 dA,(t) )s(1-s)

< ps(l-s)m7L, (2.16)

By a similar proof as (2.15) and (2.16), we also obtain
Ky(t, ), Hi(t,s) < ps(1—5)27Y,  t,5€]0,1],

then we know that (2.10) holds.
By [18, Lemma 3.2], for any ¢,s € [0,1], we also have

(1 - t)teilg(1 — s)@i! eit1-)
<Gits) < ——, =1,2. 217
I(a) =G =Ty (217)
So, by (2.3) and (2.17), we have
k tot]fl 1
Kift.) = S0 [ 66,90+ 66
1 - ppakiks Jo
ket plypa-lq—¢ (1 —¢
< Mok f ( )dAz(t)+ (1-1)
1— mpakiky Jo Tl —1) INGIEDY
_ Mkt /1 L a0+ gt
T 1- papkiks Jo Tl —1) [y -1)
1 k !
< ( M1 2K / dAy(2) +1)ta11
Mo —1) \1 - pipakika Jo

< pr, (2.18)
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M2t0¢2—1 fl
_ T Gl s) dAs()
1 - mpakiks Jo ! 2

Mztag—l /1 tal—l(l _ t)
T 1-pupskiks Jo T —1)

Hz(t,S) =

dA,(t)

g2l L |
<M / dAy(t) < pt®, (2.19)
1 - ppakiky Jo Tl —1)

By a similar proof as (2.18) and (2.19), we also obtain
Ky(t,s) < pt™2™',  Hi(ts) < pt™, telo,1],

then we know that (2.11) holds.
On the other hand, by (2.3) and (2.14), we also have

kgt
Ki(t,s) = mpakal
1 - pypokiky

_ Hpakt! / TA-peeats(l—s)a !
T 11— mpakiks Jo ()

Mok /1 . > L B
> 1-t9 A, (1) )t 1—5)™
- <F(a1)(1—,u1,u2klk2) o ( ) 2(t) s(1-s)

> ot s(1—s) 7,

1
/‘&m9¢%M+Gﬂ@
0

dA(t)

(2.20)
MZtaz—l /1
Hy(t,s) = —— Gi(t,s) dA, (¢t
el CICOLZH T
tozz—l 1 1—¢ taq—l 1- a1-1
. / (L=t 1=s(1-s) Ay ()
1 - pipakiks Jo (o)
> ( H2 / 1(1 — et dAg(t))t“Q‘ls(l — )t
o)X — pipokiks) Jo
> ot®27Ls(1 - 5)a7t, (2.21)

So, we can get that (2.12) holds. By a similar proof as (2.20) and (2.21), we also obtain
K(t,s) = 0t s(L-5)"7,  Hi(t,s) = 0t 's(1-5)27,  t€[0,1],
which implies that (2.13) holds. The proof is completed.

Remark 2.1 From Lemma 2.3, for ¢, 7,s € [0,1], we have

I<i(t’ S) = wtai_llg(fr S); Hi(t’ S) = a)tai_lHi(T’ S)) i= 1; 2’
Ki(t,s) > ot Hy(z,5),  Ha(t,s) > wt®2Ki(z,5),

Ky(t,8) = wt™ ' Hy(z,s),  Hy(t,8) > wt“ 7' Ky(1,9),
where w = %, o, p are defined as Lemma 2.3, 0 < w < 1.

In the rest of the paper, we always suppose that the following assumption holds:

Page 7 of 24


http://www.advancesindifferenceequations.com/content/2014/1/268

Wang et al. Advances in Difference Equations 2014, 2014:268 Page 8 of 24
http://www.advancesindifferenceequations.com/content/2014/1/268

(Hy) fi:(0,1) x [0,+00) x [0, +00) — (—00, +00) is continuous and satisfies

_qi(t) fﬁ'(ttxry) < ai(t) i(t¢x7y)1
(t,%,9) € (0,1) x [0,+00) X [0,+00),i=1,2,

where a;,4; : (0,1) — [0, +00) are continuous and may be singular at £ = 0,1, p; : [0,1] x

[0, +00) x [0, +00) — [0, +00) is continuous and

1 1
0< / qi(s) ds < +00, 0< / a;(s)ds < +00, i=1,2.
0 0

Lemma 2.4 Assume that (Hy), (Hy) hold. Then the system with the coupled boundary

conditions

Dyiooi(t) + lqa(2) = 0,

Dy ot )+)»2q2(t)— , O0<t<l,
@1(0) = @{(0) = w(n 2)(O) =0, lU1(1) i fo @5(s) dA1(s),
@,(0) =w5(0)=--- = wz(n 2(0) = 0, = [y fo w1 (s) dAs(s)

has a unique solution

@1(8) = 2 fo Ki(t,5)q1(s) ds + ha [y Hi(t,)qa(s) ds, (222)
o (t) = Ay fol Ky (t,8)qa(s) ds + M fol Ho(t,5)q1(s) ds,
which satisfies
1 1
w;(t) < )qpt“"_I/ q1(s) ds + Azpt""'_I/ q2(s)ds, 0<t<1,i=1,2. (2.23)
0 0

