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1 Introduction
Neural networks have found important applications in various areas such as combinato-
rial optimization, signal processing, pattern recognition, and solving nonlinear algebraic
equations. We notice that a lot of practical systems have the phenomenon of time de-
lay, and many scholars have paid much attention to time delay systems [–]. As is well
known, stochastic functional differential systems which include stochastic delay differen-
tial systems have been widely used since stochastic modeling plays an important role in
many branches of science and engineering []. Consequently, the stability analysis of these
systems has received a lot of attention [–].
In some applications, besides delay and stochastic effects, impulsive effects are also likely

to exist [, ]; they could stabilize or destabilize the systems. Therefore, it is of interest
to take delay effects, stochastic effects, and impulsive effects into account when studying
the dynamical behavior of neural networks.
In [], Guo et al. studied the exponential stability for a stochastic neutral cellular neu-

ral network without impulses and obtained new criteria for exponential stability in mean
square of the considered neutral cellular neural network by using fixed point theory. To
the best of the authors’ knowledge there are only a few papers where fixed point theory
is used to discuss the stability of stochastic neural networks. In this paper, we will study
the exponential stability for a stochastic neural network with impulses by the contraction
mapping theorem and Krasnoselskii’s fixed point theorem.

2 Some preliminaries
Throughout this paper, unless otherwise specified, we let (�,F ,P) be a complete probabil-
ity space with a filtration {Ft}t≥ satisfying the usual conditions, i.e. it is right continuous
and F contains all P-null sets,Cb

F ([–τ , ];Rn) be the family of all bounded, F-measurable
functions. Let Rn denote the n-dimensional real space equipped with Euclidean norm | · |.
B = [bij(t)]n×n denote a matrix, its norm is denoted by ‖B(t)‖ =∑n

i,j= |bi,j(t)|.
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In this paper, by using fixed point theory, we discuss the stability of the impulsive
stochastic delayed neural networks:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx(t) = [–(A +�A(t))x(t) + f (t,x(t),x(t – τ))]dt
+ σ (t,x(t),x(t – τ))dω(t), t �= tk ,

�x(tk) = Ik(x(tk)), t = tk ,k ∈ Z+,
x(t) =ψ(t), –τ ≤ t ≤ ,

(.)

where τ = max{τ, τ}, τ and τ are positive constant. t → ψ(t) ∈ C([–τ , ],LpF (�,Rn))
with the norm defined by ‖ψ‖ = sup–τ≤θ≤ |ψ(θ )|, x(t) = (x(t),x(t), . . . ,xn(t))T is the
state vector, A = diag(a,a, . . . ,an) >  (i.e. ai > , i = , , . . . ,n) is the connection weight
constant matrix with appropriate dimensions, and �A(t) represents the time-varying pa-
rameter which is uncertain with |�A(t)| bounded.
Here f (t,u,u) ∈ C(R×Rn ×Rn) is the neuron activation function with f (t, , ) =  and

ω(t) = (ω(t),ω(t), . . . ,ωm(t))T ∈ Rm is an m-dimensional Brownian motion defined on
(�,F ,P). The stochastic disturbance term, σ (t,u,u) ∈ C(R× Rn × Rn), can be viewed as
stochastic perturbations on the neuron states and delayed neuron states with σ (t, , ) = .
�x(tk) = Ik(x(tk)) = x(t+k ) – x(t–k ) is the impulse at moment tk , and t < t < · · · is strictly
increasing sequence such that limk→∞ tk = +∞, x(t+k ) and x(t–k ) stand for the right-hand
and left-hand limit of x(t) at t = tk , respectively. Ik(x(tk)) shows the abrupt change of x(t)
at the impulsive moment tk and Ik(·) ∈ C(LpFt (�;Rn),LpFt (�;Rn)).
The local Lipschitz condition and the linear growth condition on the function f (t, ·, ·)

and σ (t, ·, ·) guarantee the existence and uniqueness of a global solution for system (.);
we refer to [] for detailed information. Clearly, system (.) admits a trivial solution
x(t; , )≡ .

Definition . System (.) is said to be exponentially stable in mean square for all ad-
missible uncertainties if there exists a solution x of (.) and there exist a pair of positive
constants β and μ with

E
∣∣x(t)∣∣ ≤ μE‖ψ‖e–βt , t ≥ .

In order to prove the exponentially stability in mean square of system (.), we need the
following lemma.

