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Abstract
In this paper, global synchronization problem for a class of Markovian switching
complex networks (MSCNs) with mixed time-varying delays under the delay-partition
approach is investigated. A novel delay-partition approach is developed to derive
sufficient conditions for a new class of MSCNs with mixed time-varying delays. The
proposed delay-partition approach can give global synchronization results lower
conservatism. Two numerical examples are provided to illustrate the effectiveness of
the theoretical results.
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1 Introduction
In recent years, complex networks have received a lot of research attention since the pio-
neering work ofWatts and Strogatz []. Themain reason is two-fold: the first reason is that
complex networks can be found in almost everywhere in real world, such as the Internet,
WWW, the World Trade Web, genetic networks, and social networks; the second reason
is that the dynamical behaviors of complex networks have found numerous applications in
various fields such as physics, technology, and so on [–]. Complex networks are a set of
inter-connected nodes, in which each node is a basic unit with specific contents or dynam-
ics. Among all of dynamical behaviors of complex networks, synchronization is one of the
most interesting topics and has been extensively investigated [, ]. Synchronization phe-
nomena are very common and important in real world networks, such as synchronization
phenomena on the Internet, synchronization transfer of digital or analog signals in com-
munication networks, and synchronization related to biological neural networks. Hence,
synchronization analysis in complex networks is important both in theory and application
[, ].
On the one hand, the actual systems may experience abrupt changes in their structure

and parameters caused by phenomena such as component failures or repairs, changing
subsystem interconnections, and abrupt environmental disturbances. In general, these
systems can be modeled by using Markov chains [–]. For example, in [], mean-
square exponential synchronization ofMarkovian switching stochastic complex networks
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with time-varying delays by pinning control was proposed and in [], synchronization of
Markovian jumping stochastic complex networks with distributed time delays and prob-
abilistic interval discrete time-varying delays was considered. Besides these, the other
strategies, which usually include data-driven approaches, support vector machine and
multivariate statistical methods, and can be used to process these systems [–].
On the other hand, because of the limited speed of signals traveling through the links

and the frequently delayed couplings in complex networks, gene regulatory networks,
static networks and multi-agent networks, time delays often occur [–]. Therefore,
recently, synchronization problems in neural networks with mixed-time delays have been
extensively studied [–]. Although there is some literature [–] to investigate syn-
chronization issues of complex networks, to the best of our knowledge, until now, global
synchronization of MSCNs via using the delay-partition approach is still rarely paid at-
tention to.
Inspired by the above discussions and idea of [, ], we utilize the delay-partition

approach to effectively solve mixed time-varying delays of MSCNs such that less conser-
vative conditions of global synchronization can be achieved in this paper. Firstly, a new
model for a class of MSCNs with mixed time-varying delays is proposed. Secondly, with
using a novel Lyapunov-Krasovskii stability functional, stochastic analysis techniques, and
a delay-partition approach, some sufficient synchronization criteria are derived, respec-
tively. Finally, two numerical examples are used to demonstrate the usefulness of derived
results. The main contributions of this paper are as follows:
() MSCNs model aspect. A new model for a class of MSCNs with mixed time-varying

delays is proposed.
() A novel delay-partition approach is developed to solve global synchronization for a

new class of MSCNs with mixed time-varying delays. This causes our results to
have lower conservatism.

Notations: Throughout this paper, the following mathematical notations will be used.
Rn denotes the n-dimensional Euclidean space and Rn×m is the set of real matrices. The
superscript T denotes the matrix transposition. In ∈ Rn×n means an n-dimensional iden-
tity matrix. X ≥ Y > , where X,Y ∈ Rn×n, means that the matrix X – Y is real positive
semi-definite. For symmetric block matrices or long matrix expressions, an asterisk � is
used to represent a term that is induced by symmetry. diag{· · · } stands for a block-diagonal
matrix. TheKronecker product ofmatricesA ∈ Rm×n andB ∈ RM×N is amatrix inRmM×nN ,
which is denoted as A⊗B. Let (�,F , {Ft}t≥,P) be a complete probability space with a fil-
tration {Ft}t≥ satisfying the usual conditions (i.e., the filtration contains all P-null sets and
is right continuous). E[x] means the expectation of the random variable x. If the dimen-
sions of matrices are not explicitly indicated, that means they are suitable for any algebraic
operations.

2 Problem formulation and preliminaries
In this section, the problem formulation and preliminaries are briefly introduced.
Let {r(t), t ≥ } be a right-continuous Markov chain on the probability space (�,F ,

{Ft}t≥,P) taking values in a finite state space S = {, , . . . , s} with a generator � = (δij)s×s

(i, j ∈ S) given by

P
{
r(t +�t) = j|r(t) = i

}
=

{
δij�t + o(�t), if (i �= j),
 + δij�t + o(�t), if (i = j),
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where �t > , lim�t→(o(�t)/�t) = , δij >  (∀i �= j) is the transition probability from
mode i to mode j, and δii = –

∑
i�=j δij < .

