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Abstract
By constructing Green’s function, we give the natural formulae of solutions for the
following nonlinear impulsive fractional differential equation with generalized
periodic boundary value conditions:

⎧⎨
⎩

cDq
t u(t) = f (t,u(t)), t ∈ J′ = J\{t1, . . . , tm}, J = [0, 1],

�u(tk) = Ik(u(tk)), �u′(tk) = Jk(u(tk)), k = 1, . . . ,m,
au(0) – bu(1) = 0, au′(0) – bu′(1) = 0,

where 1 < q < 2 is a real number, cDq
t is the standard Caputo differentiation. We

present the properties of Green’s function. Some sufficient conditions for the
existence of single or multiple positive solutions of the above nonlinear fractional
differential equation are established. Our analysis relies on a nonlinear alternative of
the Schauder and Guo-Krasnosel’skii fixed point theorem on cones. As applications,
some interesting examples are provided to illustrate the main results.
MSC: 34B10; 34B15; 34B37

Keywords: impulsive fractional differential equation; positive solutions; boundary
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1 Introduction
In recent years, the fractional order differential equation has aroused great attention due
to both the further development of fractional order calculus theory and the important
applications for the theory of fractional order calculus in the fields of science and engi-
neering such as physics, chemistry, aerodynamics, electrodynamics of complex medium,
polymer rheology, Bode’s analysis of feedback amplifiers, capacitor theory, electrical cir-
cuits, electron-analytical chemistry, biology, control theory, fitting of experimental data,
and so forth. Many papers and books on fractional calculus differential equation have ap-
peared recently. One can see [–] and the references therein.
In order to describe the dynamics of populations subject to abrupt changes as well as

other phenomena such as harvesting, diseases, and so on, some authors have used an im-
pulsive differential system to describe these kinds of phenomena since the last century.
For the basic theory on impulsive differential equations, the reader can refer to the mono-
graphs of Bainov and Simeonov [], Lakshmikantham et al. [] andBenchohra et al. [].
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In this article, we consider the following nonlinear impulsive fractional differential equa-
tion with generalized periodic boundary value conditions (for short BVPs (.)):

⎧⎪⎨
⎪⎩

cDq
t u(t) = f (t,u(t)), t ∈ J ′ = J\{t, . . . , tm}, J = [, ],

�u(tk) = Ik(u(tk)), �u′(tk) = Jk(u(tk)), k = , . . . ,m,
au() – bu() = , au′() – bu′() = ,

(.)

where a, b are real constants with a > b > . cDq
+ is the Caputo fractional derivative of

order  < q < . f : J ×R
+ →R

+ is jointly continuous. Ik , Jk ∈ C(R+,R+), R+ = [,+∞). The
impulsive point set {tk}mk= satisfies  = t < t < · · · < tm < tm+ = . u(t+k ) = limh→+ u(tk + h)
and u(t–k ) = limh→– u(tk + h) represent the right and left limits of u(t) at the impulsive
point t = tk . Let us set J = [, t], Jk = (tk , tk+],  ≤ k ≤ m. The goal of this paper is to
study the existence of single or multiple positive solutions for the impulsive BVPs (.)
by a nonlinear alternative of the Schauder and Guo-Krasnosel’skii fixed point theorem on
cones.
The rest of the paper is organized as follows. In Section , we present some useful def-

initions, lemmas and the properties of Green’s function. In Section , we give some suffi-
cient conditions for the existence of a single positive solution for BVPs (.). In Section ,
some sufficient criteria for the existence of multiple positive solutions for BVPs (.) are
obtained. Finally, some examples are provided to illustrate our main results in Section .

2 Preliminaries
For the convenience of the reader, we present here the necessary definitions from frac-
tional calculus theory. These definitions and properties can be found in the literature.

Definition . (see [, ]) The Riemann-Liouville fractional integral of order α >  of
a function f : (, +∞)→R is given by

Iα+f (t) =


�(α)

∫ t


(t – s)α–f (s)ds,

provided that the right-hand side is pointwise defined on (,+∞).

Definition . (see [, ]) The Caputo fractional derivative of order α >  of a contin-
uous function f : (, +∞) →R is given by

cDα
+f (t) =


�(n – α)

∫ t



f (n)(s)
(t – s)α–n+

ds,

where n –  < α ≤ n, provided that the right-hand side is pointwise defined on (,+∞).

Lemma . (see []) Assume that u ∈ C(, )∩L(, )with a Caputo fractional derivative
of order q >  that belongs to u ∈ Cn[, ], then

Iq+D
q
+u(t) = u(t) + c + ct + · · · + cn–tn–

for some ci ∈ R, i = , , , . . . ,n –  (n = –[–q]) and [q] denotes the integer part of the real
number q.
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Lemma . (see []) Let E be a Banach space. Assume that T : E → E is a completely
continuous operator and the set V = {u ∈ E | u = μTu,  < μ < } is bounded. Then T has a
fixed point in E.

Lemma. (Schauder fixed point theorem, see []) If U is a close bounded convex subset
of a Banach space E and T :U →U is completely continuous, then T has at least one fixed
point in U .

Lemma . (see []) Let E be a Banach space, P ⊆ E be a cone, and �, � be two
bounded open balls of E centered at the origin with  ∈ � and � ⊂ �. Suppose that
A : P ∩ (� \ �) → P is a completely continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂� and ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂�, or
(ii) ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂� and ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂�

hold. Then A has at least one fixed point in P ∩ (� \ �).

Now we present Green’s function for a system associated with BVPs (.).