Proof 1t follows from Lemmas 2.2, 2.3 and conditions (Hy), (H;) that (2.22) and (2.23)
hold. The proof is completed. 0

Next we consider the following singular nonlinear system:

Dot u(t) + M(fi (s, [u(t) — @ (6)]%, () - @2(6)]*) + q1(2)) = 0,
Div(t) + Aa(fa(t, [u(t) — @1 ()], [v(E) — @2 (6)]*) + q2(t) =0, 0<t<1,
u(0)=u'(0)=---=u"20)=0, ul)=m fo 5) dA1(s),
v(0)=V(0) =--- =" D(0) =0, v(1) = s [y uls) dAs(s),

(2.24)

where A; > 0, @w;(t) is defined as (2.22), [z(¢)]* = max{z(¢),0} (i = 1,2).

Lemma 2.5 If (u,v) is a solution of system (2.24) with u(t) > w1(t), v(t) > @ (t) for any

t € (0,1], then (u — w1, v — wy) is a positive solution of system (1.1).
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Proof In fact, if (u,v) is a positive solution of system (2.24) such that u(z) > @y (t), v(¢) >
@, () for any t € (0,1], then from system (2.24) and the definition of [z(¢)]*, we have

Dt u(t) + M(AEt u(t) - @1(8), v(t) - @2(t) + q1(8)) = 0,
D2 v(t) + Ao (fo(t, u(t) — w1 (8), v(E) — wZ(t)) +q2(1)) =0, O0<t<l,

(2.25)
u(0) =u/(0) =~ =u"2(0) =0, = fo v(s) dAi(s),
¥(0) =v'(0) = --- =v""2(0) = 0, V(l) = U fol u(s) dA,(s).
Let x(£) = u(t) — w1(t), y(£) = v(£) — w1 (t), t € (0,1), then
Dgix(t) = D u(t) — Dy o (8), Dg2y(t) = D2 v(t) — Dy s (t),
which implies that
Dgiu(t) = Dghx(t) = Maqu(t),  Div(t) = D2 y(t) — Aago(2).
Thus, system (2.25) becomes
Dg x(t) +Mfi(t, x(2), 5(8)) = 0,
Dgy(t) + Azﬁ(t x(t) y(t)) = O, 0<t<1, 2.26)
x(0) =#/(0) = 2(0) = #(1) = 1 [y y(s) dAs(s), '
§(0)=y/(0) =+ =y"2(0) = (1) = s [y #(5) dAs(s).

Then, by (2.26), (4 — w1, v — @>) is a positive solution of system (1.1). The proof is com-
pleted. O

Let X = C[0,1] x C[0,1], then X is a Banach space with the norm

vil = maX} ).

|G, v)|| = max{[ull, v}, lul = max
Let

K ={(u,v) e X :u(t) > ot ||(u,

|,

,te0,1]},

where w is defined as Remark 2.1. It is easy to see that K is a positive cone in X. Under the
above conditions (Hy), (Hy), for any (u, v) € K, we can define an integral operator T : K —
X by

T(u,v)(t) = (T2, v) (1), Ta(w,v)()), 0 =<t<1, (2.27)
1
T, v)(8) = A /O Kit,) (s, [1405) - mn ()], [v(5) - ma(9)] ) + 4i(s)) s
1
+ Aj/o H;(t, ) (fi(s, [uls) — o (s)]*, [v(s) — o (s)]*) +qj(s)) ds,
0<t<li=12i+j=3. (2.28)

We know that (1, v) is a positive solutions of system (1.1) if and only if («, v) is a fixed point
of Tin K.
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Lemma 2.6 Assume that (Hy), (H;) hold. Then T : K — K is a completely continuous

operator.

Proof By a routine discussion, we know that 7": K — X is well defined, so we only prove

T(K) CK.Forany (u,v) € K,0 <t, v <1, by Remark 2.1, we have

Ti(w,v)(8) = 2 fo Kt (£ (s, [u(s) = 1 (6)]", [V(s) - m2(9)]") + qa(5)) s
+ Ao /OlHl(t,s)(fz(S’ [u(s) = @1(5)]", [V(s) = @2(9)]") + q2(s)) s
> M /0 ' ot (1,9 (5, [ul) - 1 (9] [Ws) = m2)]") + qu(s)) s
+ 2 /0 1 wt " Hy (7,9) (f (s, [u(s) = @1(9)] ", [¥(s) = @2(9)]) + qa(s)) ds
> ot (Al /OlKl(r,S)(fl(S' [u(s) = ()], [V(s) = @2(5)]") + qu(9)) ds
o | ) (5 s [15) - 10 [Ws) - 2 )]) + 0205) )

