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Abstract
In this paper, we consider a Cauchy problem for the Poisson equation with
nonhomogeneous source. The problem is shown to be ill-posed as the solution
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1 Introduction
The Poisson equation is

�u = f , ()

where � is the Laplace operator, f and u are real or complex-valued functions on a mani-
fold.
In case of f = , equation () is called Laplace’s equation which arises naturally in many

areas of engineering and science, especially in wave propagation and vibration phenom-
ena such as the vibration of a structure [], the acoustic cavity problem [], the radiation
wave [] and the scattering of a wave []. For example, certain problems related to the
search for mineral resources, which involve interpretation of the earth’s gravitational and
magnetic fields, are equivalent to the Cauchy problem for Laplace’s equation. In another
application of geophysical underground prospection, the geoelectrical method has been
initiated in recent years (see the historical account in Zhdanov and Keller []). In fact, by
now the geoelectrical method involves, even in its most basic formulation, the solution of
the Cauchy problem for Laplace’s equation.
Nowadays, the Cauchy problem for Laplace’s equation, and more generally for ellip-

tic equations, has a central position in all inverse boundary value problems which rep-
resent electrical impedance tomography, optical tomography and transient phenomenon
in a time-like variable, while elliptic equations describe steady-state processes in physical
fields.
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In physics, a gravitational field is a model used to explain the influence that a massive
body extends into the space around itself, producing a force on another massive body.
Therefore, a gravitational field characterizes gravitational phenomena and is measured in
Newtons per kilogram (N/kg). In its original concept, gravity was a force between point
masses. Following Newton, Laplace attempted to model gravity as some kind of radiation
field or fluid, although the th century explanations of gravity have usually been sought
in terms of a field model rather than a point attraction. A gravitational field is the force
field created around massive bodies that causes attraction of other massive bodies. A dis-
tribution of matter of density ρ = ρ(x, y, z) gives rise to a gravitational potential φ which
satisfies the three-dimensional (D) Poisson equation

�φ = –πGρ ()

at the points inside the distribution, where G is the universal gravitational constant.
Motivated by important applications of the Poisson equation, in this paper we are in-

terested in considering the Cauchy problem of identification of the gravitational field φ

which satisfies a Poisson equation (two-dimensional case or three-dimensional case). As
first pointed out by Hadamard, the Cauchy problem for Laplace’s equation is an ill-posed
problem. It means the problem’s solutions do not always exist and, whenever they do exist,
there is no continuous dependence on the given data. A small perturbation in the Cauchy
data therefore can affect the solution significantly. Readers are referred to [–, –] for
earliermaterials on theCauchy problem for Laplace’s equation. For the homogeneous case
of source term, the elliptic problemwas considered in a series of articles analyzing the sta-
bility and convergence (see, e.g., [–, , , ]). A similar version of Laplace’s equation
with homogeneous case was considered by Regińska et al. [, ], Lesnic et al. [], Taut-
enhahn [] and Wei et al. [–].
Although we have many works on the homogeneous case of the elliptic problem, the lit-

erature on the inhomogeneous case, for example, the Poisson equation, is quite scarce. The
earlier work on the abstract elliptic second order equation with inhomogeneous source
was introduced in [] by Showalter (see p.). The main aim of this paper is to present
a general regularization method and investigate the error estimate between the regular-
ized solution and the exact solution.
Our paper is organized as follows. In Sections  and , we construct stable approximate

solutions of the equation and give the convergence estimates for D and D cases, respec-
tively. Finally, in Section , two numerical examples for each D and D case are devised
to test the effectiveness of proposed methods.

2 The 2D case of the Poisson equation
2.1 Mathematical model
We consider the problem of finding φ(x, y) such that

�φ = φxx + φyy = f (x, y), (x, y) ∈ � × (, ) ()

subject to the boundary condition φ(x, y) = , x ∈ ∂�. Here � = (,π ) and ϕ, g ∈ L(,π )
are given functions. We will derive the solution of Problem () for source term f (x, y) ∈
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L(, ;L(,π )). Let {up(x)} be an orthogonal system of L(,π ). Then

φ(x, y) =
∞∑
p=

〈
φ(x, y),up(x)

〉
up(x),

and we have

〈
φxx + φyy,up(x)

〉
=
〈
f (x, y),up(x)

〉
. ()

Set φp(y) = 〈φ(x, y),up(x)〉 =
∫ π

 φ(x, y)up(x)dx. By transformation of (), we have

φ′′
p (y) + φx(π , y)up(π ) – φx(, y)up() – φ(π , y)u′

p(π )

+ φ(, y)u′
p() –

∫ π


φ(x, y)u′′

p(x)dx

=
〈
f (x, y),up(x)

〉
.