Lemma . Given h ∈ C(J ,R+) and  < q < , the unique solution of

⎧⎪⎨
⎪⎩

cDq
t u(t) = h(t), t ∈ J ′,

�u(tk) = Ik(u(tk)), �u′(tk) = Jk(u(tk)), k = , . . . ,m,
au() – bu() = , au′() – bu′() = , a > b > ,

(.)

is formulated by

u(t) =
∫ 


G(t, s)h(s)ds +

m∑
i=

G(t, ti)Ji
(
u(ti)

)
+

m∑
i=

G(t, ti)Ii
(
u(ti)

)
, t ∈ J ,

where

G(t, s) =

⎧⎨
⎩

(t–s)q–
�(q) + b(–s)q–

(a–b)�(q) +
b(q–)t(–s)q–

(a–b)�(q) + b(q–)(–s)q–
(a–b)�(q) , ≤ s≤ t ≤ ,

b(–s)q–
(a–b)�(q) +

b(q–)t(–s)q–
(a–b)�(q) + b(q–)(–s)q–

(a–b)�(q) ,  ≤ t ≤ s≤ ,
(.)

G(t, ti) =

{
ab

(a–b) +
a(t–ti)
a–b , ≤ ti < t ≤ , i = , , . . . ,m,

ab
(a–b) +

b(t–ti)
a–b , ≤ t ≤ ti ≤ , i = , , . . . ,m,

(.)

G(t, ti) =

{
a

a–b , ≤ ti < t ≤ , i = , , . . . ,m,
b

a–b , ≤ t ≤ ti ≤ , i = , , . . . ,m.
(.)

Proof Let u be a general solution of (.) on each interval (tk , tk+] (k = , , . . . ,m). Ap-
plying Lemma ., Eq. (.) is translated into the following equivalent integral equation
(.):

u(t) =


�(q)

∫ t


(t – s)q–h(s)ds – ck – dkt, ∀t ∈ (tk , tk+], (.)

where t = , tm+ = . Then we have

u′(t) =


�(q – )

∫ t


(t – s)q–h(s)ds – dk , t ∈ (tk , tk+].
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In the light of the generalized periodic boundary value conditions of Eq. (.), we get

b
∫ 



( – s)q–

�(q)
h(s)ds + ac – bcm – bdm = , (.)

b
∫ 



( – s)q–

�(q – )
h(s)ds + ad – bdm = . (.)

Next, using the right impulsive condition of Eq. (.), we derive

ck– – ck = Ik
(
u(tk)

)
– Jk

(
u(tk)

)
tk , (.)

dk– – dk = Jk
(
u(tk)

)
. (.)

By (.) and (.), we have

d =
–b
a – b

∫ 



( – s)q–

�(q – )
h(s)ds –

b
a – b

m∑
i=

Ji
(
u(ti)

)
, (.)

dm =
–b
a – b

∫ 



( – s)q–

�(q – )
h(s)ds –

a
a – b

m∑
i=

Ji
(
u(ti)

)
. (.)

By (.) we have

dk = d –
k∑
i=

Ji
(
u(ti)

)

=
–b
a – b

∫ 



( – s)q–

�(q – )
h(s)ds –

b
a – b

m∑
i=

Ji
(
u(ti)

)
–

k∑
i=

Ji
(
u(ti)

)
. (.)

From (.), (.) and (.), we have

c =
–b
a – b

∫ 



( – s)q–

�(q)
h(s)ds –

b

(a – b)

∫ 



( – s)q–

�(q – )
h(s)ds

–
ab

(a – b)

m∑
i=

Ji
(
u(ti)

)
–

b
a – b

m∑
i=

(
Ii
(
u(ti)

)
– Ji

(
u(ti)

)
ti
)
. (.)

According to (.), we obtain

ck = c –
k∑
i=

(
Ii
(
u(ti)

)
– Ji

(
u(ti)

)
ti
)

=
–b
a – b

∫ 



( – s)q–

�(q)
h(s)ds –

b

(a – b)

∫ 



( – s)q–

�(q – )
h(s)ds

–
ab

(a – b)

m∑
i=

Ji
(
u(ti)

)
–

b
a – b

m∑
i=

Ii
(
u(ti)

)
–

k∑
i=

Ii
(
u(ti)

)

+
b

a – b

m∑
i=

Ji
(
u(ti)

)
ti +

k∑
i=

Ji
(
u(ti)

)
ti. (.)
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Hence, for k = , , . . . ,m, (.) and (.) imply

ck + dkt =
–b
a – b

∫ 



( – s)q–

�(q)
h(s)ds –

(ab – b)t + b

(a – b)

∫ 



( – s)q–

�(q – )
h(s)ds

–


(a – b)

m∑
i=

Ji
(
u(ti)

)[
ab + b(a – b)(t – ti)

]
–

b
a – b

m∑
i=

Ii
(
u(ti)

)

–
k∑
i=

Ii
(
u(ti)

)
–

k∑
i=

Ji
(
u(ti)

)
(t – ti). (.)

Now substituting (.) and (.) into (.), for t ∈ J = [, t], we obtain

u(t) =
∫ t



(t – s)q–

�(q)
h(s)ds +

b
a – b

∫ 



( – s)q–

�(q)
h(s)ds

+
(ab – b)t + b

(a – b)

∫ 



( – s)q–

�(q – )
h(s)ds

+


(a – b)

m∑
i=

Ji
(
u(ti)

)[
ab + b(a – b)(t – ti)

]
+

b
a – b

m∑
i=

Ii
(
u(ti)

)

=
∫ t



(t – s)q–

�(q)
h(s)ds +

b
a – b

(∫ t


+

∫ 

t

)
( – s)q–

�(q)
h(s)ds

+
(ab – b)t + b

(a – b)

(∫ t


+

∫ 

t

)
( – s)q–

�(q – )
h(s)ds

+


(a – b)

m∑
i=

Ji
(
u(ti)

)[
ab + b(a – b)(t – ti)

]
+

b
a – b

m∑
i=

Ii
(
u(ti)

)

=
∫ t



[
(t – s)q–

�(q)
+

b( – s)q–

(a – b)�(q)
+
[(ab – b)t + b]( – s)q–

(a – b)�(q – )

]
h(s)ds

+
∫ 

t

[
b( – s)q–

(a – b)�(q)
+
[(ab – b)t + b]( – s)q–

(a – b)�(q – )

]
h(s)ds

+


(a – b)

m∑
i=

Ji
(
u(ti)

)[
ab + b(a – b)(t – ti)

