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Abstract
In this paper, we investigate the family of difference Painlevé IV equation
(w(z + 1) +w(z))(w(z) +w(z – 1)) = R(z,w), where R is rational in w and meromorphic
in z. If the equation assumes an admissible meromorphic solution of hyper-order
ρ2(w) < 1, we fix the degree of R(z,w), and we give some further discussions.
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1 Introduction
Meromorphic solutions of complex difference equations have become a subject of great
interest recently, due to the application of classical Nevanlinna theory in difference by
Ablowitz et al. []. Halburd andKorhonen [] studied the second order complex difference
equation

w(z + ) +w(z – ) = R(z,w), (.)

where R(z,w) is rational in w and meromorphic in z. They showed that if (.) has an
admissible finite order meromorphic solution, then either w satisfies a difference Riccati
equation or (.) can be transformed into difference Painlevé I, II equations or a linear
difference equation. The work on the family w(z + )w(z – ) = R(z,w), which includes
the difference Painlevé III equations, was initiated in [], with an additional assumption
that the order of the poles of w is bounded in a certain subcase of this family. Ronkainen
[] gave the full classification of w(z + )w(z – ) = R(z,w) in his dissertation without
the assumption of the order of the poles of w, and in [] his also studied the family
(w(z)w(z+)–)(w(z)w(z–)–) = R(z,w), which includes the difference Painlevé V equa-
tions. The family of difference Painlevé IV equations (see [])

(
w(z + ) +w(z)

)(
w(z) +w(z – )

)
= R(z,w) (.)

with constant coefficients was researched by Grammaticos et al. []. Korhonen [] treated
a subcase of (.) with R(z,w) rational in z. In this paper, we will study (.) with R(z,w)
meromorphic in z.
Considering a meromorphic function f (z) in the complex plane, we assume that the

reader is familiar with the standard notations and results of Nevanlinna value distribution
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theory of meromorphic function (see, e.g., [–]). In particular, we denote by S(r, f ) any
quantity satisfying S(r, f ) = o(T(r, f )) as r tends to infinity outside of an exceptional set E
of finite logarithmic measure

lim
r→∞

∫
E∩[,r)

dt/t <∞.

A meromorphic function a(z) is called a small function with respect to f (z), if T(r,a) =
S(r, f ). The family of all meromorphic functions that are small with respect to f is de-
noted by S(f ). A meromorphic solution w of a difference equation is called admissible if
all coefficients of the equation are in S(w).
We conclude this section by the following expatiation on the coefficients. While we

only consider meromorphic solutions of equations with meromorphic coefficients, we
might encounter a situation where the coefficients have finitely-sheeted branchings, and
wewill use the algebroid version ofNevanlinna theory (see for instance []), which studies
meromorphic functions on a finitely-sheeted Riemann surface.Whenever the coefficients
have branchings, T(r, ·) denotes the corresponding Nevanlinna characteristic function of
a finite-sheeted algebroid function. Since all algebroid functions we need to consider are
small functions with respect to the meromorphic solution of (.), the change in notation
only affects the error term which needs to be redefined in terms of the algebroid charac-
teristic. The ‘algebroid error term’ will still be denoted by S(r, ·) and it remains small with
respect to the meromorphic solution of (.), we can still denote it by S(r,w).

2 Some lemmas
The difference analog of the logarithmic derivative lemma, which was obtained indepen-
dently by Halburd and Korhonen [] and by Chiang and Feng [], plays a key role in
the value distribution of difference [–]. The original version is valid for functions of
finite order, and it was generalized to hold for meromorphic functions with hyper-order
less than one recently.

Lemma . ([]) Let w be a nonconstant meromorphic function with hyper-order ρ(w) =
ρ < , c ∈C, and δ ∈ (,  – ρ). Then

m
(
r,
w(z + c)
w(z)

)
= o

(
T(r,w)

rδ

)

for all r outside of a set of finite logarithmic measure.

The Valiron-Mohon’ko identity [, ] is a useful tool to estimate the characteristic
function of a rational function, the proof of which can be found in [, Theorem ..].