By choosing up and λp such that

u′′
p(x) = λpup(x), up() = up(π ) = , ()

we have the following system:

φ′′
p (y) + λpφp(y) = fp(y),

φp() = ϕp, ()

φ′
p() = gp,

where fp(y) = 〈f (x, y),up(x)〉, ϕp = 〈ϕ(x),up(x)〉, gp = 〈g(x),up(x)〉. By solving (), we obtain
λp = –p and up(x) = sinpx. This leads to

φp(y) = cosh(py)ϕp +
sinh(py)

p
gp +

∫ y



sinh(p(y – s))
p

fp(s)ds. ()

Hence, we obtain the solution of Problem () as follows:

φ(x, y) =
∞∑
p=

[
cosh(py)ϕp +

sinh(py)
p

gp +
∫ y



sinh(p(y – s))
p

fp(s)ds
]
sinpx. ()

From (), we see that the data error can be arbitrarily amplified by the ‘kernel’ function
cosh(py). That is the reason why equation () is ill-posed in the sense of Hadamard. In the
paper of Hadamard, he provided a fundamental example which shows that a solution of
a Cauchy problem for Laplace’s equation does not depend continuously on the data. The
example is as follows:

�u = , (x, y) ∈ R, y > , ()

u(x, ) = , ()

http://www.advancesindifferenceequations.com/content/2014/1/258
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uy(x, ) = An sinnx, x ∈ R. ()

We have

un(x, y) =
An

n
sinnx sinhny. ()

If we choose An = 
np for some p > , then un,y(x, )→  uniformly as n→ ∞; whereas, for

any y > , the function un(x, y) containing factor sinhny blows up as n → ∞.

2.2 A general filter regularizationmethod
To find some regularized solutions, we should replace ‘instability’ kernels cosh(py),
sinh(py), sinh(p(y – s)) by the ‘stability’ kernels A(β ,p, y), B(β ,p, y), C(β ,p, y) that satisfy
the following properties:

lim
β→

A(β ,p, y) = cosh(py),

(P) lim
β→

B(β ,p, y) = sinh(py), ()

lim
β→

C(β ,p, y, s) = sinh
(
p(y – s)

)
and some suitable conditions which are given later. Following property (P), one can con-
struct other kernels. Furthermore, the idea of the above property can be applied to other
ill-posed problems such as, e.g., the backward heat conduction problem [].
Throughout this section, we assume that the functions ϕ, g ∈ L(,π ) and f ∈ L(, ;

L(,π )). In reality, they can only be measured with some measurement errors, and we
would actually have noisy data:

ϕε(x) =
∞∑
p=

ϕε
p sinpx, gε(x) =

∞∑
p=

gε
p sinpx

for which

∥∥ϕε – ϕ
∥∥≤ ε,

∥∥gε – g
∥∥≤ ε.

Here the constant ε >  represents a bound on the measurement error and ‖ · ‖ denotes
the norm in L(�). As noted above, we present the following general regularized solution:

φε(x, y) =
∞∑
p=

[
A(β ,p, y)ϕε

p +
B(β ,p, y)

p
gε
p +
∫ y



C(β ,p, y, s)
p

fp(s)ds
]
sinp, ()

where

A(β ,p, y) =
P(β ,p, y)epy + e–py


,

B(β ,p, y) =
P(β ,p, y)epy – e–py


, ()

C(β ,p, y, s) =
P(β ,p, y)ep(y–s) – ep(s–y)


,

and P(β ,p, y) is chosen suitably.

http://www.advancesindifferenceequations.com/content/2014/1/258
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Theorem  (A general regularization method) Assume that φ(x, y) is the exact solution of
Problem () and M is a real-valued function such that

∞∑
p=

(
M

(p)
∣∣〈φ(x, y), sinpx〉∣∣ + M

(p)
p

∣∣〈φy(x, y), sinpx
〉∣∣)≤ E, ()

where E is a positive number. Let P(β ,p, y) be a function in such a way that, for any β > ,
there exist M(β) and M(β) satisfying

(a)  – P(β ,p, y) ≤ M(β)M(p), ()

(b) P(β ,p, y) ≤ M(β)e–py. ()

Then φε(x, y) defined by equation () fulfills the following estimate:

∥∥φε – φ
∥∥≤ ε

√
M

(β) +  +M(β)E. ()

A choice β = β(ε) is admissible if

lim
ε→

β(ε) = lim
ε→

M(β) = lim
ε→

εM(β) = . ()

Proof The proof will be split into two parts as follows.
Part . We estimate ‖φε – vε‖, where vε is defined as

vε(x, y) =
∞∑
p=

[
A(β ,p, y)ϕp +

B(β ,p, y)
p

gp +
∫ y



C(β ,p, y, s)
p

fp(s)ds
]
sinpx. ()

By a simple calculation, we get

∥∥φε(·, y) – vε(·, y)∥∥ =
∞∑
p=

[
A(β ,p, y)

(
ϕε
p – ϕp

)
+
B(β ,p, y)

p
(
gε
p – gp

)]

≤ 
∞∑
p=

A(β ,p, y)
(
ϕε
p – ϕp

) + 
∞∑
p=

B(β ,p, y)
(
gε
p – gp

)

≤ M
(β) + 


(

∥∥ϕε – ϕ

∥∥ + 
∥∥gε – g

∥∥)
≤ ε

(
M

(β) + 
)
. ()

Hence

∥∥φε(·, y) – vε(·, y)∥∥≤ ε

√
M

(β) + . ()