Due to distributed time-varying delays, discrete time-varying delays of complex net-
workswidely existing in signal traveling and complex networks topologies structures being
governed by Markov chains, we consider the following MSCNs with mixed time-varying
delays:

ẋi(t) = A
(
r(t)

)
f
(
xi(t)

)
+ B

(
r(t)

)
f
(
xi

(
t – τ(t)

))
+ c()

(
r(t)

) N∑
j=

a()ij
(
r(t)

)
�()(r(t))xj(t)

+ c()
(
r(t)

) N∑
j=

a()ij
(
r(t)

)
�()(r(t))xj(t – τ(t)

)

+ c()
(
r(t)

) N∑
j=

a()ij
(
r(t)

)
�()(r(t))∫ t

t–τ(t)
xj(s)ds, ()

where {r(t), t ≥ } is the continuous-time Markov process which describes the evolution
of the mode at time t. A(r(t)) and B(r(t)) ∈ Rn×n are matrices with real values in mode
r(t). τ(t), τ(t) and τ(t) represent node discrete time-varying delay, discrete time-varying
coupling delay and distributed time-varying coupling delay, respectively. c(p)(r(t)) is the
coupling strength in mode r(t), where c(p)(r(t)) > . �(p)(r(t)) is the inner-coupling matrix
inmode r(t).A(p)(r(t)) = (a(p)(m)ij)N×N represents the outer-couplingmatrix, and the diagonal
elements of matrix A(p)

m are defined by a(p)(m)ii = –
∑N

j=,j �=i a
(p)
(m)ij (i, j = , , . . . ,N ,m ∈ S). Here,

p = , , .

Remark  The MSCN (), which contains Markovian switching parameters and mixed
time-varying delays, in this paper is more practical than that of [–]. Although time
delays are considered in [–], Markovian switching cannot be taken to describe the
addressed systems. Furthermore, the MSCN () of this paper is clearly different from that
of [, ]. Their primary differences are mixed time-varying delays. In [], mixed time-
varying delays include node discrete time-varying and distributed time-varying delays. In
[], mixed time-varying delays are comprised of node discrete stochastic time-varying,
discrete stochastic time-varying coupling, and distributed time-varying delays.

With the Kronecker product, we can rewrite system () in the following compact form:

ẋ(t) =
(
IN ⊗A

(
r(t)

))
F
(
x(t)

)
+

(
IN ⊗ B

(
r(t)

))
F
(
x
(
t – τ(t)

))
+ c()

(
r(t)

)(
A()(r(t)) ⊗ �()(r(t)))x(t)

+ c()
(
r(t)

)(
A()(r(t)) ⊗ �()(r(t)))x(t – τ(t)

)
+ c()

(
r(t)

)(
A()(r(t)) ⊗ �()(r(t)))∫ t

t–τ(t)
x(s)ds, ()

where

x(t) =
(
xT (t), . . . ,x

T
N (t)

)T ,
x
(
t – τ(t)

)
=

(
xT

(
t – τ(t)

)
, . . . ,xTN

(
t – τ(t)

))T ,
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F
(
x(t)

)
=

(
f T

(
x(t)

)
, . . . , f T

(
xN (t)

))T ,
F
(
x
(
t – τ(t)

))
=

(
f T

(
x

(
t – τ(t)

))
, . . . , f T

(
xN

(
t – τ(t)

)))T ,∫ t

t–τ(t)
x(s)ds =

(∫ t

t–τ(t)
xT (s)ds, . . . ,

∫ t

t–τ(t)
xTN (s)ds

)T

.

For notational simplicity, we denote matrices A(r(t)), B(r(t)), A()(r(t)), A()(r(t)),
A()(r(t)), �()(r(t)), �()(r(t)), �()(r(t)), scalars c()(r(t)), c()(r(t)), and c()(r(t)) as Am, Bm,
A()
m , A()

m , A()
m , �()

m , �()
m , �()

m , c()m , c()m , and c()m (m ∈ S), respectively. Therefore, system ()
can be rewritten as follows:

ẋ(t) = (IN ⊗Am)F
(
x(t)

)
+ (IN ⊗ Bm)F

(
x
(
t – τ(t)

))
+ c()m

(
A()
m ⊗ �()

m
)
x(t)

+ c()m
(
A()
m ⊗ �()

m
)
x
(
t – τ(t)

)
+ c()m

(
A()
m ⊗ �()

m
)∫ t

t–τ(t)
x(s)ds. ()

Definition  The MSCN () is said to achieve global asymptotic synchronization if

E
∥∥xi(t) – s(t)

∥∥ = , as t → ∞,

where i ∈ {, , . . . ,N}, s(t) is a solution of an isolated node and satisfying ṡ(t) = Amf (s(t)) +
Bmf (s(t – τ(t))).