Lemma . Let w be a meromorphic function and R(z,w) a function which is rational in
w and meromorphic in z. If all the coefficients of R are small compared to w, then

T
(
r,R(z,w)

)
= (degw R)T(r,w) + S(r,w).

We also need the following lemma to detect the hyper-order of a meromorphic function
to be at least one.
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Lemma . Let T : [,∞) → [,∞) be a nondecreasing continuous function, and s ∈
(,∞). If

lim sup
r→∞

log logT(r)
log r

= ρ < ,

and δ ∈ (,  – ρ), then

T(r + s) = T(r) + o
(
T(r)
rδ

)
,

as r tends to infinity outside of an exceptional set of finite logarithmic measure.

Proposition . Let w, c, and δ be as in Lemma ..We have

T
(
r,w(z + c)

)
= T

(
r,w(z)

)
+ S(r,w), (.)

N
(
r,w(z + c)

)
=N

(
r,w(z)

)
+ S(r,w). (.)

Proof Noting that N(r,w(z + c)) ≤N(r + |c|,w(z)), Lemma . yields

N
(
r,w(z + c)

) ≤N
(
r,w(z)

)
+ o

(
N(r,w(z))

rδ

)
,

N
(
r,w(z)

)
=N

(
r,w(z + c – c)

) ≤N
(
r + |c|,w(z + c)

)

=N
(
r,w(z + c)

)
+ o

(
N(r,w(z + c))

rδ

)
.

Hence we obtain N(r,w(z + c)) =O(N(r,w(z))) and

N
(
r,w(z + c)

)
=N

(
r,w(z)

)
+ o

(
N(r,w(z))

rδ

)
,

(.) follows. On the other hand, Lemma . gives us

m
(
r,w(z + c)

) ≤m
(
r,w(z)

)
+m

(
r,
w(z + c)
w(z)

)
=m

(
r,w(z)

)
+ S(r,w) (.)

and

m
(
r,w(z)

) ≤m
(
r,w(z + c)

)
+ S

(
r,w(z + c)

)
. (.)

Combining with (.) and (.), we have

T
(
r,w(z + c)

) ≤ T
(
r,w(z)

)
+ S

(
r,w(z)

)
,

which means that T(r,w(z + c)) =O(T(r,w(z))), and we get from (.) and (.)

m
(
r,w(z + c)

)
=m

(
r,w(z)

)
+ S

(
r,w(z)

)
.

Then (.) follows from the last equation and (.). �
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Without the order restriction, we have the following.

Lemma . ([, lemma ]) Given ε >  and a meromorphic function w, we have

T
(
r,w(z± )

) ≤ ( + ε)T
(
r + ,w(z)

)
+O()

for all r ≥ /ε.

If a meromorphic function f has a pole of the order n at z ∈ C, we denote this by f (z) =
∞n. Similarly, an a-point of the order n is denoted by f (z) = a + n.
It could always happen that the coefficients in (.) have poles or zeros when w has a

pole; whenever we meet these cases, we shall use the following result.

Lemma . ([]) Let w(z) be a meromorphic function with more than S(r,w) poles (or
c-points, c ∈C) counting multiplicities, and let a,a, . . . ,an ∈ S(w).Assumemoreover that
none of the functions ai is identically zero. Denote by zj the poles and zeros of the functions
ai (where j is in some index set), and let

mj := max
≤j≤n

{
li ∈ N | ai(zj) = ∞li or ai(zj) = li

}

be the maximal order of zeros and poles of the functions ai at zj. Then for any ε >  there
are at most S(r,w) points zj such that w(zj) = ∞ki (or w(zj) = c + kj ) where mj ≥ εkj.

The next result on the Nevanlinna characteristic is essential in the study of the family
(.), for the proof, see, e.g., [].

Lemma . Let f , h, and g be three meromorphic functions. Then

T(r, fg + gh + hf ) ≤ T(r, f ) + T(r, g) + T(r,h) +O().