Part . We estimate ‖vε – φ‖. In fact, we have

〈
φ(x, y) – vε(x, y), sinpx

〉
=
(
A(β ,p, y) – cosh(py)

)
ϕp +

B(β ,p, y) – sinh(py)
p

gp

http://www.advancesindifferenceequations.com/content/2014/1/258
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+
∫ y



C(β ,p, y, s) – sinh(py – ps)
p

fp(s)ds

=
epy – P(β ,p, y)epy



(
ϕp +

gp
p

+
∫ y


e–psfp(s)ds

)
. ()

From (), the partial derivative of φ with respect to y is

φy(x, y) =
∞∑
p=

[
sinh(py)ϕp +

cosh(py)
p

gp +
∫ y



cosh(p(y – s))
p

fp(s)ds
]
sinpx.

This implies that

〈
φ(x, y), sinpx

〉
+

p
〈
φy(x, y), sinpx

〉
= epy

(
ϕp +

gp
p

+
∫ y


e–psfp(s)ds

)
. ()

Combining () and (), we obtain

〈
φ(x, y) – vε(x, y), sinpx

〉
=
 – P(β ,p, y)



(〈
φ(x, y), sinpx

〉
+

p
〈
φy(x, y), sinpx

〉)
. ()

Hence

∥∥φ(·, y) – vε(·, y)∥∥ =
∞∑
p=

∣∣〈φ(x, y) – vε(x, y), sinpx
〉∣∣

≤
∞∑
p=

( – P(β ,p, y))



(〈
φ(x, y), sinpx

〉
+

p
〈
φy(x, y), sinpx

〉)

≤
∞∑
p=

M
 (β)M

(p)


(∣∣〈φ(x, y), sinpx〉∣∣ + 
p
∣∣〈φy(x, y), sinpx

〉∣∣)

≤ M
 (β)


∞∑
p=

(
M

(p)
∣∣〈φ(x, y), sinpx〉∣∣ + M

(p)
p

∣∣〈φy(x, y), sinpx
〉∣∣)

≤ M
 (β)E

. ()

Combining () and (), we have

∥∥φ(·, y) – φε(·, y)∥∥ ≤ ∥∥φ(·, y) – vε(·, y)∥∥ + ∥∥φε(·, y) – vε(·, y)∥∥
≤ ε

√
M

(β) +  +M(β)E. ()

This completes the proof. �

Theorem  (The first regularized solution) Let P(β ,p, y) = e–βpy. Assume that φ is the
exact solution of Problem () such that ‖φxx(·, y)‖ + ‖φxy(·, y)‖ ≤ E for y ∈ [, ]. If we
select β = 

k ln( ε )
( < k < ), then

∥∥φε – φ
∥∥≤ E

k ln( 
ε
)
+

√
ε + ε–k . ()

http://www.advancesindifferenceequations.com/content/2014/1/258
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Proof First, we find the functions M, M, M such that P(β ,p, y) holds (), (). Using
the inequality  – e–m ≤ m, we have

 – P(β ,p, y) =  – e–βpy ≤ βpy≤ βp.

Since (), we can chooseM(β) = β andM(p) = p. The condition

∞∑
p=

(
M

(p)
∣∣〈φ(x, y), sinpx〉∣∣ + M

(p)
p

∣∣〈φy(x, y), sinpx
〉∣∣)≤ E ()

is equivalent to

∞∑
p=

(
p
∣∣〈φ(x, y), sinpx〉∣∣ + p

∣∣〈φy(x, y), sinpx
〉∣∣)

=
∥∥φxx(·, y)

∥∥ + ∥∥φxy(·, y)
∥∥ ≤ E. ()

Using the inequality p – βp ≤ 
β
, we get

epyP(β ,p, y) = e(p–βp)y ≤ e
y
β ≤ e


β .

Since (), we can choose M(β) = e

β . The admissible regularization parameter is

β = 
k ln( ε )

( < k < ). In fact, it is easy to check that

lim
ε→

β(ε) = lim
ε→

M(β) = lim
ε→


k ln( 

ε
)
= 

and

lim
ε→

εM(β) = lim
ε→

εe

β = lim

ε→
ε–k = .

Applying Theorem , we obtain

∥∥φε – φ
∥∥≤ ε

√
M

(β) +  +M(β)E ≤ E
k ln( 

ε
)
+

√
ε + ε–k . ()

�

Theorem  (The second regularized solution) Let P(β ,p, y) = e–py
βp+e–py . Assume that φ is

the exact solution of Problem () such that ‖φxx(·, y)‖ + ‖φyy(·, y)‖ ≤ E for y ∈ [, ]. If
we select β = εk ( < k < ), then

∥∥φε – φ
∥∥≤ E

k ln( 
ε
)
+

√
ε + ε–k . ()

Proof First, we find the functionsM,M,M such that P(β ,p, y) holds (), (). We have

 – P(β ,p, y) =  –
e–py

βp + e–py
=

βp
βp + e–py

.

http://www.advancesindifferenceequations.com/content/2014/1/258
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On the other hand, for  ≤ y≤ , we have


βp + e–py

≤ 
βp + e–p

≤ 
β ln( 

β
)
, β ∈ (, e).