Lemma . (Krasnoselskii) Suppose that � is Banach space and X is a bounded, convex,
and closed subset of �. Let U ,S : X → � satisfy the following conditions:
() Ux + Sy ∈ X for any x, y ∈ X ;
() U is contraction mapping;
() S is continuous and compact.
Then U + S has a fixed point in X.

Lemma . (Cp inequality) If X ∈ Lp(�,Rn), then

E

∣∣∣∣∣
n∑
i=

Xi

∣∣∣∣∣
p

≤
n∑
i=

E|Xi|p, for  < p≤ 
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and

E

∣∣∣∣∣
n∑
i=

Xi

∣∣∣∣∣
p

≤ np–
n∑
i=

E|Xi|p, for p > .

3 Main results
Let (ß,‖ · ‖ß) be the Banach space of all F-adapted processes ϕ(t,ω) : [–τ ,∞)× � → Rn

such that ϕ : [–τ ,∞) → LpF (�,Rn) is continuous on t �= tk , limt→t–k ϕ(t, ·) and limt→t+k ϕ(t, ·)
exist, and limt→t–k ϕ(t, ·) = ϕ(tk , ·), k = , , . . . ; we have

‖ϕ‖ß := sup
t≥

E
∣∣ϕ(t)∣∣ , for ϕ ∈ ß.

Let 
 be the set of functions ϕ ∈ ß such that ϕ(s) = ψ(s) on s ∈ [–τ , ] and eαtE|ϕ(t,
ω)| →  as t → ∞. It is clear that 
 is a bounded, convex, and closed subset of ß.
To obtain our results, we suppose the following conditions are satisfied:

(H) there exist μ,μ >  such that |f (t,u, v) – f (t,u, v)| ≤ μ|u – u| +μ|v – v|;
(H) there exist ν,ν >  such that |σ (t,u, v) – σ (t,u, v)| ≤ ν|u – u| + ν|v – v| ;
(H) there exists an α >  such that α <min{a,a, . . . ,an};
(H) for k = , , , . . . , themapping Ik(·) satisfies Ik()≡  and is globally Lipschitz function

with Lipschitz constants pk ;
(H) there exists a constant ρ such that infk=,,...{tk – tk–} ≥ ρ ;
(H) there exists constant p such that pk ≤ pρ , for i ∈ N and k = , , . . . .

The solution x(t) := x(t; ,ψ) of system (.) is, for the time t, a piecewise continuous
vector-valued function with the first kind discontinuity at the points tk (k = , , . . .), where
it is left continuous, i.e.,

x
(
t–k

)
= x(tk), x

(
t+k

)
= x(tk) + Ik

(
x(tk)

)
, k = , , . . . .

Theorem . Assume (H)-(H) hold and the following condition is satisfied:

(P) 
{

n

λmin(A)
[(∥∥�A(t)

∥∥
 +μ +μ

) + ν + ν
]
+ np

(


λmin(A)
+ ρ

)}
< ,

then system (.) is exponentially stable in mean square for all admissible uncertainties,
that is, eαtE|x(t)| → , as t → ∞.

Proof System (.) is equivalent to

x(t) = exp(–At)ψ() +
∫ t


expA(s – t)

[
–�A(s)x(s) + f

(
s,x(s),x(s – τ)

)]
ds

+
∫ t


expA(s – t)σ

(
s,x(s),x(s – τ)

)
dω(s)

+
∑
<tk<t

exp
[
–A(t – tk)

]
Ik

(
x(tk)

)
. (.)
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Let

J(t) := exp(–At)ψ(),

J(t) :=
∫ t


expA(s – t)

[
–�A(s)x(s) + f

(
s,x(s),x(s – τ)

)]
ds,

J :=
∫ t


expA(s – t)σ

(
s,x(s),x(s – τ)

)
dω(s),

J(t) :=
∑
<tk<t

exp
[
–A(t – tk)

]
Ik

(
x(tk)

)
.