]
+

b
a – b

m∑
i=

Ii
(
u(ti)

)

=
∫ 


G(t, s)h(s)ds +

m∑
i=

G(t, ti)Ji
(
u(ti)

)
+

m∑
i=

G(t, ti)Ii
(
u(ti)

)
,

where G(t, s), G(t, ti) and G(t, ti) are defined by (.)-(.).
Substituting (.) into (.), for t ∈ Jk = (tk , tk+], k = , , . . . ,m, we have

u(t) =
∫ t



(t – s)q–

�(q)
h(s)ds +

b
a – b

∫ 



( – s)q–

�(q)
h(s)ds

+
(ab – b)t + b

(a – b)

∫ 



( – s)q–

�(q – )
h(s)ds

+


(a – b)

m∑
i=

Ji
(
u(ti)

)[
ab + b(a – b)(t – ti)

]
+

b
a – b

m∑
i=

Ii
(
u(ti)

)
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+
k∑
i=

Ii
(
u(ti)

)
+

k∑
i=

Ji
(
u(ti)

)
(t – ti)

=
∫ t



(t – s)q–

�(q)
h(s)ds +

b
a – b

(∫ t


+

∫ 

t

)
( – s)q–

�(q)
h(s)ds

+
(ab – b)t + b

(a – b)

(∫ t


+

∫ 

t

)
( – s)q–

�(q – )
h(s)ds

+


(a – b)

( k∑
i=

+
m∑

i=k+

)
Ji
(
u(ti)

)[
ab + b(a – b)(t – ti)

]

+
b

a – b

( k∑
i=

+
m∑

i=k+

)
Ii
(
u(ti)

)
+

k∑
i=

Ii
(
u(ti)

)
+

k∑
i=

Ji
(
u(ti)

)
(t – ti)

=
∫ t



[
(t – s)q–

�(q)
+

b( – s)q–

(a – b)�(q)
+
[(ab – b)t + b]( – s)q–

(a – b)�(q – )

]
h(s)ds

+
∫ 

t

[
b( – s)q–

(a – b)�(q)
+
[(ab – b)t + b]( – s)q–

(a – b)�(q – )

]
h(s)ds

+
k∑
i=

[
ab

(a – b)
+
b(a – b) + (a – b)

(a – b)
(t – ti)

]
Ji
(
u(ti)

)

+
m∑

i=k+

ab + b(a – b)(t – ti)
(a – b)

Ji
(
u(ti)

)
+

k∑
i=

[
b

a – b
+ 

]
Ii
(
u(ti)

)

+
m∑

i=k+

b
a – b

Ii
(
u(ti)

)

=
∫ t



[
(t – s)q–

�(q)
+

b( – s)q–

(a – b)�(q)
+
[(ab – b)t + b]( – s)q–

(a – b)�(q – )

]
h(s)ds

+
∫ 

t

[
b( – s)q–

(a – b)�(q)
+
[(ab – b)t + b]( – s)q–

(a – b)�(q – )

]
h(s)ds

+
k∑
i=

ab + a(a – b)(t – ti)
(a – b)

Ji
(
u(ti)

)
+

m∑
i=k+

ab + b(a – b)(t – ti)
(a – b)

Ji
(
u(ti)

)

+
k∑
i=

a
a – b

Ii
(
u(ti)

)
+

m∑
i=k+

b
a – b

Ii
(
u(ti)

)

=
∫ 


G(t, s)h(s)ds +

m∑
i=

G(t, ti)Ji
(
u(ti)

)
+

m∑
i=

G(t, ti)Ii
(
u(ti)

)
,

where G(t, s), G(t, ti) and G(t, ti) are defined by (.)-(.). The proof is complete. �

Lemma . Let  < b < a < +∞, then Green’s functions G(t, s), G(t, ti) and G(t, ti) de-
fined by (.), (.) and (.) are continuous and satisfy the following:

(i) G(t, s) ∈ C(J × J ,R+), G(t, ti),G(t, ti) ∈ C(J × J ,R+), and
G(t, s),G(t, ti),G(t, ti) >  for all t, ti, s ∈ (, ), where J = [, ].

(ii) The functions G(t, s), G(t, ti) and G(t, ti) have the following properties:

b
a
M(s) ≤G(t, s) ≤M(s), ∀t ∈ J , s ∈ (, ), (.)

http://www.advancesindifferenceequations.com/content/2014/1/255
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b

(a – b)
≤G(t, ti) ≤ a

(a – b)
, ∀t, ti ∈ J , (.)

b
a – b

≤G(t, ti) ≤ a
a – b

, ∀t, ti ∈ J , (.)

where

M(s) =
a[( – s)a – ( – s – q)b]( – s)q–

(a – b)�(q)
> , s ∈ [, ). (.)

Proof From the expressions of G(t, s), G(t, ti) and G(t, ti), it is obvious that G(t, s),
G(t, ti),G(t, ti) ∈ C(J × J ,R+) and G(t, s),G(t, ti),G(t, ti) >  for all t, ti, s ∈ (, ). Next,
we will prove (ii). From the definition of G(t, s), we can know that, for given s ∈ (, ),
G(t, s) is increasing with respect to t for t ∈ J . We let

g(t, s) =
(a – b)(t – s)q– + [(a – b)( – s) + [(a – b)t + b](q – )]b( – s)q–

(a – b)�(q)
, t ∈ [s, ],

g(t, s) =
[(a – b)( – s) + [(a – b)t + b](q – )]b( – s)q–

(a – b)�(q)
, t ∈ [, s].

Hence, we derive

min
t∈[,]

G(t, s) =min
{
min
t∈[s,]

g(t, s), min
t∈[,s]

g(t, s)
}
=min

{
g(s, s), g(, s)

}
= g(, s)

=
[(a – b)( – s) + b(q – )]b( – s)q–

(a – b)�(q)

=
b[( – s)a – ( – s – q)b]( – s)q–

(a – b)�(q)
�m(s), s ∈ [, ),

max
t∈[,]

G(t, s) =max
{
max
t∈[s,]

g(t, s), max
t∈[,s]

g(t, s)
}
=max

{
g(, s), g(s, s)

}
= g(, s)

=
[(a – b)( – s) + b(q – )]a( – s)q–

(a – b)�(q)

=
a[( – s)a – ( – s – q)b]( – s)q–

(a – b)�(q)
�M(s), s ∈ [, ).