Hence

 – P(β ,p, y) ≤ p
ln( 

β
)
. ()

Since (), we can chooseM(β) = 
ln( 

β
)
,M(p) = p. The condition

∞∑
p=

(
M

(p)
∣∣〈φ(x, y), sinpx〉∣∣ + M

(p)
p

∣∣〈φy(x, y), sinpx
〉∣∣)≤ E ()

is equivalent to

∞∑
p=

(
p
∣∣〈φ(x, y), sinpx〉∣∣ + ∣∣〈φy(x, y), sinpx

〉∣∣)

=
∥∥φx(·, y)

∥∥ + ∥∥φy(·, y)
∥∥ ≤ E. ()

Since (), we can choose M(β) = 
β ln( 

β
)
. Next, we prove that this regularization param-

eter β = εk ( < k < ) is admissible by checking condition (). In fact,

lim
ε→

β(ε) = lim
ε→

M(β) = lim
ε→


ln( 

εk
)
= 

and

lim
ε→

εM(β) = lim
ε→

εe

β = lim

ε→
ε–k


ln( 

εk
)
= .

Applying Theorem , we obtain

∥∥φε – φ
∥∥≤ ε

√
M

(β) +  +M(β)E ≤ E
ln( 

εk
)
+

√
ε +

ε–k

ln( 
εk
)
. ()

�

3 The 3D Poisson equation
Let ρ be the given mass density. For simplification, we consider the problem: determine
the gravitational potential φ such that the Poisson equation

�φ(x, y, z) = –πGρ(x, y, z) ()

subject to the homogeneous Dirichlet boundary condition φ(x, y, z) = , (x, y) ∈ ∂�, z ∈
(, ), where � = (,π ) × (,π ). The data of φ at z = : φ(x, y, ) = ϕ(x, y) and φz(x, y, ) =
g(x, y), where ϕ, g are known.

http://www.advancesindifferenceequations.com/content/2014/1/258
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By a similar way as in (), we find the solution of () that

φ(x, y, z) =
∞∑

p,q=

[
cosh

(
z
√
p + q

)
ϕpq +

sinh(z
√
p + q)√

p + q
gpq

+ πG
∫ y



sinh((z – s)
√
p + q)√

p + q
ρpq(s)ds

]
sinpx sinqy. ()

Physically, ϕ can only be measured with some measurement errors, and we would actu-
ally have a disturbed data function

ϕε(x, y) =
∞∑

p,q=

ϕε
pq sinpx sinqy ∈ L(�),

gε(x, y) =
∞∑

p,q=

gε
pq sinpx sinqy ∈ L(�)

for which

∥∥ϕε – ϕ
∥∥≤ ε,

∥∥gε – g
∥∥≤ ε,

where the constant ε >  represents a bound on the measurement error, ‖ · ‖ denotes the
L-norm.
By a similar method as in Section , we present the following general regularized solu-

tion:

φε(x, y, z) =
∞∑

p,q=

[
A(β ,p,q, z)ϕε

pq +
B(β ,p,q, z)√

p + q
gε
pq

+ πG
∫ y



C(β ,p,q, z, s)√
p + q

ρpq(s)ds
]
sinpx sinqy, ()

where

A(β ,p,q, z) =
P(β ,p,q, z)ez

√
p+q + e–z

√
p+q


,

B(β ,p,q, z) =
P(β ,p,q, z)ez

√
p+q – e–z

√
p+q


, ()

C(β ,p,q, z, s) =
P(β ,p,q, z)e(z–s)

√
p+q – e(s–z)

√
p+q


,

and P(β ,p, y) is chosen suitably.

Theorem  Assume that φ(x, y, z) is the exact solution of Problem () and N(p,q) is a
real-valued function such that

∞∑
p=

(
N

 (p,q)
∣∣〈φ(x, y, z), sinpx sinqy〉∣∣ + N

 (p,q)
p + q

∣∣〈φz(x, y, z), sinpx sinqy
〉∣∣)

≤ E, ()

http://www.advancesindifferenceequations.com/content/2014/1/258
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where E is a positive number. Let P(β ,p,q, z) be a function such that for any β > , there
exist functions N(β) and N(β) satisfying

(a)  – P(β ,p,q, z) ≤ N(β)N(p,q), ()

(b) P(β ,p,q, z) ≤ N(β)e–z
√

p+q , ()

then φε(x, y, z) defined by equation () fulfills the following estimate:

∥∥φε – φ
∥∥≤ ε

√
N

 (β) +  +N(β)E. ()

A choice β = β(ε) is admissible if

lim
ε→

β(ε) = lim
ε→

N(β) = lim
ε→

εN(β) = . ()

Theorem  Let P(β ,p,q, z) = e–z
√

p+q

β(
√

p+q)m+e–z
√

p+q
for m ≥ . Assume that φ is the exact

solution of Problem () such that

∞∑
p=

((
p + q

)m/∣∣〈φ(x, y, z), sinpx sinqy〉∣∣ + (p + q
)m–∣∣〈φz(x, y, z), sinpx sinqy

〉∣∣)

≤ E ()

for z ∈ [, ]. If we select β = εk ( < k < ), then

∥∥φε – φ
∥∥≤ E

k ln( 
ε
)
+

√
ε + ε–k . ()

Proof First, we find the functions N, N, N such that P(β ,p,q, z) holds (), (). We
have

 – P(β ,p,q, z) =  –
e–z

√
p+q

β(
√
p + q)m + e–z

√
p+q

=
β(
√
p + q)m

β(
√
p + q)m + e–

√
p+qz

.