Define an operator by (Qx)(t) = ψ(t) for t ∈ [–τ , ], and for t ≥ , we define (Qx)(t) :=
J(t) + J(t) + J(t) + J(t) (i.e. the right-hand side of (.)). From the definition of
, we have
E|ϕ(t)| < ∞, for all t ≥ , and ϕ ∈ 
.
Next, we prove that Q
 ⊆ 
. It is clear that (Qx)(t) is continuous on [–τ , ]. For a fixed

time t > , it is easy to check that J(t), J(t), J(t) are continuous in mean square on the
fixed time t �= tk , for k = , , . . . . In the following, we check the mean square continuity of
J(t) on the fixed time t �= tk (k = , , . . .).
Let x ∈ 
 and r ∈ R such that |r| sufficiently small; we obtain

E
∣∣J(t + r) – J(t)

∣∣
 = E

∣∣∣∣
∫ t+r


expA(s – t – r)σ

(
s,x(s),x(s – τ)

)
dω(s)

–
∫ t


expA(s – t)σ

(
s,x(s),x(s – τ)

)
dω(s)

∣∣∣∣




= E
∣∣∣∣
∫ t



[
expA(s – t – r) – expA(s – t)

]
σ
(
s,x(s),x(s – τ)

)
dω(s)

+
∫ t+r

t
expA(s – t – r)σ

(
s,x(s),x(s – τ)

)
dω(s)

∣∣∣∣




≤ 
(∫ t



∥∥[
expA(s – t – r) – expA(s – t)

]∥∥


× E
∣∣σ (

s,x(s),x(s – τ)
)∣∣

 ds

+
∫ t+r

t

∥∥expA(s – t – r)
∥∥
E

∣∣σ (
s,x(s),x(s – τ)

)∣∣
 ds

)

→  as r → .

Hence, (Qx)(t) is continuous in mean square on the fixed time t �= tk , for k = , , . . . . On
the other hand, as t = tk , it is easy to check that J(t), J(t), J(t) are continuous in mean
square on the fixed time t = tk .
Let r <  be small enough; we have

E
∣∣J(tk + r) – J(tk)

∣∣
 = E

∣∣∣∣
∑

<tm<tk+r

exp
[
–A(tk + r – tm)

]
Im

(
x(tm)

)

–
∑

<tm<tk

exp
[
–A(tk – tm)

]
Im

(
x(tm)

)∣∣∣∣
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≤ E
∣∣∣∣[exp(–A(tk + r)

)
– exp(–Atk)

]

×
∑

<tm<tk

exp(Atm)Im
(
x(tm)

)∣∣∣∣



,

which implies that limr→– E|J(tk + r) – J(tk)| = .
Let r >  be small enough, we have

E
∣∣J(tk + r) – J(tk)

∣∣
 = E

∣∣∣∣[exp(–A(tk + r)
)
– exp(–Atk)

]

×
∑

<tm<tk

exp(Atm)Im
(
x(tm)

)
+ exp(–Ar)Ik

(
x(tk)

)∣∣∣∣



,

which implies that limr→+ E|J(tk + r) – J(tk)| = E|Ik(x(tk))| .
Hence, we see that (Qx)(t) : [–τ ,∞) → LPF (�,Rn) is continuous in mean square on t �=

tk , and for t = tk , limt→t+k (Qx)(t) and limt→t–k (Qx)(t) exist. Furthermore, we also obtain
limt→t–k (Qx)(t) = (Qx)(tk) �= limt→t+k (Qx)(t).
It follows from (.) that

eαtE
∣∣(Qx)(t)

∣∣
 ≤ eαt

∑
i=

E
∣∣Ji(t)∣∣ .

By (H), it is easy to see eαtE|J(t)| → , as t → ∞. Now, we prove eαtE|J(t)| → ,
eαtE|J(t)| → , and eαtE|J(t)| → , as t → ∞.
Note, for any ε > , there exists t∗ >  such that s ≥ t∗ – τ implies that eαsE|x(s)| < ε.

Hence, we have from (H), (H)

eαtE
∣∣J(t)∣∣ = eαtE

∣∣∣∣
∫ t


expA(s – t)

[
–�A(s)x(s) + f

(
s,x(s),x(s – τ)

)]
ds

∣∣∣∣




≤ eαtE
∫ t



∥∥expA(s – t)
∥∥


∣∣[–�A(s)x(s) + f
(
s,x(s),x(s – τ)

)]∣∣
 ds

= eαtE
∫ t∗



∥∥expA(s – t)
∥∥


∣∣[–�A(s)x(s) + f
(
s,x(s),x(s – τ)

)]∣∣
 ds

+ eαtE
∫ t

t∗

∥∥expA(s – t)
∥∥


∣∣[–�A(s)x(s) + f
(
s,x(s),x(s – τ)