Thus, we have

b
a
M(s) =m(s)≤G(t, s)≤M(s).

It is obvious that

b

(a – b)
=G(, )≤G(t, ti) ≤G(, ) =

a

(a – b)
,

b
a – b

≤G(t, ti) ≤ a
a – b

.

The proof is completed. �

3 Existence of single positive solutions
In this section, we discuss the existence of positive solutions for BVP (.).

http://www.advancesindifferenceequations.com/content/2014/1/255
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Let E = {u(t) : u(t) ∈ C(J)} denote a real Banach space with the norm ‖ · ‖ defined by
‖u‖ =maxt∈J |u(t)|. Let

PC(J) =
{
u ∈ E | u : J →R

+,u ∈ C
(
J ′
)
,u

(
t–k

)
and u

(
t+k

)
exist with u

(
t–k

)
= u(tk), ≤ k ≤m

}
,

K =
{
u ∈ PC(J) : u(t) ≥ b

a
‖u‖, t ∈ J

}
, (.)

Kr =
{
u ∈ K : ‖u‖ < r

}
, ∂Kr =

{
u ∈ K : ‖u‖ = r

}
. (.)

Obviously, PC(J) ⊂ E is a Banach space with the norm ‖u‖ =maxt∈J |u(t)|. K ⊂ PC(J) is a
positive cone.
In the following, we need the assumptions and some notations as follows:

(B)  < b < a < ,  < σ,σ < +∞, where σ =
∫ 
 M(s)ds, σ = b

a
∫ 
 M(s)ds.

(B) f ∈ C(J ×R
+,R+) and f (t, ) =  for all t ∈ J .

(B) Ik(u(tk)), Jk(u(tk)) ∈ C(R+,R+), k = , , . . . ,m.

Let

N =max

{
a

(a – b)

m∑
i=

Ji
(
u(ti)

)
,

a
a – b

m∑
i=

Ii
(
u(ti)

)}
,

f δ = lim sup
u→δ

max
t∈J

f (t,u)
u

, fδ = lim inf
u→δ

min
t∈J

f (t,u)
u

,

where δ denotes  or +∞. In addition, we introduce the following weight functions:

	(r) =max

{
f
(
t,u(t)

)
: (t,u) ∈ [, ]×

[
b

a
r, r

]}
,

φ(r) =min

{
f
(
t,u(t)

)
: (t,u) ∈ [, ]×

[
b

a
r, r

]}
.

From Lemma ., we can obtain the following lemma.

Lemma . Suppose that f (t,u) is continuous, then u ∈ PC(J) is a solution of BVPs (.) if
and only if u ∈ PC(J) is a solution of the integral equation

u(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds +

m∑
i=

G(t, ti)Ji
(
u(ti)

)
+

m∑
i=

G(t, ti)Ii
(
u(ti)

)
, ∀t ∈ J .

Define T : PC(J) → PC(J) to be the operator defined as

(Tu)(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds +

m∑
i=

G(t, ti)Ji
(
u(ti)

)
+

m∑
i=

G(t, ti)Ii
(
u(ti)

)
. (.)

Then, by Lemma ., the existence of solutions for BVPs (.) is translated into the exis-
tence of the fixed point for u = Tu, where T is given by (.). Thus, the fixed point of the
operator T coincides with the solution of problem (.).
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Lemma . Assume that (B)-(B) hold, then T : PC(J) → PC(J) and T : K → K defined
by (.) are completely continuous.

Proof Firstly, we shall show that T : PC(J) → PC(J) is completely continuous through
three steps.
Step . Let u ∈ PC(J), in view of the nonnegativity and continuity of functions G(t, s),

G(t, ti), G(t, ti), f (t,u(t)), Ik , Jk and a > b > , we conclude that T : PC(J) → PC(J) is con-
tinuous.
Step . We will prove that T maps bounded sets into bounded sets. Indeed, it is enough

to show that for any r >  there exists a positive constant L such that, for each u ∈ �r =
{u ∈ PC(J) : ‖u‖ ≤ r}, ‖Tu‖ ≤ L when |f (t,u)| ≤ l, |Jk| ≤ l, |Ik| ≤ l, where li (i = , , )
are some fixed positive constants. In fact, for each t ∈ Jk , u ∈ �r , k = , , , . . . ,m, by
Lemma ., we have

∣∣(Tu)(t)∣∣ ≤
∫ 



∣∣G(t, s)f
(
s,u(s)

)∣∣ds + m∑
i=

∣∣G(t, ti)Ji
(
u(ti)

)∣∣ + m∑
i=

∣∣G(t, ti)Ii
(
u(ti)

)∣∣

≤ σl +
aml
(a – b)

+
aml
a – b

� L,

which imply that ‖Tu‖ ≤ L.
Step . T is equicontinuous. In fact, since G(t, s), G(t, ti), G(t, ti) are continuous on

J × J , they are uniformly continuous on J × J . Thus, for fixed s ∈ J and for any ε > , there
exists a constant δ >  such that for any t, t ∈ Jk with |t – t| < δ, ≤ k ≤m, we have

∣∣G(t, s) –G(t, s)
∣∣ < ε

l
,

∣∣G(t, ti) –G(t, ti)
∣∣ < ε

ml
,

∣∣G(t, ti) –G(t, ti)
∣∣ < ε

ml
.