On the other hand, for  ≤ z ≤ , we have



β(
√
p + q)m + e–

√
p+qz

≤ 

β(
√
p + q)m + e–

√
p+q

.

Now, we prove that



β(
√
p + q)m + e–

√
p+q

≤ mm

β lnm( 
mβ

)
.

In fact, let the function h be defined by h(x) = 
βxm+e–Mx . By taking the derivative of h, one

has

h′(x) =
βmxm– –Me–Mx

–(βxm + e–Mx)
. ()

http://www.advancesindifferenceequations.com/content/2014/1/258
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The equation h′(x) =  gives a unique solution x such that βmxm–
 –Me–Mx = . It means

that xm–
 eMx = M

mβ
. Thus the function h achieves its maximum at a unique point x = x.

Thus

h(x)≤ 
εxm + e–Mx

. ()

Since e–Mx = kβ
M xk– , one has

h(x)≤ 
εxm + e–Mx

≤ 
βxm + mβ

M xm–


. ()

By using the inequality eMx ≥ Mx, we get

M
mε

= xm–
 eMx

≤ 
Mm– e

(m–)MxeMx

=


Mm– e
mMx .

This gives emMx ≥ Mm

mβ
ormMx ≥ ln(Mm

mβ
). Therefore

x ≥ 
mM

ln

(
Mm

mβ

)
.

Hence, we obtain

h(x)≤ 
βxm

≤ (mM)m

β lnm(Mm
mβ

)
. ()

Using this inequality forM = , we have

 – P(β ,p,q, z) ≤ mm

lnm( 
mβ

)
(√

p + q
)m ()

and

P(β ,p,q, z) ≤ mm

β lnm( 
mβ

)
e–z

√
p+q . ()

By choosing N(β) = mm

lnm( 
mβ

)
, N(p,q) = (

√
p + q)m and N(β) = mm

β lnm( 
mβ

)
, the conditions

(), () hold. It is easy to check that () holds.
Applying Theorem , we obtain

∥∥φε – φ
∥∥≤ ε

√
M

(β) +  +M(β)E ≤ E
ln( 

εk
)
+

√
ε +

ε–k

ln( 
εk
)
. ()

�
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4 Numerical experiment
In this section, simple examples for the D and D Poisson equations are devised for ver-
ifying the validity of our proposed methods.

4.1 Example 1
Consider the D Poisson equation as follows:

⎧⎪⎨
⎪⎩

φxx + φyy = f (x, y), (x, y) ∈ (,π )× (, ),
φ(x, ) = ϕ(x), x ∈ (,π ),
φy(x, ) = g(x), x ∈ (,π ),

()

where

ϕ(x) = ,

f (x, y) =
(
x + y – π – 

)
e–x

+y sin(x) sin(πy)

–
(
πy + π)e–(x+y) sin(x) cos(πy)

– xe–(x
+y) cos(x) sin(πy)

+ e–(x
+y) sin(x) sin(πy)

(
y – x – π – 

)
– e–(x

+y) sin(x) cos(πy)
(
yπ + π)

– xe–(x
+y) cos(x) sin(πy),

g(x) = πe(–x
) sin(x) + πe–x


sin(x).

Problem () has a unique solution as follows:

φ(x, y) = ex
+y sin(x) sin(πy) + e–(x

+y) sin(x) sin(πy).

Now we are seeking a solution of the following problem:

⎧⎪⎨
⎪⎩

φε
xx + φε

yy = f ε(x, y), (x, y) ∈ (,π )× (, ),
φε(x, ) = ϕε(x), x ∈ (,π ),
φε
y (x, ) = gε(x), x ∈ (,π ).

()

We assume hε to be a measured data as follows:

hε(x) =
p∑
p=

(
hp + ε rand(p)

)
sin(px),

where p ≤ p∞ and {rand(·)} is an array of pseudo-random numbers satisfying

p∑
p=

∣∣rand(p)∣∣ ≤ .

http://www.advancesindifferenceequations.com/content/2014/1/258
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Let (p,p∞) satisfy

O
(‖h‖) :=

√√√√ p∞∑
p=p+

|fp| ≤ ε. ()

In this paper, we choose p = , p∞ = , then () is satisfied.
Step . Choose L and K to generate the temporal and spatial discretization in such a

manner that

xi = i�x, �x =
π

K
, i = , . . . ,K ,

yj = j�y, �y =

L
, j = , . . . ,L.