)]∣∣
 ds

≤ eαtE
∫ t∗



∥∥expA(s – t)
∥∥


[∥∥�A(s)
∥∥


∣∣x(s)∣∣
+μ

∣∣x(s)∣∣ +μ
∣∣x(s – τ)

∣∣


] ds
+ eαtE

∫ t

t∗

∥∥expA(s – t)
∥∥


[∥∥�A(s)
∥∥


∣∣x(s)∣∣
+μ

∣∣x(s)∣∣ +μ
∣∣x(s – τ)

∣∣


] ds
≤ eα–λmin(A)tn

(∥∥�A(s)
∥∥
 +μ +μ

)

× E
(

sup
–τ≤s≤t∗

∣∣x(s)∣∣
)∫ t∗


eλmin(A)s ds
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+ eαtn
∫ t

t∗

[(∥∥�A(s)
∥∥
 +μ

)e–αseαsE
(∣∣x(s)∣∣)

+μ
e

–α(s–τ)eα(s–τ)E
∣∣x(s – τ)

∣∣


]
eλmin(A)(s–t) ds,

where ‖ expA(s– t)‖ =∑n
i= eai(s–t), λmin(A) represents theminimal eigenvalue ofA. Thus,

we have eαtE|J(t)| →  as t → ∞.
From (H) and (H), we have

eαtE
∣∣J(t)∣∣ = eαtE

∣∣∣∣
∫ t


expA(s – t)σ

(
s,x(s),x(s – τ)

)
dω(s)

∣∣∣∣




≤ eαtE
∫ t



∥∥expA(s – t)
∥∥


∣∣σ (
s,x(s),x(s – τ)

)∣∣
 ds

= eαtE
∫ t∗



∥∥expA(s – t)
∥∥


∣∣σ (
s,x(s),x(s – τ)

)∣∣
 ds

+ eαtE
∫ t

t∗

∥∥expA(s – t)
∥∥


∣∣σ (
s,x(s),x(s – τ)

)∣∣
 ds

≤ eα–λmin(A)tn(ν + ν)E
(

sup
–τ≤s≤t∗

∣∣x(s)∣∣
)∫ t∗


eλmin(A)s ds

+ eαtn(ν + ν)
∫ t

t∗
e–αseαsE

(
sup

–τ≤s≤t

∣∣x(s)∣∣
)
eλmin(A)(s–t) ds

→  as t → ∞.

As x(t) ∈ 
, we have limt→∞ eαtE|x(t)| → . Then, for any ε > , there exists a non-
impulsive point T >  such that s ≥ T implies eαtE|x(t)| < ε. It then follows from the
conditions (H)-(H) that

eαtE
∣∣J(t)∣∣ = eαtE

∣∣∣∣
∑
<tk<t

exp
[
–A(t – tk)

]
Ik

(
x(tk)

)∣∣∣∣




≤ eαtE
∣∣∣∣
∑
<tk<t

∥∥expA(tk – t)
∥∥


∣∣Ik(x(tk))∣∣
∣∣∣∣


≤ eαtE
∣∣∣∣
∑
<tk<t

neλmin(A)(tk–t)pk
∣∣x(tk)∣∣

∣∣∣∣


≤ eαtE
∣∣∣∣

∑
<tk<T

neλmin(A)(tk–t)pk
∣∣x(tk)∣∣

+
∑

T<tk<t

neλmin(A)(tk–t)pρ
∣∣x(tk)∣∣

∣∣∣∣


≤ eαt
[
E
∣∣∣∣

∑
<tk<T

neλmin(A)(tk–t)pk
∣∣x(tk)∣∣

∣∣∣∣


+ E
∣∣∣∣

∑
T<tk<t

neλmin(A)(tk–t)pρ
∣∣x(tk)∣∣

∣∣∣∣
]