3 Main results
Definition . ([]) Let cj ∈ C for j = , . . . ,n and let I be a finite set of multi-indexes
λ = (λ, . . . ,λn). A difference polynomial of w is defined as

P(z,w) = P
(
z,w(z),w(z + c), . . . ,w(z + cn)

)
=

∑
λ∈I

aλ(z)w(z)λw(z + c)λ · · ·w(z + cn)λn , (.)

where aλ(z) ∈ S(w). Let dλ = λ + · · · + λn. The degree of P is defined by

degw P =max
λ∈I

dλ.

P is said to be homogeneous if dλ of each term in the sum (.) is nonzero and the same
for all λ ∈ I . The order of a zero of P(z,x,x, . . . ,xn), as a function of x at x = , is denoted
by ord(P). Let � be the maximum power of w(z) in P(z,w), and let �i be the maximum
power of w(z + ci) in P(z,w(z)). Obviously, �i ≥  (i = , . . . ,n). Denote � =

∑n
i= �i.
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A difference version of the Clunie lemma, developed by Halburd and Korhonen [] and
by Laine and Yang [], works on such difference polynomials, say P(z,w), having only one
term ofmaximal degree in the sum (.). If P(z,w) is homogeneous, the above version does
not work. We will establish a similar version of the Clunie lemma, for the other new type
of version, see [].

Theorem . Suppose that w(z) is a meromorphic solution of

H(z,w)P(z,w) =Q(z,w)

with hyper-order ρ(w) < , where P(z,w) is a homogeneous difference polynomial defined
as in (.), H(z,w) and Q(z,w) are polynomials in w(z) with no common factors. All the
coefficients of P(z,w), H(z,w), and Q(z,w) are in S(w). If

max{degw Q,degw H} =� > degw P, (.)

then m(r,w) = S(r,w).

Theorem . Suppose that w(z) is an admissible meromorphic solution of (.) with
hyper-order ρ(w) < ,where R(z,w) = P(z,w)

Q(z,w) , P(z,w), and Q(z,w) are polynomials in w with
degrees p and q, respectively. Then:

(i) p≤  and q ≤ ;
(ii) If q = , then p = . The coefficients of the highest degree of P and Q are identical;
(iii) If q = , then p≤ .

Theorem . Suppose that w(z) is an admissible meromorphic solution of

L(w) =
(w – h)(w – h)(w – h)(w – h)

(w – a)(w – a)
(.)

with hyper-order ρ(w) < , where L(w) = (w+w)(w+w), neither of ai and hj vanishes iden-
tically. Then either w satisfies a difference Riccati equation

w =
αw + β

w + γ
,

where α,β ,γ ∈ S(w) are algebroid functions, or one of the following holds:
() b = a + a = a + a;
() b = a + a = a + a,

where b = a + a –H and H =
∑

j= hj. For each n = , , , , hn + hk =  or hn + hk = 
for some k ∈ {, , , }.

Remark  In the present paper, we use similar notations to [].

4 Proofs of theorems
Proof of Theorem . Since H(z,w) and Q(z,w) are polynomials in w(z) with no common
factors, Lemma . gives us

T
(
r,P(z,w)

)
= T

(
r,
Q(z,w)
H(z,w)

)
=max{degw Q,degw H}T(r,w) + S(r,w)

=�T(r,w) + S(r,w). (.)
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On the other hand, by the definition of P(z,w), we get from (.)

N
(
r,P(z,w)

) ≤ �N
(
r,w(z)

)
+

n∑
i=

�iN
(
r,w(z + ci)

)
+ S(r,w)

= �N
(
r,w(z)

)
+ S(r,w)

and from Lemma .

m
(
r,P(z,w)

) ≤ degw Pm
(
r,w(z)

)
+m

(
r,
P(z,w)
wdegw P

)

≤ degw Pm
(
r,w(z)

)
+ S(r,w).

Combining (.) and the last two inequalities, we obtain

�T(r,w) = �N(r,w) + degw Pm(r,w) + S(r,w),

which is (� – degw P)m(r,w) = S(r,w), thenm(r,w) = S(r,w) from (.). �

Proof of Theorem . We restrict p and q duo to the reasoning by Grammaticos et al. [],
where P(z,w) and Q(z,w) are polynomials in w with constant coefficients.
Applying Lemma . to (.), we get from Lemma .

degw RT(r,w) ≤ T(r,w) + T(r,w) + T(r,w) + S(r,w)

≤ ( + ε)T(r,w) + S(r,w).