Of course, the higher value of K and L will provide more accurate and stable numerical
results; however, in the following numerical examples K = L =  are satisfied.
Step . We choose the following functions:

ϕε = ϕ + ε ∗ rand( ),

gε = g + ε ∗ rand( ),

f ε = f + ε ∗ rand( , ).

Step . Set φε
β (xi) = φε

β ,j and φ(xj) = φj, construct two vectors containing all discrete val-
ues of φε

β and f denoted by �ε
β and  , respectively,

�ε
β =

[
φε

β , φε
β , · · · φε

β ,K
] ∈R

K+,

 = [φ φ · · · φK– φK ] ∈R
K+.

Step . Error estimate between the exact solutions and regularized solutions. At a fixed
point y∗, the error estimation δi,ε in L between the exact solution φ and the regularized
solutions φi,ε is given by the following formula. Relative error estimation:

δε =

√∑K
i= |φε

β (xi) – φ(xi)|L(,π )√∑K
i= |φ(xi)|L(,π )

.

In one example, we have the first regularized solution (defined inTheorem). Inmethod
two, we have the second regularized solution (defined in Theorem ). With parameter
k = /, in the first method we choose β = –

 ln ε
, and in the second method we choose

β = ε/.
Tables  and  show the computed error estimations δε at each fixed value y = j/,

j = , . . . , . The errors are significantly small when ε ≤ –. Comparing the errors of two
regularized solutions in the table, we can see that the second one is better. We show the
error between the exact solution and the regularized solution at β = –

 ln ε
. For the purpose

http://www.advancesindifferenceequations.com/content/2014/1/258
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Table 1 Discrete relative error estimations for the regularized solution at fixed values from
y = 0.0 to y = 0.5

0.0 0.1 0.2 0.3 0.4 0.5

10–1 5.10E–03 2.10E–03 5.60E–03 4.70E–03 7.19E–04 3.40E–03
10–2 2.92E–05 3.16E–04 1.89E–04 6.91E–05 1.33E–04 3.72E–04
10–3 4.30E–07 1.76E–05 6.78E–05 2.31E–05 2.14E–06 2.24E–05
10–4 1.45E–06 6.35E–07 1.02E–06 3.51E–07 1.34E–07 1.28E–06
10–5 1.13E–07 2.82E–09 2.04E–07 5.61E–08 1.05E–07 1.81E–07
10–6 1.83E–08 1.95E–08 3.93E–08 1.24E–08 1.23E–08 1.07E–08
10–7 1.36E–09 4.41E–09 7.11E–10 7.04E–10 9.19E–10 7.78E–10
10–8 1.60E–11 1.69E–10 2.74E–10 2.92E–10 2.18E–10 9.72E–11
10–9 9.04E–12 1.08E–11 1.83E–12 3.84E–12 7.57E–12 1.40E–11
10–10 2.39E–13 1.63E–12 6.78E–12 3.14E–13 6.54E–12 2.35E–12

Table 2 Discrete relative error estimations for the regularized solution at fixed values from
y = 0.6 to y = 1.0

0.6 0.7 0.8 0.9 1.0

10–1 3.50E–03 1.70E–03 2.67E–04 6.23E–05 2.52E–06
10–2 1.16E–04 6.75E–05 3.96E–06 7.91E–06 2.93E–06
10–3 2.39E–06 6.75E–06 3.47E–06 1.21E–06 2.21E–07
10–4 1.12E–06 1.64E–07 1.44E–08 1.36E–08 1.61E–08
10–5 1.72E–07 1.30E–08 4.44E–08 7.34E–09 9.97E–11
10–6 4.48E–10 8.67E–09 2.34E–10 8.77E–10 1.25E–11
10–7 1.77E–10 1.83E–10 1.79E–11 1.43E–10 4.37E–11
10–8 1.14E–10 5.09E–12 1.13E–11 1.59E–12 7.58E–12
10–9 8.86E–14 4.67E–12 1.44E–12 5.52E–13 4.74E–14
10–10 7.80E–13 1.14E–12 1.38E–13 1.57E–14 1.21E–15

of better illustration, we also present some graphical figures. Figure  is the D represen-
tation of the exact solution and regularized solutions when ε = –, ε = – and ε = –.
Figure  shows graphs of section cut of these solutions at value y = . when ε = –,
ε = – and ε = –. It is easy to see that our methods are stably convergent.

4.2 Example 2
We consider the following D problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φxx + φyy + φzz = f (x, y, z), (x, y, z) ∈ � × (, ),
φ(x, y, z) = , (x, y) ∈ ∂�,
φ(x, y, ) = ϕ(x, y),
φz(x, y, ) = g(x, y),

()

where � = (,π )× (,π ).
Step . Choose Q and K (in our computations, Q = K =  are chosen) to have

xi = i�x, �x =
π

Q
, j = ,Q,

yj = j�y, �y =
π

K
, i = ,K ,

zk = k�z, �z =

L
, z = ,L.

http://www.advancesindifferenceequations.com/content/2014/1/258
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Figure 1 3D graphs of the exact solution φ(x,y) and three regularized solutions φi,ε (x,y) at i = 1,2.