> wt Ty (u, v) (7). (2.29)
On the other hand,
1 * *
Ty (u, v)(8) = / Ki(t,5)(fi(s, [u(s) = @1(9)], [v(s) = @2()]") + qu(s)) dis
0
1
+ Ay / Hl(t,s)(fz(s, [u(s) - wl(s)]*, [v(s) —wy (s)]*) + qz(s)) ds
0
1
> M / ot 7 Hy (1, 9) (i (s, [u(s) = ()], [v(s) = @2(9)]") + qu(s)) ds
0
1
+ A / a)t"‘l’le(r,s)(fz(s, [u(s) - wl(s)]*, [v(s) —wy (S)]*) +qa(s)) ds
0
1
> 17! (}q / H(z,5)(fi(s, [uls) — o (s)]*, [v(s) - wz(s)]*) +qi(s)) ds
0

1
+ A /0 Kg(r,s)(fz(s, [u(s) - wl(s)]*, [v(s) - wg(s)]*) + qz(s)) ds)

> Wt Ty (u, v)(7). (2.30)

Then we have

v T v)(©) = ot Ty(u,v)

Ty (u,v)(t) > wt™1™! || T1(u,v)

’

Ty (u,v)(t) > w7} H (Tl(u, v), To(us, v)) ||
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In the same way as (2.29) and (2.30), we can prove that
To(u, v)(8) > wt®! H (Tl(u, v), To(u, v)) ”

Therefore, we have T(K) C K.
According to the Ascoli-Arzela theorem, we can easily get that 7': K — K is completely
continuous. The proof is completed. 0

In order to obtain the existence of the positive solutions of system (1.1), we will use the
following cone compression and expansion fixed point theorem.

Lemma 2.7 [19] Let P be a positive cone in a Banach space E, Q, and Q0 are bounded
opensetsinE, 0 € Q1,2 CQy, A:PNQ\Q — Pisa completely continuous operator. If
the following conditions are satisfied:

Ax|l < [lxl, VxePNoL, Ax| = [lxll, Vx €PNk,
or

lAx|| = llxll, VxePNasy, Ax[| < llx[l, Vxe€ PN,
then A has at least one fixed point in PN (22\21).

3 Main results
Theorem 3.1 Assume that (Hy), (Hy) hold and that for any fixed L1,y € (0,+00), the
following conditions are satisfied:

(Hp) There exists a constant

1 1
> max{Ll,Lz,wlp(Al / q1(s)ds + 1y / q>(s) ds) }
0 0

such that

pi(t)x’y) =< % _1) (t1x:y) € [071] X [O;FI] X [07r1]¢i:112-

L

(H3)
t,x,
0 </ <liminf inf M <400, or
x—>+00 te[a,b]C(0,1) X
y€[0,+00)
t,x,
0</l <liminf  inf M < +00,
y—>+00 tefablc(01) Y
x€[0,+00)

where w is defined as Remark 2.1, p is defined as Lemma 2.3,
1 -1
L;= 3()»;'/0/ (ai(s) + i(s)) dS) , =12,
0

3 b -
5= E()\lgeza)/ s(1—s)a ds) , 0= min {t"‘l_l,t"‘2_1}.

tela,b]
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Then system (1.1) has at least one positive solution (u,v). Moreover, (u,V) satisfies u(t) >

It (t) > It re [0,1] for some positive constant 1.

Proof Let K,, = {(u,v) € K : ||[(u,v)| < r1}. For any (u,v) € 3K, t € [0,1], by the definition

of || - ||, we know that

[u(t) - 1] < [u®)| < llull < |@v)| <7,

V(&) -] < V)] < IVl < | v)| <7

So, for any (u,v) € 9K,,, by condition (H;) and Lemma 2.3, we have

1
M / Ki(&:9)(fi (s, [u(s) = w19, [v(s) = @2(5)]") + qu(s)) dis
0

|| T (1, v)|| = max
te[0,1]

1
+ Ao /0 Hl(t,s)(fz(s, [u(s) —w (s)]*, [v(s) —wy (s)]*) + qz(s)) ds

< max
te(0,1]

1
M / pt1 ™ (ar(s)pi (s, [u(s) = @1 (9)]", [v(s) = @2(5)]") + qu(s)) ds

0

1
+ Ao /0 ot (ﬂz(S)pz (s, [u(s) —w (s)]*, [v(s) - wz(s)]*) + qg(s)) ds

1 1
< Mp/O (41(5)(2—11 - 1> + q1(5)> ds + kzp/O (az(S)<Lr—12 - 1) + qz(S)) ds

1
(P11 )e [ @0+ a)ds

1

1
+ <l’%1 -1+ 1))\2,0/; (612(5) +q2(8)) ds

2

2
= % <rn= || (u, v)||. (3.1)

Similarly as (3.1), for any (u,v) € 0K,,, by condition (H;), we also have
[7:t0)] <1 = )],
Consequently, we have

|| T(u,v) || = max{ || Ti(u,v) ||, || T2 (u, v) “} <r = || (u, v)“ for any (u,v) € 0K,,. (3.2)

’