≤ e(α–λmin(A))tnpkE
∣∣∣∣

∑
<tk<T

eλmin(A)tk
∣∣x(tk)∣∣

∣∣∣∣
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+ eαtE
∣∣∣∣

∑
T<tr<tk

neλmin(A)(tr–t)p(tr+ – tr)
∣∣x(tk)∣∣

+ neλmin(A)(tk–t)pρ
∣∣x(tk)∣∣

∣∣∣∣


≤ e(α–λmin(A))tnpkE
∣∣∣∣

∑
<tk<T

eλmin(A)tk
∣∣x(tk)∣∣

∣∣∣∣


+ eαtE
∣∣∣∣
∫ t

T
neλmin(A)(s–t)p

∣∣x(s)∣∣ ds + npρ
∣∣x(t)∣∣

∣∣∣∣


≤ e(α–λmin(A))tnpkE
∣∣∣∣

∑
<tk<T

eλmin(A)tk
∣∣x(tk)∣∣

∣∣∣∣


+ eαtE
∣∣∣∣
∫ t

T
neλmin(A)(s–t)p

∣∣x(s)∣∣ ds
∣∣∣∣


+ eαtE
∣∣npρ∣∣x(t)∣∣

∣∣

≤ e(α–λmin(A))tnpkE
∣∣∣∣

∑
<tk<T

eλmin(A)tk
∣∣x(tk)∣∣

∣∣∣∣


+ npe(α–λmin(A))t
∫ t

T
e(λmin(A)–α)seαsE

∣∣x(s)∣∣ ds + npρε

≤ e(α–λmin(A))tnpkE
∣∣∣∣

∑
<tk<T

eλmin(A)tk
∣∣x(tk)∣∣

∣∣∣∣


+ npe(α–λmin(A))tε

∫ t

T
e(λmin(A)–α)s ds + npρε

≤ e(α–λmin(A))tnpkE
∣∣∣∣

∑
<tk<T

eλmin(A)tk
∣∣x(tk)∣∣

∣∣∣∣


+
npε

λmin(A) – α
+ npρε

→  as t → ∞.

Thus we conclude that Q :
 → 
.
Finally, we prove that Q is a contraction mapping. For any ϕ,φ ∈ 
, we obtain

sup
t≥–τ

E
∣∣(Qϕ)(t) – (Qφ)(t)

∣∣


= sup
t≥–τ

{
E
∣∣∣∣
∫ t


expA(s – t)

[
–�A(s)

(
ϕ(s) – φ(s)

)

+
(
f
(
s,ϕ(s),ϕ(s – τ)

)
– f

(
s,φ(s),φ(s – τ)

))]
ds

+
∫ t


expA(s – t)

[
σ
(
s,ϕ(s),ϕ(s – τ)

)
– σ

(
s,φ(s),φ(s – τ)

)]
dω(s)

+
∑
<tk<t

e–A(t–tk )
[
Ik

(
ϕ(tk)

)
– Ik

(
φ(tk)

)]∣∣∣∣




}

≤  sup
t≥–τ

{
E

∫ t



∥∥expA(s – t)
∥∥


[∥∥�A(s)
∥∥


∣∣ϕ(s) – φ(s)
∣∣


+μ
∣∣ϕ(s) – φ(s)

∣∣
 +μ

∣∣ϕ(s – τ) – φ(s – τ)
∣∣


] ds
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+ E
∫ t



∥∥expA(s – t)
∥∥


[
ν

∣∣ϕ(s) – φ(s)
∣∣
 + ν

∣∣ϕ(s – τ) – φ(s – τ)
∣∣


]
ds

+ E
∣∣∣∣
∑
<tk<t

∥∥expA(tk – t)
∥∥
pk

∣∣ϕ(tk) – φ(tk)
∣∣


∣∣∣∣
}

≤ 
{

n

λmin(A)
[(∥∥�A(t)

∥∥
 +μ +μ

) + ν + ν
]

+ npE
∣∣∣∣
∑
<tk<t

eλmin(A)(tk–t)ρ

∣∣∣∣




}
sup
t≥–τ

E
∣∣ϕ(s) – φ(s)

∣∣


≤ 
{

n

λmin(A)
[(∥∥�A(t)

∥∥
 +μ +μ

) + ν + ν
]

+ npE
∣∣∣∣

∑
<tr<tk

eλmin(A)(tr–t)(tr+ – tr)

+ eλmin(A)(tk–t)ρ

∣∣∣∣




}
sup
t≥–τ

E
∣∣ϕ(s) – φ(s)

∣∣


≤ 
{

n

λmin(A)
[(∥∥�A(t)

∥∥
 +μ +μ

) + ν + ν
]

+ np
(


λmin(A)

+ ρ

)}
sup
t≥–τ

E
∣∣ϕ(s) – φ(s)

∣∣
 .

From the condition (P), we find that Q is a contraction mapping. Hence, by the contrac-
tion mapping principle, we see that Q has a unique fixed point x(t), which is a solution of
(.) with x(t) =ψ(t) as t ∈ [–τ , ] and eαtE|x(t)| →  as t → ∞. �

The second result is established using Krasnoselskii’s fixed point theorem.