Then

∣∣Tu(t) – Tu(t)
∣∣

=
∣∣∣∣
∫ 



(
G(t, s) –G(t, s)

)
f
(
s,u(s)

)
ds +

m∑
i=

(
G(t, ti) –G(t, ti)

)
Ji
(
u(ti)

)

+
m∑
i=

(
G(t, ti) –G(t, ti)

)
Ii
(
u(ti)

)∣∣∣∣
≤ l

∫ 



∣∣G(t, s) –G(t, s)
∣∣ds +ml

∣∣G(t, ti) –G(t, ti)
∣∣

+ml
∣∣G(t, ti) –G(t, ti)

∣∣
<

ε


+

ε


+

ε


= ε,

which means that T(�r) is equicontinuous on all the subintervals t ∈ Jk , k = , , . . . ,m.
Thus, by means of the Arzela-Ascoli theorem, we have that T : PC(J) → PC(J) is com-
pletely continuous.
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Next, we will show that T : K → K is completely continuous. Indeed, for each t ∈ Jk ,
every u ∈ C(Jk ,R+), k = , , , . . . ,m, Lemma . implies that

(Tu)(t) ≥ b
a

∫ 


M(s)f

(
s,u(s)

)
ds +

b

(a – b)

m∑
i=

Ji
(
u(ti)

)
+

b
a – b

m∑
i=

Ii
(
u(ti)

)
.

On the other hand,

‖Tu‖ =max
t∈Jk

(Tu)(t) ≤
∫ 


M(s)f

(
s,u(s)

)
ds +

a

(a – b)

m∑
i=

Ji
(
u(ti)

)
+

a
a – b

m∑
i=

Ii
(
u(ti)

)
.

Thus,

b

a
‖Tu‖ = b

a
max
t∈Jk

(Tu)(t)

≤ b

a

∫ 


M(s)f

(
s,u(s)

)
ds +

b

(a – b)

m∑
i=

Ji
(
u(ti)

)
+

b

a(a – b)

m∑
i=

Ii
(
u(ti)

)

≤ (Tu)(t).

So (Tu)(t) ≥ b
a ‖Tu‖ for every u ∈ C(J ,R+), which implies T(K ) ⊂ K . Similar to the above

arguments, we can easily conclude that T : K → K is a completely continuous operator.
The proof is complete. �

Theorem . Assume that (B)-(B) hold, and suppose that the following assumptions
hold:

(A) There exists a constant L >  such that |f (t,u) – f (t, v)| ≤ L|u – v| for each t ∈ J and
all u, v ∈R

+.
(A) There exists a constant L >  such that |Jk(u) – Jk(v)| ≤ L|u – v| for all u, v ∈ R

+,
k = , , . . . ,m.

(A) There exists a constant L >  such that |Ik(u) – Ik(v)| ≤ L|u – v| for all u, v ∈ R
+,

k = , , . . . ,m.

If ρ = σL + maL
(a–b) + maL

a–b < , then problem (.) has a unique solution in Kρ .

Proof Let the operator T : Kρ → Kρ be defined by (.). For all u, v ∈ Kρ , from Lemma .,
we obtain

∣∣(Tu)(t) – (Tv)(t)
∣∣

≤
∫ 


G(t, s)

∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣ds
+

m∑
i=

G(t, ti)
∣∣Ji(u(ti)) – Ji

(
v(ti)

)∣∣ + m∑
i=

G(t, ti)
∣∣Ii(u(ti)) – Ii

(
v(ti)

)∣∣

≤ σL‖u – v‖ + maL
(a – b)

‖u – v‖ + maL
a – b

‖u – v‖ = ρ‖u – v‖,
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where ρ = σL + maL
(a–b) + maL

a–b < . Consequently, T is a contraction mapping. Moreover,
from Lemma ., T is completely continuous. Therefore, by the Banach contraction map
principle, the operator T has a unique fixed point in Kρ which is the unique positive solu-
tion of system (.). This completes the proof. �

Theorem . Assume that (B)-(B) hold, and suppose that the following assumptions
hold:

(A) There exists a constant N >  such that |f (t,u)| ≤N for each t ∈ J and all u ∈R
+.

(A) There exists a constant N >  such that |Jk(u)| ≤N for all u ∈R
+, k = , , . . . ,m.

(A) There exists a constant N >  such that |Ik(u)| ≤N for all u ∈R
+, k = , , . . . ,m.

Then BVPs (.) have at least one positive solution in PC(J).

Proof Let T : PC(J) → PC(J) be cone preserving completely continuous that is defined by
(.). According to Lemma ., now it remains to show that the set

� =
{
u ∈ PC(J) | u = λTu for some  < λ < 

}
(.)

is bounded.
Let u ∈ �, then u = λTu for some  < λ < . Thus, by Lemma ., for each t ∈ Jk , k =

, , . . . ,m, we have

∣∣u(t)∣∣ = |λTu|

≤
∫ 



∣∣G(t, s)f
(
s,u(s)

)∣∣ds + m∑
i=

∣∣G(t, ti)Ji
(
u(ti)

)∣∣ + m∑
i=

∣∣G(t, ti)Ii
(
u(ti)

)∣∣

≤ σN +
amN

(a – b)
+
amN

a – b
.

Thus, for every t ∈ J , we have ‖u(t)‖ ≤ σN + amN
(a–b) + amN

a–b , which indicates that the set
� is bounded. According to Lemma ., T has a fixed point u ∈ PC(J). Therefore, BVPs
(.) have at least one positive solution. The proof is complete. �

In the following, we present an existence result when the nonlinearity and the impulse
functions have sublinear growth.

Theorem . Assume that (B)-(B) hold and suppose that the following assumptions
hold:

(A) There exist a ∈ PC(J), b >  and α ∈ [, ) such that |f (t,u)| ≤ a(t) +b|u|α for each
t ∈ J and all u ∈R

+.
(A) There exist constants a,b >  and α ∈ [, ) such that |Jk(u)| ≤ a + b|u|α for all

u ∈R
+, k = , , . . . ,m.

(A) There exist constants a,b >  and α ∈ [, ) such that |Ik(u)| ≤ a + b|u|α for all
u ∈R

+, k = , , . . . ,m.
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(A) b∗ < , a∗ + b∗ ≥ , where a∗ = pσ + ama
(a–b) + ama

a–b , b∗ = bσ + amb
(a–b) + amb

a–b .