Step . We choose the following functions and fix z,

ϕε = ϕ + ε rand(·, ·),
gε = g + ε rand(·, ·),
f ε(·, ·, z) = f (·, ·, z) + ε rand(·, ·).

http://www.advancesindifferenceequations.com/content/2014/1/258
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Figure 2 Section cut of the exact solution and regularized solutions at y = 0.5, ε = 10–1, ε = 10–2,
ε = 10–3.

Step . In this example, we fix z. We put φ(·, ·, z∗)εβ(ε)(xi, yj) = φ(·, ·)εβ(ε),i,j and φ(·, ·, z∗)(xi,
yj) = ui,j, construct two vectors containing all discrete values of φ(·, ·)εβ and φ(·, ·) denoted
by �ε

β and �, respectively,

�ε
β(ε) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ
β(ε),ε
(,,) φ

β(ε),ε
(,,) · · · φ

β(ε),ε
(,,K–) φ

β(ε),ε
(,,K )

φ
β(ε),ε
(,,) φ

β(ε),ε
(,,) · · · φ

β(ε),ε
(,,K–) φ

β(ε),ε
(,,K )

φ
β(ε),ε
(,,) φ

β(ε),ε
(,,) · · · φ

β(ε),ε
(,,K–) φ

β(ε),ε
(,,K )

· · · · · · . . . · · · · · ·
φ

β(ε),ε
(,Q,) φ

β(ε),ε
(,Q,) · · · φ

β(ε),ε
(,Q,K–) φ

β(ε),ε
(,Q,K )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈R
K+ ×R

Q+,

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ(,) φ(,) · · · φ(,K–) φ(,K )

φ(,) φ(,) · · · φ(,K–) φ(,K )

φ(,) φ(,) · · · φ(,K–) φ(,K )

· · · · · · . . . · · · · · ·
φ(Q,) φ(Q,) · · · φ(Q,K–) φ(Q,K )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
K+ ×R

Q+.
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Step . The error estimation.
Relative error estimation:

δ =

√∑Q
i=
∑K

j= |φε(xi, yj, z∗) – φ(xi, yj, z∗)|L(�)√∑Q
i=
∑K

j= |φ(xi, yj, z∗)|L(�)

, ()

where

� = (,π )× (,π ),

f (x, y, z) =
(
–π –

(
π



))
sin
(
π (x – π )

)
sin

(
π


(y – π )

)

×
[
 – z

(
π



)

cos

(
π


(x – π )

)
cos

(
π


(y – π )

)]
,

φ(x, y) = sin
(
π (x – π )

)
sin

(
π


(y – π )

)
,

g(x, y) = sin
(
π (x – π )

)
sin

(
π


(y – π )

)
cos

(
π


(x – π )

)
cos

(
π


(y – π )

)
.

From () and (), we get

φ(x, y, z) = sin
(
π (x – π )

)
sin

(
π


(y – π )

)[
 + z cos

(
π


(x – π )

)
cos

(
π


(y – π )

)]
.

Table 3 Discrete relative error estimations for the regularized solution at fixed values
y = π /12 and z = 1.5 from y = 0.0 to y = 0.5

0.0 0.1 0.2 0.3 0.4 0.5

10–1 3.15E–04 2.83E–02 1.72E–02 9.10E–03 1.10E–02 5.90E–03
10–2 3.50E–03 1.15E–04 2.50E–04 3.27E–04 1.32E–04 1.00E–04
10–3 4.35E–05 1.16E–04 3.60E–05 1.19E–04 1.01E–05 2.53E–05
10–4 9.84E–06 2.76E–05 1.18E–05 1.16E–05 1.13E–05 1.11E–06
10–5 2.03E–06 4.01E–07 1.17E–07 1.70E–06 2.34E–07 2.95E–07
10–6 1.87E–08 4.23E–08 1.23E–07 1.37E–07 2.56E–08 1.05E–08
10–7 8.02E–09 3.16E–09 1.07E–08 6.31E–09 1.28E–08 8.75E–10
10–8 1.91E–09 2.02E–10 3.07E–09 1.24E–09 8.97E–10 1.65E–09
10–9 9.30E–11 1.77E–10 1.62E–11 2.51E–11 3.92E–11 1.07E–10
10–10 1.73E–11 3.93E–12 4.06E–12 3.98E–11 1.74E–13 1.43E–11

Table 4 Discrete relative error estimations for the regularized solution at fixed values
y = π /12 and z = 1.5 from y = 0.6 to y = 1.0

0.6 0.7 0.8 0.9 1.0

10–1 9.00E–03 9.50E–03 4.92E–04 8.90E–03 1.90E–03
10–2 4.95E–04 1.50E–03 1.36E–04 1.10E–03 6.43E–04
10–3 1.04E–04 1.17E–04 2.17E–04 1.37E–05 4.97E–05
10–4 6.05E–06 8.17E–06 1.43E–05 4.80E–06 8.62E–07
10–5 4.09E–08 8.46E–07 2.01E–07 8.32E–08 6.73E–08
10–6 5.19E–08 7.07E–09 1.76E–08 5.49E–08 8.52E–09
10–7 1.40E–08 5.50E–09 3.98E–09 1.72E–09 7.54E–09
10–8 9.93E–10 9.96E–10 2.19E–10 6.04E–10 1.18E–09
10–9 1.74E–12 8.56E–11 7.30E–11 2.02E–11 5.96E–11
10–10 2.48E–12 3.30E–12 1.65E–11 1.85E–12 1.85E–12
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Now we are seeking a solution of the following problem:

⎧⎪⎨
⎪⎩

φε
xx + φε

yy + φε
zz = f ε(x, y, z), (x, y) ∈ (,π )× (, ),

φε(x, y, ) = ϕε(x, y), x ∈ (,π ),
φε
y (x, y, ) = gε(x, y), x ∈ (,π ).