On the other hand, by the first inequality in (H3), there exists g9 > 0 such that /; + &9 > 0,

and also there exists ry > 0 such that

Lfl(t,x;y” = (ll + So)x; X > ro,y > Ort € [ﬂ, b]’ (33)
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Choose r, = max{3r, %}. Let K, = {(&,v) € K : ||[(4,v)|| < rp}. For any (u,v) € 0K,,, by the
definition of || - || and (2.23), we have

1 1
w(t) - w1 (6) = oty - (kmt‘“’l / a(s) ds + Aot / 00 ds)
0 0

1 1
=l (a)r2 - (Alp/ q1(s) ds + Azp/ q2(s) ds))
0 0
1 1
>0 (a)rz -p ()\.1 /0 q1(s) ds + )L2/0 q2(s) ds))

26()97’2

> wl(ry—r1) > >ry, tela,bl, (3.4)

1 1
V(t) — oy (t) > oty - (Mpt"z‘l / q1(s)ds + hopt*>”! / 92(s) dS)
0 0

1 1
=t°‘“<wrz—(/\1p f q1(8)ds + Ayp f qz(S)dS))
0 0
1 1
0 —pol 2 ds + d
> (wrz p( 1/0 qi(s)ds + z/o q2(s) S)>

2wb ry

> wl(ry —1ry) > >ry>0, telab]. (3.5)
Thus, for any (4, v) € 9K,,, by (3.3)-(3.5), we have
At [u@®) - m10] [v0) - 220)]") = (4 + e0)[u®) - @®)]",  t€labl. (3.6)

Hence, for any (i, v) € 3K, by (3.6) and Lemma 2.3, we conclude that

1
M / Ki(&9)(fi(s, [u(s) = w19, [v(s) = @2(5)]") + qu(s)) dis
0

|| T (1, v)|| = max
te[0,1]

1
+ Ao /0 Hl(t,s)(fz(s, [u(s) —w (s)]*, [v(s) —wy (s)]*) + qz(s)) ds

1
> max A / Ki(t,8)(£i (s [u(s) = an(®)]", [v(s) - ma(9)]") + r(s)) ds
te[0,1] 0
b . N
> max )q/ Ki(t,s) 1(5, [u(s) - wl(s)] ) [v(s) - w2(5)] )ds
te[0,1] a
b
> trer[lnizg] M /a ot s(L =)l + eo)[uls) ~ @ (s)] " dis
> 2)\,1@62([:13+ 80)6072 /hs(l _ S)al—l ds

>ry = || (w,v)|.
Consequently,

|| T (u,v) || = max{ || T1(u,v)

/|

Obviously, by the second inequality in (Hs), (3.7) is still valid.

T5(u, v)||} >y = || (u,v) || for any (u,v) € 0K,,.  (3.7)
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It follows from the above discussion, (3.2), (3.7), Lemmas 2.6 and 2.7, that for any fixed
A1, A2 € (0,+00), T has a fixed point (u,v) € K, \ K, and r1 < [|(s,v)|| < r». Since ||(u,v)|| >

71, we have
1 1
u(t) — o (t) > u(t) - <k1pt"1‘1 / q1(s) ds + Ao pt*r 7! / q2(s) dS>
0 0
1 1
> wt™ 7y - (Mpt‘”‘l / qi(s)ds + hopt*r™ / 7>(s) d3>
0 0
1 1
> ¢! (wn —Alp/ q1(S)ds—kzpf qz(S)ds> >0, te(0,1],
0 0

1 1
v(t) — @y (t) > v(E) - (/\mt‘“‘l / q1(s) ds + Ay pt*27! / q2(s) dS>
0 0

1

1
zwt‘*z‘lh—(hpt”’l / a(s)ds + hppt>! / qz(S)dS)
0 0

1 1
> 2271 (a)rl - Alp/ q1(s)ds — kzp/ q>(s) ds) >0, te(0,1].
0 0

Let [ =wr —Ap fol q1(s)ds —dap fol q2(s) ds, u(t) = u(t) — o (t), v(t) = v(t) — w(t), then we
have

u(t) > It > 0, V() > 1t >0, te(0,1].

By Lemma 2.5, we know that for any fixed A1, 15 € (0, +00), system (1.1) has at least one
positive solution (%, ¥); moreover, (%, v) satisfies %(¢) > [£17), ¥(¢) > [t*27', ¢t € [0,1]. The

proof is completed. O

Remark 3.1 From the proof of Theorem 3.1, we know that the conclusion of Theorem 3.1
is valid if condition (Hj) is replaced by

t,x,
0<b<liminf inf 2E%) _
x—+00 tela,b]C(0,1) X
y€[0,+00)

+00, or

t,x,
0<h<liminf inf 2EEY _,
y—>+00 tela,b]C(0,1) y
x€[0,+00)

00,

where

3 b B
b =— (ngezwf s(1—s)xt ds> .
2 a

Theorem 3.2 Assume that (Hy), (Hy) hold and that for any fixed A,y € (0,+00), the

following conditions are satisfied:

(Hy) There exists a constant

1 1
Ri>wlp (kl / q1(s)ds + ry / q2(s) ds)
0 0

Page 14 of 24
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such that
R,
ﬁ(t;x’y) = l_l (t,x,y) € [al b] X [O’Rl] X [O’Rl]' (38)
1
(Hs)
‘t, ) . 'tl )
0 <limsup sup M <L; or 0<limsup sup M <L;, i=1,2,
x—+00  te[0,1] X y—>+00  tel0,1] y
y€(0,+00) x€[0,+00)

where [a,b] C (0,1), L; (i =1,2), I are defined in Theorem 3.1. Then system (1.1) has at
least one positive solution (i°,7°). Moreover, (i°,7°) satisfies 7°(¢) > Zo g1 50() > ZO 2=l

t € [0,1] for some positive constant .
The proof of Theorem 3.2 is similar to that of Theorem 3.1, and so we omit it.

Remark 3.2 The conclusion of Theorem 3.2 is valid if inequality (3.8) in condition (Hg)
is replaced by

R
Hltxy) = l—; (t,%,9) € [a,b] x [0,R1] x [0,Ry],

where [, is defined in Remark 3.1.

Theorem 3.3 Assume that (Hy), (Hy) hold and that the following is satisfied:

(Hs)
t,x, . . t,x,
lim inf Sit%Y) =+00, or lim inf M =400
x—>+00teled]C(0]) X y—>+0oteledC(0) Y
y€(0,+00) x€[0,+00)

Then there exist A, > 0, ky > 0 such that system (1.1) has at least one positive solution (i, V')
provided Ay € (0,11), Ay € (0,%,). Moreover, (i, V) satisfies @ (t) > 1 71, ¥/(£) > [ t271,

t € [0,1] for some positive constant I.
-1 1 1
Proof Choose R> o™ p(fy q1(s)ds + [, q2(s) ds). Let

R

I }, l = 1; 2)
2p [, (ai(s)Sir + qi(s)) ds

A= min{l,

where w is defined as Remark 2.1, p is defined as Lemma 2.3, S; ¢ := sup{p;(t,x,7): 0 <t <
L,0<xy<R}(i=12).

Let K = {(u,v) € K : ||(4,v)|| < R}. For any (&, v) € 9Ky, t € [0,1], by the definition of || - ||,
we know that

[u(t) - 1] < |u®)] < llull < |@v)| <R,

[v(®) — 2] < |[v®| < VIl < ||(w,v)| <R

Page 15 of 24
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So, for A; € (0,1;), (u,v) € 9K, by Lemma 2.3, we have

1
M / Ki(&:9)(fi(s, [u(s) = w19)] 5 [v(s) = @2(5)]") + qu(s)) dis
0

|| T (1, v)|| = max
te[0,1]

1
+ Ao /0 Hl(t,s)(ﬁ(s, [u(s) —w (s)]*, [v(s) —wy (s)]*) + qz(s)) ds

< max
te(0,1]

1
M /0 pt 1 ar(s)pi (s, [u(s) = @1 (9)]", [v(s) = @2(5)]") + qu(s)) ds

1
+ Ao /0 ot (ﬂz(S)pz (s, [u(s) —w (s)]*, [v(s) - wz(s)]*) + qz(s)) ds

1

1
< MP/O (a1(s)S1r + qu(s)) ds + )»2,0/(; (a2(5)Sa.r + qa(s)) ds

<R=|@wv)|. (3.9)
Similarly as (3.9), for any (1, v) € 3Kz, by condition (H,), we also have
| T2 v)]| < R =G v)|-
Consequently, we have

|| T(u,v) || = max{ || T1(u,v)

/|

On the other hand, by the first inequality in (Hg), choose M; such that

To(u,v)|} <R =|(u,v)| forany (u,v)€dKz. (3.10)
d
)»1Q0’2M1a)f s1-9s)""'ds>2, 6 = min {t“"l, t“z’l},
c teled)

where w is defined as Remark 2.1, ¢ is defined as Lemma 2.3. Then there exists N* > 0
such that

filt,x,y) > Mix, x>N*y=>0,t€lcd]. (3.11)
Let

Kp = {(x,y) eK: H(x,y)“ <R’}, R >max{2R,i—A9[T}.

For any (x,y) € 0Ky, by (2.23), we have

1 1
u(t) — o (t) > ot R - (Alpt"”I/ q1(s) ds + Ay pt17! / qa(s) ds)
0 0

1 1

=t wR - p( 2 ds + d.

t (w p( 1/0 q1(s) ds + 2/0 qa(s) S))
1 1

29/<a)R’—,0</0 ql(s)ds+/0 qz(s)ds)>

> w' (R - R) = 2K

> N*, telcd], (3.12)
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1 1
UO) - () = 0t R (xlpt"ﬂ [ adssaapet [ ant9 ds)
0 0