Then BVPs (.) have at least one positive solution in PC(J).

Proof Let T : PC(J) → PC(J) and � be defined by (.) and (.), respectively. Denote
p =maxt∈J |a(t)|. If u ∈ �, then for t ∈ J we have

∣∣u(t)∣∣ = |λTu|

≤
∫ 



∣∣G(t, s)
(
a(s) + b

∣∣u(s)∣∣α)∣∣ds + m∑
i=

∣∣G(t, ti)
(
a + b|u|α)∣∣

+
m∑
i=

∣∣G(t, ti)
(
a + b|u|α)∣∣

≤ p
∫ 


M(s)ds + b‖u‖α

∫ 


M(s)ds +

am(a + b‖u‖α)
(a – b)

+
am(a + b‖u‖α)

a – b

= a∗ + b∗‖u‖α ,

which imply that ‖u‖ ≤ a∗ +b∗‖u‖α . When  < ‖u‖ ≤ , then ‖u‖ ≤ a∗ +b∗. When ‖u‖ > ,
then ‖u‖ ≤ a∗

–b∗ . Taking C =max{a∗ +b∗, a∗
–b∗ , }, we have ‖u‖ ≤ C for any solution of (.).

This shows that the set � is bounded. According to Lemma ., T has at least one fixed
point in PC(J). Therefore, BVPs (.) have at least one positive solution in PC(J). The proof
is complete. �

Theorem. Assume that (B)-(B) hold.And suppose that one of the following conditions
is satisfied:

(H) f ∞ < 
σ

(particularly, f ∞ = ).
(H) There exists a constantM >  such that f (t,u) ≤ M

σ
for t ∈ J , u ∈ [M, +∞).

(H) There exists a constant N >  such that 	(N)≤ N
σ

for t ∈ J , u ∈ [ baN ,N].

Then BVPs (.) have at least one positive solution.

Proof Case . Considering f ∞ < 
σ
, there exists r >  such that f (t,u) ≤ (f ∞ + ε)u for all

u ∈ (r, +∞), t ∈ J , where ε satisfies σ(f ∞ + ε) ≤ .
Choose r >max{r, N( – σ(f ∞ + ε))–}, let u ∈ � � Kr . We can easily know that �

is a close bounded convex subset of a Banach space PC(J). Then, for t ∈ J , u ∈ �, in view
of the nonnegativity and continuity of functions G(t, s), G(t, ti), G(t, ti), f (t,u(t)), Ik , Jk
and a > b > , we conclude that Tu ∈ P, Tu ≥ , t ∈ J . By Lemma ., we can obtain the
following inequality:

b

a
‖Tu‖ = b

a
max
t∈J

(Tu)(t)

≤ b

a

[∫ 


M(s)f

(
s,u(s)

)
ds +

a

(a – b)

m∑
i=

Ji
(
u(ti)

)
+

a
a – b

m∑
i=

Ii
(
u(ti)

)]

≤ b

a

[∫ 


M(s)f

(
s,u(s)

)
ds +

a

(a – b)

m∑
i=

Ji
(
u(ti)

)
+

a
a – b

m∑
i=

Ii
(
u(ti)

)]
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≤ b
a

∫ 


M(s)f

(
s,u(s)

)
ds +

b

(a – b)

m∑
i=

Ji
(
u(ti)

)
+

b
a – b

m∑
i=

Ii
(
u(ti)

)

≤ (Tu)(t), t ∈ J .

Thus Tu ∈ K .
Next, we prove ‖Tu‖ ≤ r. Indeed, for t ∈ J , u ∈ ∂Kr , we get

‖Tu‖ =max
t∈J

(Tu)(t)

≤
∫ 


M(s)f

(
s,u(s)

)
ds +

a

(a – b)

m∑
i=

Ji
(
u(ti)

)
+

a
a – b

m∑
i=

Ii
(
u(ti)

)

≤
∫ 


M(s)

(
f ∞ + ε

)
u(s)ds +

a

(a – b)

m∑
i=

Ji
(
u(ti)

)
+

a
a – b

m∑
i=

Ii
(
u(ti)

)

≤ σ
(
f ∞ + ε

)‖u‖ + N

< σ
(
f ∞ + ε

)
r + r – σ

(
f ∞ + ε

)
r = r.

Therefore, T(�)⊂ �. From Lemma ., we have that T :� → � is completely contin-
uous. Thus BVPs (.) have at least a positive solution by Lemma ..
Case . Condition (H) holds. Let u ∈ � � Kd , where d >  satisfies d ≥  + M +

σmaxt∈J ,u∈[,M] f (t,u) + N . By the ways of Case , we can also get Tu ∈ K . Now we prove
‖Tu‖ ≤ d. In fact,

‖Tu‖ =max
t∈J

(Tu)(t)

≤
∫ 


M(s)f

(
s,u(s)

)
ds +

a

(a – b)

m∑
i=

Ji
(
u(ti)

)
+

a
a – b

m∑
i=

Ii
(
u(ti)

)

≤
∫
s∈J ,u(s)>M

M(s)f
(
s,u(s)

)
ds +

∫
s∈J ,≤u(s)≤M

M(s)f
(
s,u(s)

)
ds + N

≤
∫ 


M(s)

M
σ

ds +
∫ 


M(s)ds max

t∈J ,u∈[,M]
f (t,u) + N

=M + σ max
t∈J ,u∈[,M]

f (t,u) + N < d.

Therefore, T(�) ⊂ �. From Lemma . we have that T : � → � is completely contin-
uous. Thus BVPs (.) have at least a positive solution by Lemma ..
Case . Condition (H) holds. Let u ∈ � � KN , where N >  satisfies N ≥ N , we

get b
a ‖u‖ ≤ u(t) ≤ ‖u‖. By the ways of Case , we can also get Tu ∈ K . Now we prove

‖Tu‖ ≤N . By assumption (H), we have

f (t,u) ≤ 	(N)≤ N
σ

, ∀t ∈ J ,u ∈
[
b

a
N ,N

]
.
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In view of Lemma ., we have

‖Tu‖ =max
t∈J

(Tu)(t)

≤
∫ 


M(s)f

(
s,u(s)

)
ds +

a

(a – b)

m∑
i=

Ji
(
u(ti)

)
+

a
a – b

m∑
i=

Ii
(
u(ti)

)

≤
∫ 


M(s)

N
σ

ds + N

≤ N

+
N


=N .