Theorem . Assume (H)-(H) hold and the following condition is satisfied:

(P)
n

λmin(A)
(ν + ν) < ,

then system (.) is exponentially stable in mean square for all admissible uncertainties,
that is, eαtE|x(t)| → , as t → ∞.

Proof For ∀x ∈ X, define the operators U : X → X and S : X → X, respectively, by

(Ux)(t) = exp(–At)ψ() +
∫ t


expA(s – t)σ

(
s,x(s),x(s – τ)

)
dω(s)

and

(Sx)(t) =
∫ t


expA(s – t)

[
–�A(s)x(s) + f

(
s,x(s),x(s – τ)

)]
ds

+
∑
<tk<t

exp
[
–A(t – tk)

]
Ik

(
x(tk)

)
.

By the proof of Theorem ., we can verify that Sx+Uy ∈ 
 when x, y ∈ 
 and S is mean
square continuous.
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Next, we show that U is a contraction mapping. For x, y ∈ 
, we have

sup
t≥–τ

∣∣U(x)(t) –U(y)(t)
∣∣
 = sup

t≥–τ

E
∣∣∣∣
∫ t


expA(s – t)

[
σ
(
s,x(s),x(s – τ)

)

– σ
(
s, y(s), y(s – τ)

)]
dω(s)

∣∣∣∣




≤ sup
t≥–τ

E
∫ t



∥∥expA(s – t)
∥∥


[
ν

∣∣x(s) – y(s)
∣∣


+ ν
∣∣x(s – τ) – y(s – τ)

∣∣


]
ds

≤ n

λmin(A)
sup
t≥–τ

E
∣∣x(t) – y(t)

∣∣
 .

From the condition (P), we find that U is a contraction mapping.
Finally, we prove that S is compact.
Let D ⊂ 
 be a bounded set:|x| ≤M, ∀x ∈D, we have

∣∣(Sx)(t)∣∣ =
∣∣∣∣
∫ t


expA(s – t)

[
–�A(s)x(s) + f

(
s,x(s),x(s – τ)

)]
ds

+
∑
<tk<t

exp
[
–A(t – tk)

]
Ik

(
x(tk)

)∣∣∣∣


≤
∫ t



∥∥expA(s – t)
∥∥


[∥∥�A(s)
∥∥


∣∣x(s)∣∣ +μ
∣∣x(s)∣∣ +μ

∣∣x(s – τ)
∣∣


]
ds

+
∑
<tk<t

expA(tk – t)pρ
∣∣x(tk)∣∣

≤ (∥∥�A(s)
∥∥
 +μ +μ

)
M

∫ t


eλminA(s–t) ds + npρM

≤ 
λmin(A)

(∥∥�A(s)
∥∥
 +μ +μ + npρ

)
M.

Therefore, we can conclude that Sx is uniformly bounded.
Further, let x ∈D and t, t ∈ [tk–, tk], with t < t; we have

∣∣(Sx)(t) – (Sx)(t)
∣∣
 =

∣∣∣∣
∫ t


expA(s – t)

[
–�A(s)x(s) + f

(
s,x(s),x(s – τ)

)]
ds

+
∑

<tm<t

exp
[
–A(t – tm)

]
Im

(
x(tm)

)

–
∫ t


expA(s – t)

[
–�A(s)x(s) + f

(
s,x(s),x(s – τ)

)]
ds

–
∑

<tm<t

exp
[
–A(t – tm)

]
Im

(
x(tm)

)∣∣∣∣


=
∣∣∣∣
∫ t



[
expA(s – t) – expA(s – t)

]

× [
–�A(s)x(s) + f

(
s,x(s),x(s – τ)

)]
ds
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+
∫ t

t
expA(s – t)

[
–�A(s)x(s) + f

(
s,x(s),x(s – τ)

)]
ds

+
∑

<tm<t

[
expA(tm – t) – expA(tm – t)

]
Im

(
x(tm)

)∣∣∣∣


→  as t → t.

Thus, the equicontinuity of S is obtained. According to the PC-type Ascoli-Arzela lemma
[, Lemma .], S(D) is relatively compact in 
. Therefore S is compact. By Lemma .,
U + S has a fixed point x in 
 and we note x(s) = (U + S)(s) on [–τ , ] and eαtE|x(t)| → 
as t → ∞. This completes the proof. �
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