1 1
= R/—(/\ ds + 1 d))
L (w 1,0/0 q1(s)ds + zp/O q2(s)ds
1 1
0’| wR — d d
> (w p(/o q1(s) s+/0 q2(s) s))

wO'R

>wd' (R -R) > >N*>0, telcd]. (3.13)
Thus, for any (&, v) € Ky, by (3.11)-(3.13), we have
Al [u@) -] [v@®) - 220]") = Mi[u(t) - @1(0]",  te€labl (3.14)

Hence, for any (1, v) € 3Ky, by (3.14) and Lemma 2.3, we have

1
A /(; K (t, ) (fi (s, [uls) - zzrl(s)]*, [v(s) - zzrz(s)]*) +q1(s)) ds

|| T (u, v)|| = max
te[0,1]

1
+ Ao /o Hi(t, s)(fz(s, [u(s) —w (s)]*, [v(s) —wy (S)]*) +qa(s)) ds

1
= max / Ki(t,8) (fi(s, [u(s) = m1(9)]"s [V(s) = 2(9)]) + qu(s)) dis
: 0
d * *
> gl[aaylg]klf 1(1(t,s)ﬁ(s, [u(s)—wl(s)] ,[v(s)—wQ(s)] )ds
d
> min A / ot 1s(1 — 5)M ML [u(s) - wl(s)]* ds
teled]  J,
72 / d
s M0 Mok / s(1— 5471 ds
2 c
> R = ).
Consequently,

” T(u,v) ” = max{ ” T1(u,v)

To(u,v) ”} >R = H (u,v) H for any (u,v) € 9Kgp. (3.15)

’

Obviously, by the second inequality in (Hg), (3.15) is still valid.
It follows from the above discussion, (3.10), (3.15), Lemmas 2.6 and 2.7, that for any
A1 € (0,A1), Az € (0,13), T has a fixed point (u,v) € Kz \ Kz and R < ||(4,v)| < R. Since

l(z, v)|| > R, we have

1 1
)= (02 )~ (o [0 s rapt [ ana)
0 0
1 1
> ot IR - (Alpto‘ll / q1(s) ds + Ay pt*17! f q2(s) ds)
0 0

1 1
> ! (a)R— p/ q1(s) ds — p/ q2(s) ds) >0, te(0,1],
0 0

Page 17 of 24
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1 1
V() — s (t) > (t) - (mt““ / 1(5) ds + Ao pt®27) [ 00 ds)
0 0
1 1
> @t IR - (Alpt”‘z_l / q1(s) ds + Azpt"‘z‘l/ q2(s) ds)
0 0
1 1
Ztaz_l(wR—pf ql(s)ds—,o/ qg(s)ds> >0, te(0,1].
0 0

Let7 = wR — ,ofol q1(s) ds — ,ofol q2(s)ds, U/ (t) = u(t) — wi(t), V(t) = v(t) — @, (t), then we
have

7 >Ttr >0, Vo) =Tt21>0, telo1].
By Lemma 2.5 we know that for any A; € (0,41), A5 € (0, ,), system (1.1) has at least one
positive solution (i, 7'); moreover, (i, V) satisfies @' (£) > I t171, ¥/(¢) > 112271, ¢ € [0,1].

The proof is completed. d

Remark 3.3 From the proof of Theorem 3.3, we know that the conclusion of Theorem 3.3
is valid if condition (Hg) is replaced by

t, X, . . t; %
lim inf M =+00, or lim inf M = +00
x—>+00 te(c,d]C(0,1) X y—>+00 tele,d]C(0,1) y

y€[0,+00) x€[0,+00)

Theorem 3.4 Assume that (Hy), (Hy) hold and that the following condition is satisfied:

(H7)
i t)x, .
limsup sup M =0, i=12,
x—>+00  te[0,1] X
y€[0,+00)
and
liminf inf  fi(t,x,9)>A, or liminf inf fi(t,x,y) > A,
X400 te(7,5]C(0,1) Y+ te(a,b]c(0,1)
y€[0,+00) x€[0,+00)
1 - -
where N = Ao @b+arsNds oo = max{oy,az}. Then there exist A, Ay > 0 such that system

wzgfg’ s(1-s)®0~1 ds’
(1.1) has at least one positive solution (i1, V) provided Ay € (A1, +00), Ay € (Ag, +00). More-
over, (i1, V) satisfies iu(t) > 1t17Y, ¥(t) > 1127, t € [0,1] for some positive constant .