Therefore, T(�) ⊂ �. From Lemma . we have T :� → � is completely continuous.
Thus BVPs (.) have at least a positive solution by Lemma .. We complete the proof of
Theorem .. �

4 Existence of multiple positive solutions
In this section, we discuss the multiplicity of positive solutions for BVPs (.) by the Guo-
Krasnoselskii fixed point theorem.

Theorem . Assume that (B)-(B) hold, and suppose that the following two conditions
are satisfied:

(H) f > 
σ

and f∞ > 
σ

(particularly, f = f∞ =∞).
(H) There exists a constant c≥ N such that 	(c) < c

σ
for t ∈ J , u ∈ [ ba c, c].

Then for BVPs (.) there exist at least two positive solutions u, u, which satisfy

 < ‖u‖ < c < ‖u‖. (.)

Proof Choose r, R with  < r < c < R. Considering f > 
σ
, there exists r >  such that

f (t,u) ≥ (f–ε)u for t ∈ J , u ∈ [, r], where ε >  satisfies (f–ε)σ ≥ . Then, foru ∈ ∂Kr ,
t ∈ J , we have

‖Tu‖ =max
t∈J

(Tu)(t)

≥ b
a

∫ 


M(s)f

(
s,u(s)

)
ds +

b

(a – b)

m∑
i=

Ji
(
u(ti)

)
+

b
a – b

m∑
i=

Ii
(
u(ti)

)

≥ b
a

∫ 


M(s)f

(
s,u(s)

)
ds≥ b

a

∫ 


M(s)(f – ε)u(s)ds

≥ b
a

∫ 


M(s)(f – ε)

b

a
‖u‖ds

= (f – ε)σ‖u‖ ≥ ‖u‖.

Therefore,

‖Tu‖ ≥ ‖u‖, u ∈ ∂Kr . (.)
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Considering f∞ > 
σ
, there exists R >  such that f (t,u) ≥ (f∞ – ε)u for t ∈ J , u ∈ [R,∞),

where ε >  satisfies (f∞ – ε)σ ≥ . Then, for u ∈ ∂KR, t ∈ J , we have

‖Tu‖ =max
t∈J

(Tu)(t)

≥ b
a

∫ 


M(s)f

(
s,u(s)

)
ds +

b

(a – b)

m∑
i=

Ji
(
u(ti)

)
+

b
a – b

m∑
i=

Ii
(
u(ti)

)

≥ b
a

∫ 


M(s)f

(
s,u(s)

)
ds≥ b

a

∫ 


M(s)(f∞ – ε)u(s)ds

≥ b
a

∫ 


M(s)(f∞ – ε)

b

a
‖u‖ds = (f∞ – ε)σ‖u‖ ≥ ‖u‖.

So

‖Tu‖ ≥ ‖u‖, u ∈ ∂KR. (.)

On the other hand, by assumption (H), we have

f (t,u) ≤ 	(c) <
c
σ

, for t ∈ J ,u ∈
[
b

a
c, c

]
.

For u ∈ ∂Kc, where c >  satisfies c≥ N . In view of Lemma ., we have

‖Tu‖ =max
t∈J

(Tu)(t)

≤
∫ 


M(s)f

(
s,u(s)

)
ds +

a

(a – b)

m∑
i=

Ji
(
u(ti)

)
+

a
a – b

m∑
i=

Ii
(
u(ti)

)

<
∫ 


M(s)

c
σ

ds + N ≤ c

+
c


= c = ‖u‖.

Therefore,

‖Tu‖ < ‖u‖, u ∈ ∂Kc. (.)

Thus, applying Lemma . to (.)-(.) yields that T has the fixed point u ∈ K ∩ (Kc \Kr)
and the fixed point u ∈ K ∩ (KR \ Kc). Thus it follows that problem (.) has at least two
positive solutions u and u. Noticing (.), we have ‖u‖ �= c and ‖u‖ �= c. Therefore (.)
holds. The proof is complete. �

Theorem . Assume that (B)-(B) hold. Further suppose that there exist three positive
numbers ξi (i = , , ) with N ≤ ξ < ξ < ξ such that one of the following conditions is
satisfied:

(H) φ(ξ) ≥ ξ
σ
, 	(ξ) ≤ ξ

σ
, φ(ξ) ≥ ξ

σ
.

(H) 	(ξ)≤ ξ
σ

, φ(ξ) > ξ
σ
, 	(ξ) ≤ ξ

σ
.

Then BVPs (.) have at least two positive solutions u, u with

ξ ≤ ‖u‖ < ξ < ‖u‖ ≤ ξ. (.)
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Proof Because the proofs are similar, we prove only case (H). Considering φ(ξ) ≥ ξ
σ
, we

have f (t,u) ≥ φ(ξ) ≥ ξ
σ

for t ∈ J , u ∈ [ ba ξ, ξ]. Then, for u ∈ ∂Kξ , t ∈ J , we have

|Tu‖ =max
t∈J

(Tu)(t)

≥ b
a

∫ 


M(s)f

(
s,u(s)

)
ds +

b

(a – b)

m∑
i=

Ji
(
u(ti)

)
+

b
a – b

m∑
i=

Ii
(
u(ti)

)

≥ b
a

∫ 


M(s)f

(
s,u(s)

)
ds≥ b

a

∫ 


M(s)

ξ

σ
ds

≥ b

a

∫ 


M(s)ds

ξ

σ
= ξ = ‖u‖.

Therefore,

‖Tu‖ ≥ ‖u‖, u ∈ ∂Kξ . (.)