Assumption  Time-varying delays in the MSCN () satisfy

 ≤ τ(t) ≤ τM,  ≤ τ(t)≤ τM,  ≤ τ(t) ≤ τM,

 ≤ ∣∣τ̇(t)∣∣ ≤ μ,  ≤ ∣∣τ̇(t)∣∣ ≤ μ,  ≤ ∣∣τ̇(t)∣∣ ≤ μ,

where i, j = , , . . . ,N .

Assumption  (Khalil []) For ∀x, y ∈ Rn, the continuous nonlinear function f satisfies
the following sector-bounded condition:

[
f (x) – f (y) – F(x – y)

]T[
f (x) – f (y) – F(x – y)

] ≤ ,

where F, F are real constant matrices with F – F ≥ .

Assumption  There exist positive-definite matrices Zk ,Wl (k = , , . . . , r, l = , , . . . ,n),
and they satisfy

Z ≥ Z ≥ · · · ≥ Zr , W ≥W ≥ · · · ≥Wn .

Lemma  (Langville and Stewart []) The Kronecker product has the following proper-
ties:
() (αA)⊗ B = A⊗ (αB),
() (A + B)⊗C = (A⊗C) + (B⊗C),
() (A⊗ B)(C ⊗D) = (AC)⊗ (BD),
() (A⊗ B)T = AT ⊗ BT .
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Lemma  (Liu et al. []) Let μ = (αij)n×n, P ∈ Rm×m, x = (xT ,xT , . . . ,xTn )T , y = (yT , yT ,
. . . , yTn )T , where xi = (xi,xi, . . . ,xim)T ∈ Rm, yi = (yi, yi, . . . , yim)T ∈ Rm, if μ = μT and each
row sum of μ is equal to zero, then

xT (μ ⊗ P)y = –
∑

≤i<j≤n

αij(xi – xj)TP(yi – yj).

Lemma  (Boyd et al. []) Given constant matrices X , Y , Z where X = XT , and  < Y =
YT . Then X + ZTY–Z <  if and only if

[
X ZT

Z –Y

]
<  or

[
–Y Z
ZT X

]
< .

Lemma  (Gu []) For any positive-definite matrix M > , scalar γ > , and vector func-
tionω : [,γ ] → Rn such that the integrations concerned are well defined, then the following
inequality holds:

(∫ γ


ω(s)ds

)T

M
(∫ γ


ω(s)ds

)
≤ γ

(∫ γ


ωT (s)Mω(s)ds

)
.

Lemma  (Boyd et al. []) For any vector x, y ∈ Rn and one positive-definite matrix Q > ,
the following inequality holds:

xTy≤ xTQ–x + yTQy.

Lemma  Let A = (aij)N×N , aii = –
∑N

i�=j,j= aij, P ∈ Rm×m, x = (xT ,xT , . . . ,xTN )T ∈ RNm, xi =
(xi,xi, . . . ,xim)T ∈ Rm, y = (yT , yT , . . . , yTN )T ∈ RNm, yi = (yi, yi, . . . , yim)T ∈ Rm, then

xT (UA⊗ P)y = –
∑

≤i<j≤N

Naij(xi – xj)TP(yi – yj),

where

U =

⎡
⎢⎢⎢⎢⎣
N –  – · · · –
– N –  · · · –
...

...
...

...
– – · · · N – 

⎤
⎥⎥⎥⎥⎦ .

3 Main results
In this section, global synchronization of the MSCN () is investigated by utilizing the
Lyapunov-Krasovskii functionalmethod, the stochastic analysis techniques and the delay-
partition approach. Furthermore, in order to show the merits of the delay-partition ap-
proach, Corollary  can also be given, according to Theorem .

Theorem  Under Assumptions -,Definition , for given constants τM , τM , τM , μ, μ,
and any integer r ≥ , n ≥ , N ≥ , system () in the delay-partition approach is globally
asymptotically synchronized if there exist positive-definite matrices Pm (m = , , . . . , s) >
, {Nk ,Zk} (k = , , . . . , r) > , {Ml,Wl} (l = , , . . . ,n) > , Q > , arbitrary matrices
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{Rk ,Rl}, R, F, F, F, F with appropriate dimensions, and positive scalars α, α, α,
such that the following LMI holds for all ≤ i < j ≤N :

[
�m �T

β

� –�β

]
<  (m = , , . . . , s,β = , , . . . , r, r + , . . . , r + n), ()

where

�m =

⎡
⎢⎢⎢⎣

� � � �

� � � �

� � � �

� � � �

⎤
⎥⎥⎥⎦ ,

�T
β = [R,R, . . . ,Rr ,R,R, . . . ,Rn ],

�β = diag{pZ,pZ, . . . ,pZr ,qW,qW, . . . ,qWn},

� =

⎡
⎢⎢⎢⎢⎣

�̂
(r)
 �̂

(r)
 · · · �̂

(r)
(r–)

� �̂
(r)
 · · · �̂

(r)
(r–)

...
...