()

Due to the computational cost, we only computed the value of regularized solution
φε(x, y, z) at the fixed values y∗ = π/ and z∗ = .. The discrete relative error estimation
in one dimension is defined as follows:

δε
(
y∗, z∗) = ∑p

i= |φ(xi, y∗, z∗) – φε(xi, y∗, z∗)|∑p
i= |φ(xi, y∗, z∗)| ()

with N =  being the grid size along x axis. The regularized solution is calculated by
formula () and Theorem  with parameter β = ε


 . Computational results are shown in

Tables  and  (the relative error) and in Figure  (section cut graphs). In this problem, the

Figure 3 Section cut of the exact solution and regularized solutions at y = π
12 and z = 1.5.

http://www.advancesindifferenceequations.com/content/2014/1/258


Tuan et al. Advances in Difference Equations 2014, 2014:258 Page 19 of 21
http://www.advancesindifferenceequations.com/content/2014/1/258

Figure 4 3D graphs of ϕ(x,y) and three regularized solutions ϕi,ε (x,y).

Figure 5 3D graphs of g(x,y) and three regularized solutions gi,ε (x,y).

regularized solution is very accurate just with ε = –, ε = – and ε = –, respectively.
In Figures  and , we show the D representation of the exact φ and the regularized φ

and D representation of the exact g(x, y) and the regularized gε(x, y) at ε = –, ε = –

and ε = –. In Figure , we show the D representation of the exact solution and the
regularized solution when ε = –, ε = –, ε = –.

http://www.advancesindifferenceequations.com/content/2014/1/258
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Figure 6 3D graphs of φ(x,y) and two regularized solutions φi,ε (x,y).

5 Conclusion
The study on the inverse Poisson-type problemwith inhomogeneous source in D and D
is still limited. This work is a continuous development of our previous study.
In theoretical results, we have suggested a general filter regularization method of regu-

larized solution (Section .). Subsequently, we have shownwhich sets are fundamental to
solving problem () numerically and obtained the error estimation of logarithm type. We
deduced two regularized solutions. In Section ., we have shown the regularized solution
for this case, method one. In Section ., we have shown the regularized solution for the

http://www.advancesindifferenceequations.com/content/2014/1/258
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second method. The numerical results prove the efficiency of the theoretical suggestion,
i.e., regularized solutions stably converge to the exact solution.
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16. Regińska, T, Wakulicz, A: Wavelet moment method for the Cauchy problem for the Helmholtz equation. J. Comput.

Appl. Math. 223(1), 218-229 (2009)
17. Lesnic, D, Elliott, L, Ingham, DB: The boundary element solution of the Laplace and biharmonic equations subjected

to noisy boundary data. Int. J. Numer. Methods Eng. 43, 479-492 (1998)
18. Tautenhahn, U: Optimal stable solution of Cauchy problems for elliptic equations. Z. Anal. Anwend. 15, 961-984

(1996)
19. Wei, T, Chen, YG: A regularization method for a Cauchy problem of Laplace’s equation in an annular domain. Math.

Comput. Simul. 82(11), 2129-2144 (2012)
20. Zhang, H, Wei, T: An improved non-local boundary value problem method for a Cauchy problem of the Laplace

equation. Numer. Algorithms 59(2), 249-269 (2012)
21. Wei, T, Zhou, DY: Convergence analysis for the Cauchy problem of Laplace’s equation by a regularized method of

fundamental solutions. Adv. Comput. Math. 33(4), 491-510 (2010)
22. Showalter, RE: Regularization and approximation of second order evolution equations. SIAM J. Math. Anal. 7(4),

461-472 (1976)
23. Qin, HH, Wei, T: Some filter regularization methods for a backward heat conduction problem. Appl. Math. Comput.

217(24), 10317-10327 (2011)

doi:10.1186/1687-1847-2014-258
Cite this article as: Tuan et al.: On a general filter regularization method for the 2D and 3D Poisson equation in
physical geodesy. Advances in Difference Equations 2014 2014:258.

http://www.advancesindifferenceequations.com/content/2014/1/258

	On a general ﬁlter regularization method for the 2D and 3D Poisson equation in physical geodesy
	Abstract
	MSC
	Keywords

	Introduction
	The 2D case of the Poisson equation
	Mathematical model
	A general ﬁlter regularization method

	The 3D Poisson equation
	Numerical experiment
	Example 1
	Example 2

	Conclusion
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


