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Abstract
By means of critical point theory and some analysis methods, the existence of
homoclinic solutions for the p-Laplacian system with delay, d

dt [|u′(t)|p–2u′(t)] =
∇xG(t,u(t),u(t + τ )) +∇yG(t – τ ,u(t – τ ),u(t)) + e(t), is investigated. Some new results
are obtained. The interesting thing is that the function G(t, x, y) is only required to
satisfy a local condition. Furthermore, the results are all explicitly related to the value
of delay τ .
MSC: 34C37; 58E05; 70H05
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1 Introduction
In the past years, the existence of homoclinic solutions to some second-order ordinary
differential systems has been extensively investigated because of its background in applied
science (see [–] and the references cited therein). For example, in [], XH Tan and Li
Xiao studied the existence of homoclinic solutions to the p-Laplacian system

d
dt

[∣∣u′(t)
∣∣p–u′(t)

]
=∇F

(
t,u(t)

)
+ f (t), (.)

where p >  is a constant. The following theorem was obtained.

Theorem . (See []) Assume that F and f satisfy the following conditions:

(B) F ∈ C(R× Rn,R) is T-periodic with respect to t, T >  is a constant;
(B) There are constants b >  and μ >  such that for all (t,x) ∈ [,T]× Rn

F(t,x)≥ F(t, ) + b|x|μ;

(B) f �≡  is a continuous and bounded function such that
∫
R |f (t)|μ/(μ–) dt < +∞.

Then (.) possesses a homoclinic solution.
From the proof of Theorem . in [], we see that assumption (B) is crucial for obtaining

the existence of a homoclinic solution for (.).
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However, few papers investigated the existence of homoclinic solutions to functional
differential equations [–]. In [], the authors studied the existence of homoclinic solu-
tions to the following functional differential equation:

q′′(t – τ ) + f
(
t,q(t),q(t – τ ),q(t – τ )

)
= , (.)

where τ >  is a constant, t ∈ R, q ∈ Rn, f (t,u,u,u) ∈ C(R×Rn ×Rn ×Rn,Rn) and being
τ -periodic in t. Under

[H] there is a τ -periodic continuously differentiable function F(t,x, y) ∈ C(R×Rn ×Rn ×
Rn,R) such that

∇xF
(
t,q(t – τ ),q(t – τ )

)
+∇yF

(
t,q(t),q(t – τ )

)
= f

(
t,q(t),q(t – τ ),q(t – τ )

)
;

[H] there is a e ∈ Rn with e �=  such that

F = lim sup
|v|→∞

F(t, v, v) <  for all t ∈ R

and some other conditions, they obtained the result that (.) possesses a nontrivial
homoclinic orbit.

In this paper, we investigate further the existence of homoclinic solutions for a second-
order p-Laplacian functional differential system as follows:

d
dt

[∣∣u′(t)
∣∣p–u′(t)

]
=∇xG

(
t,u(t),u(t + τ )

)
+∇yG

(
t – τ ,u(t – τ ),u(t)

)
+ e(t), (.)

where u(t) = (u(t),u(t), . . . ,un(t))
 ∈ Rn, t ∈ R, G ∈ C(R× Rn × Rn,R) and is T-periodic
in t, ∇xG(t,x, y) = ∂G(t,x,y)

∂x , ∇yG(t,x, y) = ∂G(t,x,y)
∂y , e ∈ C(R,Rn), τ ,T >  and p >  are con-

stants. The interesting thing of this paper is that the period T of function f (t,u,u,u)
with respect to the variable t may not be equal to τ , and the main results are all expres-
sively related to the value of delay τ . Furthermore, even if for the case of τ = , we do not
require condition (B) for guaranteeing the coercive potential condition.
As is well known, a solution u(t) of (.) is named homoclinic (to ) if u(t) →  and

u′(t)→  as |t| → +∞. In addition, if u �≡ , then u is called a nontrivial homoclinic solu-
tion.
Motivated by the idea in the work of PH Rabinowitz in [], Marek Izydorek, Joanna

Janczewska in [] and XH Tan, Li Xiao in [], the existence of a homoclinic solution for
(.) is obtained as a limit of a certain sequence {ukj (t)}j∈N of kT-periodic solutions for
the following equation:

d
dt

[∣∣u′(t)
∣∣p–u′(t)

]
=∇xG

(
t,u(t),u(t + τ )

)
+∇yG

(
t – τ ,u(t – τ ),u(t)

)
+ ek(t), (.)

where k ∈ N, ek : R → Rn is a kT-periodic extension of restriction of e to the interval
[–kT ,kT]. We obtain the following theorem.