. . .
...

� � · · · �̂
(r)
(r–)(r–)

⎤
⎥⎥⎥⎥⎦ ,

� = [–αR, –αR, –αR, –αR, –αR, –αR]T ,

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
(r)
 · · · �

(r)
(r–)

�
(r)
 · · · �

(r)
(r–)

�
(r)
 · · · �

(r)
(r–)

�
(r)
 · · · �

(r)
(r–)

�
(r)
 · · · �

(r)
(r–)

�
(r)
 · · · �

(r)
(r–)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
(n)
 · · · �

(n)
(n–)

�
(n)
 · · · �

(n)
(n–)

�
(n)
 · · · �

(n)
(n–)

�
(n)
 · · · �

(n)
(n–)

�
(n)
 · · · �

(n)
(n–)

�
(n)
 · · · �

(n)
(n–)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

� =

⎡
⎢⎢⎣

�̂
(n)
 · · · �̂

(n)
(n–)

...
. . .

...
�̂

(n)
(r–) · · · �̂

(n)
(r–)(n–)

⎤
⎥⎥⎦ ,

� = [–αR, –αR, . . . , –αR]T ,
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� =

⎡
⎢⎢⎣
H (n)

 · · · H (n)
(n–)

...
. . .

...
� · · · H (n)

(n–)(n–)

⎤
⎥⎥⎦ ,

� = [–αR, –αR, . . . , –αR]T ,

� = –αR +
τM

r

r∑
k=

Zk +
τM

n

n∑
l=

Wl,

� = –Nc()m Pm�()
m –Nc()m

(
�()
m

)TPm +
s∑

m=

δmmPm

+N +M – α
(
FT
 F + FT

 F
)
+ R + R

+ τ 
MQ – Nc()m αR�

()
m ,

� = –Rr ,

� = –Nc()m Pm�()
m –Nc()m αR�

()
m – Rn ,

� = –Nc()m Pm�()
m –Nc()m αR�

()
m ,

� = αRAm + PmAm + α
(
FT
 + FT


)
,

� = αRBm + PmBm,

� = –( –μ)Nr – Rr – α
(
FT
 F + FT

 F
)
,

� = –Nc()m αR�
()
m – Rn ,

� = –Nc()m αR�
()
m ,

� = αRAm,

� = αRBm + α
(
FT
 + FT


)
,

� = –( –μ)Mn – Nc()m αR�
()
m – Rn ,

� = –Nc()m αR�
()
m ,

� = αRAm,

� = αRBm,

� = –Nc()m αR�
()
m –Q,

� = αRAm,

� = αRBm,

� = –αI + αRAm,

� = αRBm,

� = –αI + αRBm,

�
(r)
 = –R + R,

�
(r)
(r–) = –R(r–) + Rr ,

�
(r)
 = –R + R,
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Wang et al. Advances in Difference Equations 2014, 2014:248 Page 8 of 17
http://www.advancesindifferenceequations.com/content/2014/1/248

�
(r)
(r–) = –R(r–) + Rr ,

�
(n)
 = –R + R,

�
(n)
(n–) = –R(n–) + Rn ,

�
(n)
 = –R + R,

�
(n)
(n–) = –R(n–) + Rn ,

�̂
(r)
 = –

(
 –


r
μ

)
N +N – R + R,

�̂
(r)
 = –R + R,

�̂
(r)
(r–) = –R(r–) + Rr ,

�̂
(r)
 = –

(
 –


r
μ

)
N +N – R + R,

�̂
(r)
(r–) = –R(r–) + Rr ,

�̂
(r)
(r–)(r–) = –

(
 –

r – 
r

μ

)
Nr– +Nr – R(r–) + Rr ,

�̂
(n)
 = –R + R,

�̂
(n)
(n–) = –R(n–) + Rn ,

�̂
(n)
(r–) = –R + R,

�̂
(n)
(r–)(n–) = –R(n–) + Rn ,

H (n)
 = –

(
 –


n

μ

)
M +M – R + R,

H(n)
(n–) = –R(n–) + Rn ,

H (n)
(n–)(n–) = –

(
 –

n – 
n

μ

)
Mn– +Mn – R(n–) + Rn ,

p =
r

τM
,

q =
n
τM

.