Then max{p,q} ≤ . Rewriting (.) gives

ww +ww +ww =
P(z,w) –wQ(z,w)

Q(z,w)
=: K (z,w). (.)

Since P(z,w) and Q(z,w) have no common factors, the right side of (.) is irreducible.
Applying Lemma . now to (.), we get from Lemma . and Lemma .

degw KT(r,w) ≤ T(r,w) + T(r,w) + T(r,w) + S(r,w)

≤ ( + ε)T(r,w) + S(r,w),

so degw K ≤ . Thus q ≤ . If q = , the degree of P –wQ that was denoted by k would be
 since p ≤ , a contradiction. Hence, q ≤ , p≤ , and k ≤ .
If q = , since the degree of P – wQ, k ≤ , we have p =  and the coefficients of the

highest degree of P and Q are identical. �

Proof of Theorem . We get from (.)

L(w)Q(z,w) = P(z,w),

where L(w) = ww + ww + ww + w, Q(z,w) = (w – a)(w – a), and P(z,w) = (w – h)(w –
h)(w – h)(w – h). Then degw P = , degw Q = , degw L = , and � of L(w) equals . It

http://www.advancesindifferenceequations.com/content/2014/1/260
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follows from Theorem . that

m(r,w) = S(r,w) (.)

and

m
(
r,L(w)

) ≤m
(
r,
L(w)
w

)
+m

(
r,w) + S(r,w) = S(r,w),

thus N(r,L(w)) = T(r,L(w)) + S(r,w) = T(r,w) + S(r,w). In a similar way to the proof of
[, Lemma .], we have

N
(
r,


w – am

)
= T(r,w) + S(r,w) (.)

for m = , . From Lemma ., given ε > , there are at most S(r,w) points zj where
Q(zj,w) = kj , but where L(w) has a pole of order greater that ( + ε)kj or less than ( – ε)kj
due to poles or zeros of P(zj,w). The combined effect of all such points can be included in
the error term, and so we only consider the rest of the zeros of Q in what follows.
For a point zj where w(zj) = am(zj), define

L(zj,w) = (. . . , zj – , zj, zj + , . . .)

to be the longest possible list of points such that each zj + n ∈ L(zj,w) is a zero of w – am,
m = , , and each zj + n +  ∈ L(zj,w) is a pole of w.
Suppose that w has more than S(r,w) poles that are not contained in any sequence

L(zj,w). Let N∗(r,w) be the integrated counting function of such poles; by assumption
we have N∗(r,w) > CT(r,w) for some C >  in a set of infinite logarithmic measure. By
(.), N∗(r,L(w)) = N∗(r,w) + S(r,w), and so we get

T(r,w) =
(
N

(
r,L(w)

)
–N∗(r,L(w))) +N∗(r,L(w)) + S(r,w)

≤ 
(
N(r + ,w) –N∗(r + ,w)

)
+ N∗(r + ,w) + S(r,w)

≤ ( – C)T(r + ,w) + S(r,w),

which implies that ρ(w) ≥  by Lemma .. Therefore all except at most S(r,w) poles of
w are in some sequence L(zj,w).
We will call the total number of zeros of w – am in L(zj,w) divided by the total number

of poles of w (both counting multiplicities) the am/pole ratio of the sequence.
Consider a sequence L(zj,w) that contains only one zero ofw–am. Then there are one or

two poles in that sequence.With one pole we would havew(zj) = am(zj)+kj andw(zj+) =
∞mj orw(zj–) = ∞mj , where (–ε)kj <mj. If there are two poles, the situation is the same
except that now we have L(w)(zj) = ∞mj . In any case, in such a sequence the am/pole ratio
is at most 

–ε
=: β < . We suppose that there are more than S(r,w)zj, L(zj,w) contains

only one zero of w – am. Then there are more than S(r,w) sequences L(zj,w) such that
N(r, 