Proof 1t follows from

liminf inf  fi(t,x,9) > A
X400 te(7,b]C(0,1)
y€[0,+00)

of (Hy), there exists N > 0 such that

filtxy) = A, x>N,y>0,telab. (3.16)
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Select

~

N

5\:’ =g
200 [y qi(s)ds

, =12,
In proving the theorem, we assume

1
R = max{{)q + )\.2,2)\1,2)\2}20)71,0/ (ql(s) + qz(s)) dS}
0
and
Kg, = {(w,v) €K ||(w,v)| < Ri},

where 8 = min, ;5 (¢, £*27'}. For any (u,v) € 0Kp,, by (2.23), we have

1 1
u(t) — o (t) > ot IR, — (Alpt"l_l / q1(s) ds + Ay pt*17! / qo(s) ds>
0 0

1 1
=t (wR1 - (Mp /0 q1(s)ds + Aap /O q2(s) ds))
1 1
29<wR1— ()»1,0/0 ql(S)dS+ksz 42(5)615))

1 1
> Apf / q1(s) ds + A2 p0 f q2(s)ds >N, telabl, (3.17)
0 0

1 1
vm—mmzwwﬁm—omﬂ*/qﬂMuwww*/qme
0 0

1 1
=2 (a)R1 - (Alp/ qi(s)ds + Azp/ q2(s) ds))
0 0
1 1
ze(a)Rl— ()»1,0/0 ql(s)ds+)»2,0/; qz(s)ds>>

> klpG/ q1(s)ds + kgp@/ q>(s)ds >N, tela,b]. (3.18)
0 0
Thus, for any (u,v) € 9Kz, by (3.16)-(3.18), we have
A6 [u@) -] [vO) -220)]") = A, telabl (3.19)

Hence, for any (i, v) € 0Kg,, by (3.19) and Lemma 2.3, we have

1
M/Kmmm@pw—m@ﬁh@—m@ﬁ+mmm
0

|| T (u, v)|| = max
te[0,1]
1 * *
+ Ao / Hi(t,s)(fa (s, [uls) - @i(s)]", [v(s) — @a(9)]") + 42(s)) ds
0

1
> max )\1/0 Ky (,9)(fi (s, [uls) — wl(s)]*, [v(s) - wz(s)]*) +q1(s)) ds

te[0,1]
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b
> min A / ot 751 — )i (s, [uls) — w1(s)] ", [V(s) — wa(s)] ) ds

tela,b]

b
> 0 A / os(l—s)™ds >R, = H(u, V) ||
Consequently,

|| T(u,v) || = max{ || T1 (1, v)

/|

T5(u, v)||} >R = ||(u, V) || for any (u,v) € 0Kg,. (3.20)
Obviously, by the inequality

liminf inf  fi(t,x,9) > A
Y=+ tela,b]c(0,1)
x€[0,+00)

in (H), (3.20) is still valid.
On the other hand, choose ¢; > 0 such that

1 -1
& = (3)»,,0/ ai(s) dS) , i= 1,2
0

Then, for the above ¢;, by the first inequality in (H7), there exists N’ > 0 such that for any
t € [0,1], we have

pi(t)x»y)fgix) xZN/,yZO,i=1,2~
Then we have
Pi(t:x,y) = D + EiX, te [O! 1]7x > Ory > Orl = ]-y 2, (321)
where ® = max{p;(t,x,y): £ €[0,1],0 <x <N’,0 <y <N’,i=1,2}. Select
1 1
Ry > max{ZRl, (®+1) (Alp/ (al(s) + ql(s)) ds + )»2,0/ (az(s) + qz(s)) ds) }
0 0
Assume
Kg, = {(u,v) ek: ||(u,v)|| <R2}.

For any (u,v) € 9K, , by (3.21) and Lemma 2.3, we have

1
M / Ki(t9)(fi(s [u(s) = 1()] ", [V(s) — @2(5)]") + u(s)) dis
0

|| T (1, v)|| = max
te[0,1]

1
+ XA /0 Hi(t, ) (f2 (s, [u(s) — o (s)]*, [v(s) — @ (s)]*) +qa(s)) ds

< max
te[0,1]

1
M fo pt1 ™ (ar(s)pi (s, [u(s) = @1 (9)] ", [v(s) = @2()]") + qu(s)) ds

1
+ Ao /0 ot (ﬂz(S)pz (s, [u(s) —w (s)]*, [v(s) - wz(s)]*) + qg(s)) ds
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1
<hap [ (@)@ +erful) - mO)]) + ai5) ds
0
1 *
+ A2 / (az(s)(GJ + &) [u(s) —w (S)] ) + qg(s)) ds
0

1

1
<(®+1) <MPfO (ar(s) + qu(s)) ds + )~2,0/0 (a2(s) + q2(5)) dS)

1 1
+>»1p81||u||/ a1(S)dS+>»zp82||u||/ ax(s)ds
0 0

<Ry = |(w,v)]. (3.22)
Similarly as (3.22), for any (1, v) € 3Kg,, by (3.21) and Lemma 2.3, we also have
| T2l 9| < Ry = [, v)].
Consequently, we have

|| T(u,v) || = max{ || T1(u,v)

, N To (2, v) ||} <R, = || (u,v) H for any (u,v) € 9Kg,. (3.23)

It follows from the above discussion, (3.20), (3.23), Lemmas 2.6 and 2.7, that for any A; €
(A1, +00), Ay € (Ag, +00), T has a fixed point (u,v) € ERZ \ Kz, and R; < ||(u, V)|l < R». Since
[I(u, )|l > Ry, by the same method as Theorem 3.3, we know that for any A; € (A1, +00),
X2 € (hg, +00), system (1.1) has at least one positive solution (&, 7). Moreover, (i, V) satisfies
a(t) = 1171, 9(¢) > It271, t € [0,1]. The proof is completed. O