Proof Construct a Lyapunov-Krasovskii functional candidate as

V
(
x(t), t,m

)
= V

(
x(t), t,m

)
+V

(
x(t), t,m

)
+V

(
x(t), t,m

)
, ()

where

V
(
x(t), t,m

)
= xT (t)(U ⊗ Pm)x(t) +

r∑
k=

∫ t– k–
r τ(t)

t– k
r τ(t)

xT (s)(U ⊗Nk)x(s)ds

+
n∑
l=

∫ t– l–
n

τ(t)

t– l
n

τ(t)
xT (s)(U ⊗Ml)x(s)ds, ()

V
(
x(t), t,m

)
= τM

∫ 

–τM

∫ t

t+θ

xT (s)(U ⊗Q)x(s)dsdθ , ()
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V
(
x(t), t,m

)
=

r∑
k=

∫ – k–
r τM

– k
r τM

∫ t

t+θ

ẋT (s)(U ⊗ Zk)ẋ(s)dsdθ

+
n∑
l=

∫ – l–
n

τM

– l
n

τM

∫ t

t+θ

ẋT (s)(U ⊗Wl)ẋ(s)dsdθ , ()

U =

⎡
⎢⎢⎢⎢⎣
N –  – · · · –
– N –  · · · –
...

...
. . .

...
– – · · · N – 

⎤
⎥⎥⎥⎥⎦ .

Computing LV (x(t), t,m) along the trajectory of system (), and according to Assump-
tion , ()-(), we can obtain

LV
(
x(t), t,m

)
=LV

(
x(t), t,m

)
+LV

(
x(t), t,m

)
+LV

(
x(t), t,m

)
, ()

LV
(
x(t), t,m

) ≤ xT (t)(U ⊗ Pm)
[
(IN ⊗Am)F

(
x(t)

)
+ (IN ⊗ Bm)F

(
x
(
t – τ(t)

))
+ c()m

(
A()
m ⊗ �()

m
)
x(t) + c()m

(
A()
m ⊗ �()

m
)
x
(
t – τ(t)

)
+ c()m

(
A()
m ⊗ �()

m
)∫ t

t–τ(t)
x(s)ds

]
+

s∑
m=

δmmx
T (t)(U ⊗ Pm )x(t)

+
r∑

k=

[
xT

(
t –

k – 
r

τ(t)
)
(U ⊗Nk)x

(
t –

k – 
r

τ(t)
)

–
(
 –

k
r
μ

)
xT

(
t –

k
r
τ(t)

)
(U ⊗Nk)x

(
t –

k
r
τ(t)

)]

+
n∑
l=

[
xT

(
t –

l – 
n

τ(t)
)
(U ⊗Ml)x

(
t –

l – 
n

τ(t)
)

–
(
 –

l
n

μ

)
xT

(
t –

l
n

τ(t)
)
(U ⊗Ml)x

(
t –

l
n

τ(t)
)]

, ()

LV
(
x(t), t,m

)
= τ 

MxT (t)(U ⊗Q)x(t) – τM

∫ t

t–τM

xT (s)(U ⊗Q)x(s)ds, ()

LV
(
x(t), t,m

)
= ẋT (t)

[(
τM

r

) r∑
k=

(U ⊗ Zk) +
(

τM

n

) n∑
l=

(U ⊗Wl)

]
ẋ(t)

–
r∑

k=

∫ t– k–
r τM

t– k
r τM

ẋT (s)(U ⊗ Zk)ẋ(s)ds

–
n∑
l=

∫ t– l–
n

τM

t– l
n

τM

ẋT (s)(U ⊗Wl)ẋ(s)ds. ()

By Assumption , we have

r∑
k=

∫ t– k–
r τM

t– k
r τM

ẋT (s)(U ⊗ Zk)ẋ(s)ds –
r∑

k=

∫ t– k–
r τ(t)

t– k
r τ(t)

ẋT (s)(U ⊗ Zk)ẋ(s)ds

=
∫ t– 

r τ(t)

t– 
r τM

ẋT (s)
(
U ⊗ (Z – Z)

)
ẋ(s)ds + · · ·

http://www.advancesindifferenceequations.com/content/2014/1/248
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+
∫ t– r–

r τ(t)

t– r–
r τM

ẋT (s)
(
U ⊗ (Zr– – Zr)

)
ẋ(s)ds

+
∫ t–τ(t)

t–τM

ẋT (s)(U ⊗ Zr)x(s)ds≥ . ()

Similar to inequality (), we get inequality () directly from Assumption :

n∑
l=

∫ t– l–
n

τM

t– l
n

τM

ẋT (s)(U ⊗Wl)ẋ(s)ds≥
n∑
l=

∫ t– l–
n

τ(t)

t– l
n

τ(t)
ẋT (s)(U ⊗Wl)ẋ(s)ds. ()

It follows from Lemma  that

–τM

∫ t

t–τM

xT (s)(U ⊗Q)x(s)ds

≤ –
(∫ t

t–τM

xT (s)ds
)
(U ⊗Q)

(∫ t

t–τM

x(s)ds
)

≤ –
(∫ t

t–τ(t)
xT (s)ds

)
(U ⊗Q)

(∫ t

t–τ(t)
x(s)ds

)
. ()