Q(z,w) ) ≤ βN(r + ,w). Hence, we have

N
(
r,L(w)

)
=N(r,R) = N(r,w) +N

(
r,


Q(z,w)

)
+ S(r,w) < T(r,w),

http://www.advancesindifferenceequations.com/content/2014/1/260
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which is a contradiction, thus all except at most S(r,w) sequences L(zj,w) contain at least
two zeros of w– am. This means that there must be at least T(r,w) + S(r,w) points zj such
that w(zj + ) = ∞ and one of the following holds:

w(zj) = a(zj) and w(zj + ) = a(zj + ), (.)

w(zj) = a(zj) and w(zj + ) = a(zj + ), (.)

w(zj) = a(zj) and w(zj + ) = a(zj + ), (.)

w(zj) = a(zj) and w(zj + ) = a(zj + ). (.)

Since N(r, /(w – am)) = T(r,w) + S(r,w) holds for both choices of m = , , exactly one of
the following is true:

(i) Both (.) and (.) hold �S(r,w).
(ii) Both (.) and (.) hold �S(r,w), (.) and (.) hold �S(r,w).
(iii) Relation (.) holds �S(r,w), (.), (.), and (.) hold �S(r,w).
(iv) Relation (.) holds �S(r,w), (.)-(.) hold �S(r,w).

In what follows, we will derive some consequences separately for the conditions (i)-(iv).
We rewrite (.) as

ww +ww +ww =
bw + bw + bw + b

(w – a)(w – a)
, (.)

where b = a + a –H and H =
∑

j= hj.
Case (i) holds. Now we have both (.) and (.) hold �S(r,w). If (.) holds �S(r,w),

we get from (.)

w(zj + )w(zj) +w(zj + )w(zj + ) +w(zj + )w(zj)

=
(
bw + bw + bw + a

(w – a)(w – a)

)
(zj + ),

which means a(zj) + a(zj + ) = b(zj + ) holds at more than S(r,w) points zj, then
a + a = b. Similarly, if (.) holds �S(r,w), we get a + a = b. In this case, we have

b = a + a = a + a. (.)

Case (ii) holds. In the same way as above, we have

b = a + a = a + a. (.)

Cases (iii) and (iv) hold. Assume that (iii) holds. As we know, L(zj,w) contains at least
two zeros of w–am. From (.), there are exactly one zero of w–a and one zero of w–a,
otherwise, (.), (.), and (.) will hold�S(r,w). Then all except at most S(r,w) poles of
wmust be contained in sequences of the form

(∞lj– ,a + kj– ,∞mj ,a + kj+ ,∞lj+
)
,
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where if lj± < , the corresponding endpoint of the sequence is a zero of order |lj±|, and if
lj± = , it is some nonzero finite value. By Lemma .,

( – ε)kj± <mj +max{lj±, } < ( + ε)kj± (.)

holds for both choices of the ± sign. Denote

U = (w – a)(w – a). (.)

Next, wewill show thatU is a small functionwith respect tow. From (.), we getm(r,U) =
S(r,w). From the definition of U and the fact that all but at most S(r,w) poles of w are in
sequences of the above form, it follows that if U has more than S(r,w) poles, then there
are more than S(r,w) sequences where lj± > .
For the sequences with lj– > , we may assume that lj–/mj ≥ s >  for all such sequences,

otherwise the poles with lj– >  will only have a small effect (at most S(r,w)) on N(r,U).
The am/pole ratio for the sequences in consideration is

kj– + kj+
mj + lj– +max{lj+, } <


 – ε

mj + lj– +max{lj+, }
mj + lj– +max{lj+, }

using (.). Take d such that

 + s/
 + s

< d < .

Then d ∈ (/, ). For a fixed j, there exists an εj satisfying

εj <  –
mj + lj– +max{lj+, }

d(mj + lj– +max{lj+, }) .

Define ε = infj εj. Since

d
(
mj + lj– +max{lj+, }) – mj – lj– –max{lj+, }

≥ (d – )mj + (d – )lj

≥mj
(
d –  + (d – )s

)
> .