Considering 	(ξ) ≤ ξ
σ

, we have f (t,u) ≤ 	(ξ) ≤ ξ
σ

for t ∈ J , u ∈ [ ba ξ, ξ]. Then, for
u ∈ ∂Kξ , t ∈ J , we derive

‖Tu‖ =max
t∈J

(Tu)(t)

≤
∫ 


M(s)f

(
s,u(s)

)
ds +

a

(a – b)

m∑
i=

Ji
(
u(ti)

)
+

a
a – b

m∑
i=

Ii
(
u(ti)

)

≤
∫ 


M(s)

ξ

σ
ds + N ≤ ξ


+
ξ


<
ξ


+
ξ


= ξ = ‖u‖.

So,

‖Tu‖ < ‖u‖, u ∈ ∂Kξ . (.)

Considering φ(ξ) ≥ ξ
σ
, we have f (t,u) ≥ φ(ξ) ≥ ξ

σ
for t ∈ J , u ∈ [ ba ξ, ξ]. Then, for

u ∈ ∂Kξ , t ∈ J , we have

‖Tu‖ =max
t∈J

(Tu)(t)

≥ b
a

∫ 


M(s)f

(
s,u(s)

)
ds +

b

(a – b)

m∑
i=

Ji
(
u(ti)

)
+

b
a – b

m∑
i=

Ii
(
u(ti)

)

≥ b
a

∫ 


M(s)f

(
s,u(s)

)
ds≥ b

a

∫ 


M(s)

ξ

σ
ds ≥ b

a

∫ 


M(s)ds

ξ

σ
= ξ = ‖u‖.

Therefore,

‖Tu‖ ≥ ‖u‖, u ∈ ∂Kξ . (.)

Thus, applying Lemma . to (.)-(.) yields that T has the fixed point u ∈ K ∩ (K ξ \
Kξ ) and the fixed point u ∈ K∩(K ξ \Kξ ). Thus it follows that BVPs (.) have at least two
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positive solutions u and u. Noticing (.), we have ‖u‖ �= ξ and ‖u‖ �= ξ. Therefore
(.) holds. The proof is complete. �

Similar to the above proof, we can obtain the general theorem.

Theorem . Assume that (B)-(B) hold. Suppose that there exist n +  positive numbers
ξi (i = , , . . . ,n + ) with N ≤ ξ < ξ < · · · < ξn+ such that one of the following conditions
is satisfied:

(H) φ(ξj–) >
ξj–
σ

, 	(ξj) <
ξj
σ

, j = , , . . . , [ n+ ];
(H) 	(ξj–) <

ξj–
σ

, φ(ξj) >
ξj
σ
, j = , , . . . , [ n+ ].

Then BVPs (.) have at least n positive solutions ui (i = , , . . . ,n) with

ξi < ‖ui‖ < ξi+. (.)

5 Illustrative examples
Example . Consider the BVPs of impulsive nonlinear fractional order differential equa-
tions:

⎧⎪⎨
⎪⎩

cDq
t u(t) = f (t,u(t)), t ∈ J , t �= 

 ,
�u(  ) = I(u(  )), �u′(  ) = J(u(  )),
au() – bu() = , au′() – bu′() = .

(.)

If we let q = 
 , a = , b = , f (t,u) = �(  ) cos t

(t+
√
)

u(t)
+u(t) , (t,u) ∈ [, ] × [,∞), I(u) = u

+u , J(u) =
u

+u , u ∈ [,∞).
For u, v ∈ [,∞), t ∈ [, ],

∣∣f (t,u) – f (t, v)
∣∣ ≤

∣∣∣∣ �(  ) cos t
(t + 

√
)

∣∣∣∣
∣∣∣∣ u – v
( + u)( + v)

∣∣∣∣ ≤ �(  )


|u – v|,
∣∣I(u) – I(v)

∣∣ ≤ 
( + u)( + v)

|u – v| ≤ 

|u – v|,

∣∣J(u) – J(v)
∣∣ ≤ 

( + u)( + v)
|u – v| ≤ 


|u – v|.

Clearly, L =
�(  )
 , L = 

 , L =

 . Therefore,

ρ = σL +
maL
(a – b)

+
maL
a – b

=


�(  )
�(  )


+


+


=



< .

Thus, all the assumptions of Theorem . are satisfied. Hence, BVPs (.) have a unique
solution on [, ].
In addition, in this case, let N =

�(  )
 , N =N = . It is clear that |f (t,u)| ≤N, |Jk(u)| ≤

N, |Ik(u)| ≤N. Thus, BVPs (.) have at least one solution on [, ] by Theorem ..
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Example . Consider the BVPs of impulsive nonlinear fractional order differential equa-
tions:

⎧⎪⎨
⎪⎩

cDq
t u(t)) = f (t,u(t), t ∈ J , t �= 

 ,
�u(  ) = I(u(  )), �u′(  ) = J(u(  )),
au() – bu() = , au′() – bu′() = .

(.)

Let a = , b = , q = 
 , f (t,u) = | u(t) lnu(t)(+t) |, I(u) = J(u) = 

(+u) . It is easy to see that (H)
holds. By a simple computation, we have

f = lim inf
u→

min
t∈[,]

∣∣∣∣ u lnu
( + t)u

∣∣∣∣ = lim inf
u→

| lnu|


= +∞,

f∞ = lim inf
u→∞ min

t∈[,]

∣∣∣∣ u lnu
( + t)u

∣∣∣∣ = lim inf
u→∞

| lnu|


= +∞.

Take c = , it is clear that N < 
 < c. For 

 ≤ u ≤ , f (t,u) = –u lnu
(+t) , we can obtain that

f (t,u) arrives at maximum at u = 
e ∈ [  , ], t = . Thus, we have

	() = max
t∈[,],u∈[  ,]

f (t,u) = f
(
,


e

)
=


e

≈ . <

σ

=
√

π


≈ ..

Thus it follows that BVPs (.) have at least two positive solutions u, u with  < ‖u‖ <
 < ‖u‖ by Theorem ..
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