Let ξT
ij (t) = [xTij (t), xTij (t – τ(t)), xTij (t – τ(t)),

∫ t
t–τ(t)

xTij (s)ds, f Tij (x(t)), f Tij (x(t – τ(t))), xTij (t –
τ(t)
r ), . . . , xTij (t –

r–
r τ(t)), xTij (t –

τ(t)
n

), . . . , xTij (t –
n–
n

τ(t)), yTij (t)], where xTij (t) = (xi(t) –
xj(t))T , xTij (t – τ(t)) = (xi(t – τ(t)) – xj(t – τ(t)))T , . . . , yTij (t) = (ẋi(t) – ẋj(t))T , then by using
the Newton-Leibniz formula, the following equalities are true for any matrices Rk , Rl , R

(k = , , . . . , r, l = , , . . . ,n) with appropriate dimensions:


r∑

k=

ξT (t)(U ⊗ Rk)

×
[
x
(
t –

k – 
r

τ(t)
)
– x

(
t –

k
r
τ(t)

)
–

∫ t– k–
r τ(t)

t– k
r τ(t)

ẋ(s)ds
]
= , ()


n∑
l=

ξT (t)(U ⊗ Rl)

×
[
x
(
t –

l – 
n

τ(t)
)
– x

(
t –

l
n

τ(t)
)
–

∫ t– l–
n

τ(t)

t– l
n

τ(t)
ẋ(s)ds

]
= . ()

Denote ẋ(t) = y(t), then

αξ
T (t)(U ⊗ R)

[
y(t) – ẋ(t)

]
= , ()

where scalar α > .
By Lemmas ,  and combining ()-(), there exist positive-definite matrices Zk and

Wl (k = , , . . . , r, l = , , . . . ,n), such that

–
r∑

k=

ξT (t)(U ⊗ Rk)
∫ t– k–

r τ(t)

t– k
r τ(t)

ẋ(s)ds

≤ τM

r
∑

≤i<j≤N

r∑
k=

ξT
ij (t)RkZ–

k RT
kξij(t) +

∑
≤i<j≤N

r∑
k=

∫ t– k–
r τ(t)

t– k
r τ(t)

ẋTij (s)Zkẋij(s)ds, ()

http://www.advancesindifferenceequations.com/content/2014/1/248
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–
n∑
l=

ξT (t)(U ⊗ Rl)
∫ t– l–

n
τ(t)

t– l
n

τ(t)
ẋ(s)ds

≤ τM

n

∑
≤i<j≤N

n∑
l=

ξT
ij (t)RlW–

l RT
lξij(t)

+
∑

≤i<j≤N

n∑
l=

∫ t– l–
n

τ(t)

t– l
n

τ(t)
ẋTij (s)Wlẋij(s)ds. ()

According to Assumption , for ∀α >  and ∀α > , we can obtain

α
[
fi
(
x(t)

)
– fj

(
x(t)

)
– F

(
xi(t) – xj(t)

)]T
× [

fi
(
x(t)

)
– fj

(
x(t)

)
– F

(
xi(t) – xj(t)

)] ≤ , ()

α
[
fi
(
x(t)

)
– fj

(
x(t)

)
– F

(
xi(t) – xj(t)

)]T
× [

fi
(
x(t)

)
– fj

(
x(t)

)
– F

(
xi(t) – xj(t)

)] ≤ , ()

α
[
fi
(
x
(
t – τ(t)

))
– fj

(
x
(
t – τ(t)

))
– F

(
xi

(
t – τ(t)

)
– xj

(
t – τ(t)

))]T
× [

fi
(
x
(
t – τ(t)

))
– fj

(
x
(
t – τ(t)

))
– F

(
xi

(
t – τ(t)

)
– xj

(
t – τ(t)

))] ≤ , ()

α
[
fi
(
x
(
t – τ(t)

))
– fj

(
x
(
t – τ(t)

))
– F

(
xi

(
t – τ(t)

)
– xj

(
t – τ(t)

))]T
× [

fi
(
x
(
t – τ(t)

))
– fj

(
x
(
t – τ(t)

))
– F

(
xi

(
t – τ(t)

)
– xj

(
t – τ(t)

))] ≤ . ()

Substitute ()-() into (), then taking the expectation on both sides of () and using
Lemmas , , , we get

E
[
LV

(
x(t), t,m

)] ≤ E

{ ∑
≤i<j≤N

{
xTij (t)

[
PmAmfij

(
x(t)

)
+ PmBmfij

(
x
(
t – τ(t)

))

– Nc()m Pm�()
m xij(t) – Nc()m Pm�()

m xij
(
t – τ(t)

)
– Nc()m Pm�()

m

∫ t

t–τ(t)
xij(s)ds +

s∑
m=

δmmPmxij(t)

]

+
r∑

k=

[
xTij

(
t –

k – 
r

τ(t)
)
Nkxij

(
t –

k – 
r

τ(t)
)