Noting that mj ≥ , then ε is well defined. Thus we conclude that if lj– > , then in such
sequences the am/pole ratio is at most some d < . We will get a contradiction as the
above. If lj+ > , we will get a contradiction similarly. Therefore, U ∈ S(w), and so (.)
becomes the Riccati difference equation

w =
aw –U – aa

w – a
.

The same reasoning works for case (iv) as we exchange the roles of a and a.
In the case that a = a, the proof is similar. The condition (i) is the only possibility. �
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Restriction of hn. We claim that for each n = , , , ,

hn + hk =  or hn + hk =  (.)

for some k ∈ {, , , }. Following the same reasoning as in the proof of [, Lemma .],
we have

N
(
r,


w – hn

)
= T(r,w) + S(r,w), (.)

provided hn is not a solution of (.), i.e., hn does not satisfy hn + hn = . In the following,
we may assume that w – hn has a large number of zeros, or (.) holds as desired.
Consider the points zj where w(zj) = hn(zj) + kj . From (.) we get

w(zj) +w(zj ± ) = 

for all except at most S(r,w) points zj and for either or both choices of ±.
We assume the condition (i) or (ii) is true, otherwise, w satisfies a Riccati difference

equation. We discuss the following three cases:
Case . More than S(r,w) points zj satisfy

w(zj) +w(zj + ) = mj+ .

Then w(zj + ) = –hn(zj) + mj+ . By

(
w(zj + ) +w(zj + )

)(
w(zj + ) +w(zj)

)
=
P(zj + )
Q(zj + )

,

we have w(zj + ) = ∞. If –hn 	= am for m = , , then –hn(zj) 	= am(zj + ). It follows that
w(zj + ) = am(zj + ) (note the conditions (i) and (ii)). Then from

(
w(zj + ) +w(zj + )

)(
w(zj + ) +w(zj + )

)
=
P(zj + )
Q(zj + )

,

we get am(zj + ) – hn(zj) = b(zj + ), which means

am – hn = b.

Combining the above equation with (.) or (.), we have –hn = am form =  orm = ,
which is a contradiction.
Thus

–hn = am (.)

holds form =  orm = .
Case . More than S(r,w) points zj satisfy

w(zj) +w(zj – ) = mj– .

http://www.advancesindifferenceequations.com/content/2014/1/260
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By a similar reasoning to the above, we obtain

–hn = am (.)

holds form =  orm = .
Case . More than S(r,w) points zj satisfy

w(zj) +w(zj + ) = mj+ .

Also, more than S(r,w) points zj satisfy

w(zj) +w(zj – ) = mj– .

In this case, we have both (.) and (.).
Note the above three cases, all except at most S(r,w) points zj are contained in one of

forms the sequences of

(
hn(zj) + kj , –hn(zj) + mj+ ,∞sj+ ,am(zj + ),ϕ

)
, (.)

(
ϕ,am(zj – ),∞sj– , –hn(zj) + mj– ,hn(zj) + kj

)
, (.)

(
hn(zj) + tj ,am(zj + ) + mj ,∞sj ,am(zj + ) + lj ,hn(zj + ) + rj

)
, (.)

where sj+ ≈ kj +mj+, sj– ≈ kj +mj–, sj ≈ tj +mj ≈ lj + rj, and ϕ is a pole or a finite value but
not the zero of w–hn. In fact, if ϕ is the zero of w–hn, it will be a starting point of another
sequence.
If (.) holds formore than S(r,w) points, there aremore than S(r,w) sequences L(zj,w)

such that N(r, 
Q(z,w) ) ≤ βN(r + ,w), where β < . This is a contradiction. Hence, (.)

holds at most S(r,w) points. Then almost all the zeros of w–hn are in the sequences (.)
and (.).
However, noting that sj+ ≈ kj + mj+ and sj– ≈ kj + mj–, we have N(r + ,w) > ( +

ε)N(r, 
w–hn ) + S(r,w) = ( + ε)T(r,w) + S(r,w), which contradicts with Lemma ..
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