Remark 3.4 From the proof of Theorem 3.4, we know that the conclusion of Theorem 3.4

is valid if the second equality of condition (Hy) is replaced by

lim inf  fi(t,x,y)=+00, or lim inf  fi(t,x,y) = +oo.
4—>+00 (7,51 (0,1) Y+ te(a,h]c(0,1)
y€(0,+00) x€[0,+00)

Remark 3.5 From the proof of Theorem 3.4, we know that the conclusion of Theorem 3.4

is valid if the second equality of condition (H7) is replaced by

liminf inf f(4,x,9)>A, or liminf inf fo(t,x,9) > A,
X400 1e[7,5]C(0,1) Y= +00 te(a,5]C(0,1)
y€[0,+00) x€[0,+00)

where A is defined in Theorem 3.4.

Similarly as Remark 3.4, the conclusion of Theorem 3.4 is also valid if the second equality

of condition (Hy7) is replaced by

lim inf  fo(¢,x,9) =400, or lim inf  fo(¢,%,9) = +00.
X400 te(7,b]C(0,1) Y= +00 re[a,b]c(0,1)
y€(0,+00) x€[0,+00)
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4 Example

Consider the fractional differential system

DE.u(t) + Mfilt u®), (D)) = O,
DI v(t) + 2oty u(®)v(®) =0, 0<t<l,

) (4.1)
u(0) =u/(0) =0, u(l) = %fo v(t) dt,
w0)=v(0)=0,  w(1)=[) ul)de?,

where A; >0 (i = 1,2) is a parameter, o) = oy = 3, H1 = %, o =1,A1(t) = t, Ay (t) = t3. Then

we have
1 1 3 2
k =/ 27V AL (2) =/ t2dt=250,
0 0 5

b Yy 11! 1 19
k2 =f ta17 dAZ(t) =f t2 dti = —/ tdt =—> O, 1- /,Lll,l,zklkz =—>0.
0 0 2 Jo 4 20

So, condition (Hp) holds.

Next, in order to demonstrate the application of our main results obtained in Section 3,
we choose two different sets of functions f;(¢,x,y) (i = 1,2) such that f; satisfies the condi-
tions of Theorems 3.3 and 3.4.

Case 1. Let fi(t,x,y) = j% + Int, fo(t,x,y) = 1&% +1In(1 - ¢t), (t,xy) € (0,1) x
[0, +00) x [0, +00). Take a;(t) = a,(t) = ﬁ, q:1(t) = —1Int, q2(t) = —In(1 - £), p1(t, %, 9) =
x2 + 92, pat,x,9) =1+ €* + ¢, then

—qi(t) <f(t,x,y) <a(t)pi(t,x,y), (tx,9)€(0,1) x [0,+00) x [0, +00),i=1,2.

By a direct calculation, we have

1 1 1 1
/(;al(t)dtz/o a>(t)dt =, /Oql(t)dtzfo qo(t)dt = 1.

So condition (H;) holds.

In addition, choose [%, %] C [0,1], we know

. . t,x, . . t,x,
lim inf u =+00, or lim inf A = +00,
reotelpil ¥ YT ey 3l Y

y€[0,+00) x€[0,+00)

so condition (Hg) of Theorem 3.3 is satisfied.
Therefore, by Theorem 3.3, we obtain that system (4.1) has at least one positive solution
provided A; > 0 (i = 1,2) is small enough.

1
o N2 2 -1 .3
Case 2. Letﬁ(t,xyy) = i/m(lﬂ%l—t)) - ﬁ,fz(t,x,}’) W e Rt (t,x;y) € (0, 1) X

[0, +00) x [0, +00). Take a;(¢) = 2/23[(21——&’ a(t) = ﬁ, q(t) = %, q2(t) = %Jh(h%y) -

1
2 1
1(:;{{4)’172“’ %9) = gyt then

—%‘(f) Sf(t’x’y) = ai(t)pi(t)x’y)! (t7x’y) € (O¢ 1) X [07 +OO) X [O¢ +OO),i= 1:2
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By a direct calculation, we have

1 1 1 1
f ai(t)dt = 2m, / ar(t)dt =, / qi(t)dt =4, / q>(t) dt = 6.
0 0 0 0

So condition (H;) holds.
In addition, choose [i, %] C [0,1], we know

[ t;xy .
limsup sup u =0, i=12,
x—>+00  te[0,1] X

y€[0,+00)

and

liminf inf f(t,x,9) =+00, or liminf inf f(¢t,x,y)=+oo,

X—>+00 te[%,%] y—>+00 te[%,%]
y€[0,+00) x€[0,4+00)

so condition (H;) of Theorem 3.4 is satisfied.
Therefore, by Theorem 3.4, we obtain that system (4.1) has at least one positive solution
provided A; > 0 (i = 1,2) is sufficiently large.
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