–
(
 –

k
r
μ

)
xTij

(
t –

k
r
τ(t)

)
Nkxij

(
t –

k
r
τ(t)

)]

+
n∑
l=

[
xTij

(
t –

l – 
n

τ(t)
)
Mlxij

(
t –

l – 
n

τ(t)
)

–
(
 –

l
n

μ

)
xTij

(
t –

l
n

τ(t)
)
Mlxij

(
t –

l
n

τ(t)
)]

+ τ 
MxTij (t)Qxij(t) –

∫ t

t–τ(t)
xTij (s)dsQ

∫ t

t–τ(t)
xij(s)ds

+ yTij (t)

[
τM

r

r∑
k=

Zk +
τM

n

n∑
l=

Wl

]
yij(t)
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+ ξT
ij (t)

[
τM

r

r∑
k=

RkZ–
k RT

k +
τM

n

r∑
l=

RlW–
l RT

l

]
ξij(t)

– ξT
ij (t)(αR)yij(t) + ξT

ij (t)(αR)
[
Amfij

(
x(t)

)
+ Bmfij

(
x
(
t – τ(t)

))
–Nc()m �()

m xij(t) –Nc()m �()
m xij

(
t – τ(t)

)
–Nc()m �()

m

∫ t

t–τ(t)
xij(s)ds

]

+ ξT
ij (t)

(


r∑
k=

Rk

)[
xij

(
t –

k – 
r

τ(t)
)
– xij

(
t –

k
r
τ(t)

)]

+ ξT
ij (t)

(


n∑
l=

Rl

)[
xij

(
t –

l – 
n

τ(t)
)
– xij

(
t –

l
n

τ(t)
)]

– α
[
f Tij

(
x(t)

)
(I)fij

(
x(t)

)
– f Tij

(
x(t)

)
(F + F)xij(t)

– xTij (t)
(
FT
 + FT


)
fij

(
x(t)

)
+ xTij (t)

(
FT
 F + FT

 F
)
xij(t)

]
– α

[
f Tij

(
x
(
t – τ(t)

))
(I)fij

(
x
(
t – τ(t)

))
– f Tij

(
x
(
t – τ(t)

))
(F + F)xij

(
t – τ(t)

)
– xTij

(
t – τ(t)

)(
FT
 + FT


)
fij

(
x
(
t – τ(t)

))
+ xTij

(
t – τ(t)

)(
FT
 F + FT

 F
)
xij

(
t – τ(t)

)]}}

= E

{ ∑
≤i<j≤N

ξT
ij (t)

{
�m +

(
τM

r

r∑
k=

RkZ–
k RT

k

+
τM

n

n∑
l=

RlW–
l RT

l

)}
ξij(t)

}
. ()

By Lemma  and Theorem , we have

E
{
LV

(
x(t), t,m

)} ≤ E

{ ∑
≤i<j≤N

ξT
ij (t)

{
�m +�T

β�–
β�β

}
ξij(t)

}
< . ()

According to Definition , the MSCN () is global asymptotic synchronization. The proof
is completed. �

Remark  In Theorem , the criterion which is the MSCN () with mixed time-varying
delays under the delay-partition approach can achieve global asymptotic synchronization
is established. In proving Theorem , it is clear that the time-varying delays τ(t) and τ(t)
are divided into r and n slices, respectively. In [, ], the delay-partition approach is
used to solve state estimation and stability analysis problems of neural networkswith time-
varying delay. Although synchronization problems of complex network with time delays
were investigated in [–], our results in the delay-partition approach in this paper has
lower conservatism. The reason is that the integers r and n become larger, and the allow-
able upper bounds of the time-varying delays τ(t) and τ(t) will be larger. This will also
be analyzed in Remark  and be shown in numerical examples.

http://www.advancesindifferenceequations.com/content/2014/1/248
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Corollary  Under Assumptions -,Definition , for given constants τM , τM , τM ,μ,μ,
system () is globally asymptotically synchronized if there exist positive-definite matrices
Pm (m = , , . . . , s) > , N > , Z > , M > , W > , Q > , arbitrary matrices R, F, F,
F, F with appropriate dimensions and positive scalars α, α, α, such that the LMI ()
holds for all ≤ i < j ≤N , r = , and n = .

Remark  In Corollary , the delay-partition approach is not used to solve the synchro-
nization problemof theMSCN (). Therefore, the upper bounds of the time-varying delays
τ(t) and τ(t) are τM and τM . From the analysis in Remark , we know that τM and τM

can be divided into r and n slices by using the delay-partition approach in Theorem .
Therefore, the allowable upper bounds of the time-varying delays τ(t) and τ(t) of Corol-
lary  are smaller than that of Theorem . That means conservatism of Theorem  is lower
than that of Corollary .

4 Numerical example
In this section, two numerical examples are given to illustrate the effectiveness of the
derived results. The initial conditions of the numerical simulations are taken as x() =
(–,–)T , x() = (–, )T , x() = (, )T . The synchronization total error of the network
are defined as e(t) =

∑
≤i<j≤

∑
l= |x(l)i – x(l)j |. For given transition rate matrix, a Markov

chain can be generated. We consider the following transition rate matrix:

� =

[
– 
 –

]
. ()

The Markov chain r(t) is described in Figure .

Example  In this example, we investigate global synchronization of the MSCN () com-
prised of three coupled nodes:

ẋi(t) = Amf
(
xi(t)

)
+ Bmf

(
xi

(
t – τ(t)

))
+ c()m

∑
j=

a()(m)ij�
()
m xj(t)

+ c()m

∑
j=

a()(m)ij�
()
m xj

(
t – τ(t)

)
+ c()m

∑
j=

a()(m)ij�
()
m

∫ t

t–τ(t)
xj(s)ds, ()

Figure 1 The switching of the Markov chain r(t).
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where xi(t) = (xi(t),xi(t))T is the state variable of the ith (i = , , ). All parameters are
given as follows:

A =

[
 
 

]
, A =

[
 
– 

]
, B =

[
 –
 

]
, B =

[
 
– 

]
,

�
()
 =

[
 
 

]
, �

()
 =

[
 
 

]
, �

()
 =

[
 
 

]
, �

()
 =

[
 
– 

]
,

�
()
 =

[
 –
– 

]
, �

()
 =

[
– 
 

]
, A()

 =

⎡
⎢⎣
–  
 – 
  –

⎤
⎥⎦ ,

A()
 =

⎡
⎢⎣
–  
 – 
  –

⎤
⎥⎦ , A()

 =

⎡
⎢⎣
–  
 – 
  –

⎤
⎥⎦ ,

A()
 =

⎡
⎢⎣
  
  
  

⎤
⎥⎦ , A()

 =

⎡
⎢⎣
  
 – 
  –

⎤
⎥⎦ ,

A()
 =

⎡
⎢⎣
–  
 – 
  –

⎤
⎥⎦ , f

(
xi(t)

)
=

[
–.xi(t) – tanh(.xi(t))
–.xi(t) – tanh(.xi(t))

]
,

f
(
xi

(
t – τ(t)

))
=

[
–.xi(t – τ(t)) – tanh(.xi(t – τ(t)))
–.xi(t – τ(t)) – tanh(.xi(t – τ(t)))

]
,

c() = , c() = , c() = , c() = ,

c() = , c() = , τ(t) = ., t ∈ [, ].

For given μ = , μ = , r = , and n = , combining the above parameters of system ()
and employing the LMI toolbox in MATLAB to solve the LMI defined in Theorem , it is
easy to verify that

P =

[
. .
. .

]
, P =

[
. .
. .

]
,

N =

[
. .
. .

]
, N =

[
. .
. .

]
,

Z =

[
. .
. .

]
, Z =

[
–. .
. –.

]
,

M =

[
. .
. .

]
, M =

[
. .
. .

]
,

W =

[
. .
. .

]
, W =

[
–. –.
–. –.

]
,

Q =

[
. .
. .

]
,
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Figure 2 The synchronization trajectories of
system (28) τ1M = τ2M = 0.44 for Example 1.

Figure 3 The synchronization trajectories of
system (28) τ1M = τ2M = 0.44 for Example 1.

 < τM ≤ .,  < τM ≤ .,

α = ., α = ., α = ..

It is obvious that under the above feasible solution, system () is globally asymptotically
synchronized. The simulation results of system () with τM = τM = . are shown in
Figures -.

Example  In this example, in order to test Corollary , we make r =  and n = . For
given μ = , μ = , by using the LMI toolbox in MATLAB and Corollary , τM , and τM

must satisfy  < τM ≤ . and  < τM ≤ . if we still choose P, P, N, Z,M,W, Q,
and system () in Example . The simulation results of system () with τM = τM = .
are shown in Figures -.

Remark  From Examples -, it is clear that τM and τM of Example  are larger than
that of Example . That means allowable upper bounds of τ(t) and τ(t) of Example 
are larger than that of Example . This further proves that the analysis in Remarks - is
reasonable.

5 Conclusions
In this paper, we study global synchronization for a new class of MSCNs with mixed time-
varying delays in the delay-partition approach. Sufficient conditions of global synchro-
nization for the new class of MSCNs with mixed time-varying delays are derived by the
new delay-partition approach. The advantage of the delay-partition approach is that the

http://www.advancesindifferenceequations.com/content/2014/1/248
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Figure 4 The synchronization trajectories of
system (28) τ1M = τ2M = 0.29 for Example 2.

Figure 5 The synchronization total trajectory of
system (28) τ1M = τ2M = 0.29 for Example 2.

obtained results have lower conservatism. With two numerical examples, the theoretical
results proposed are proved to be effective.
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