Theorem . Assume that G and e satisfy the following conditions:

(C) ∇xG(t, , ) +∇yG(t – τ , , ) =  for all t ∈ R;

http://www.advancesindifferenceequations.com/content/2014/1/244
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(C) there are constants b > , bi ≥  (i = , , ), μ > , and  < λ < p such that

G(t,x, y) ≥G(t, , ) + b|x|μ – b|y|μ – b|x – y|p

– b|x – y|λ(|x| (p–λ)μ
p + |y| (p–λ)μ

p
)

for all (t,x, y) ∈ R× Rn × Rn with |x| ≤ ρ, |y| ≤ ρ;

or

G(t,x, y) ≥G(t, , ) + b|y|μ – b|x|μ – b|x – y|p

– b|x – y|λ(|x| (p–λ)μ
p + |y| (p–λ)μ

p
)

for all (t,x, y) ∈ R× Rn × Rn with |x| ≤ ρ, |y| ≤ ρ,

where ρ is a constant with ρ > μ–
μ
T

–μ
μ + T(p–)

p ;

(C) e �≡  is a continuous and bounded function such that M := (
∫
R |e(t)|μ/(μ–) dt)μ–

μ <
+∞.

Then (.) possesses a nontrivial homoclinic solution, if

b – b –
b(p – λ)

p
τλ > 

and

min

{

p
– bτ p –

bλ
p

τλ,



(
b – b –

b(p – λ)
p

τλ

)}
ρ – μ–

μ
T

–μ
μ – T(p–)

p

max{ 
μ
, p }

–



(
b – b –

b(p – λ)
p

τλ

)
(μ – )

(
M

(b – b – b(p–λ)
p τλ)μ

) μ
μ–

> . (.)

In particular, suppose

G(t,x, y) ≥G(t, , ) + b|x|μ – b|y|μ

–
l∑
j=

cj|x|mj – b|x – y|p – b|x – y|λ(|x| (p–λ)μ
p + |y| (p–λ)μ

p
)

for all (t,x, y) ∈ R× Rn × Rn; (.)

or

G(t,x, y) ≥G(t, , ) + b|y|μ – b|x|μ

–
l∑
j=

cj|y|mj – b|x – y|p – b|x – y|λ(|x| (p–λ)μ
p + |y| (p–λ)μ

p
)

for all (t,x, y) ∈ R× Rn × Rn, (.)
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where bi > , i = , , . . . , , cj > , andmj > μ > , j = , , . . . , l, are all constants. If there is a
constant ρ > μ–

μ
T

–μ
μ + T(p–)

p such that

δ := b –
l∑
j=

cjρmj–μ > , (.)

then from (.), one can easily find

G(t,x, y) ≥G(t, , ) + δ|x|μ – b|y|μ – b|x – y|p – b|x – y|λ(|x| (p–λ)μ
p + |y| (p–λ)μ

p
)

for all (t,x, y) ∈ R× Rn × Rn with |x| ≤ ρ, |y| ≤ ρ;

and from (.), we have

G(t,x, y) ≥G(t, , ) + δ|y|μ – b|x|μ – b|x – y|p – b|x – y|λ(|x| (p–λ)μ
p + |y| (p–λ)μ

p
)

for all (t,x, y) ∈ R× Rn × Rn with |x| ≤ ρ, |y| ≤ ρ.

So by using Theorem ., we have the following result.

Corollary . Assume that assumption (C), assumption (C), condition (.) (or condition
(.)) and condition (.) hold. Then (.) possesses a nontrivial homoclinic solution, if

δ – b –
b(p – λ)

p
τλ > 

and

min

{

p
– bτ p –

bλ
p

τλ,



(
δ – b –

b(p – λ)
p

τλ

)}
ρ – μ–

μ
T

–μ
μ – T(p–)

p

max{ 
μ
, p }

–



(
δ – b –

b(p – λ)
p

τλ

)
(μ – )

(
M

(δ – b – b(p–λ)
p τλ)μ

) μ
μ–

> .

Remark . If b > b, and assumptions (C)-(C) are satisfied, then for sufficiently small
τ >  and sufficiently large ρ > , we see that condition (.) is satisfied. So by using Theo-
rem ., we see that (.) possesses a nontrivial homoclinic solution. Furthermore, if τ = ,
then (.) is converted to

d
dt

[∣∣u′(t)
∣∣p–u′(t)

]
=∇H

(
t,u(t)

)
+ e(t),

where H(t,u(t)) =G(t,u(t),u(t)), and from (.) or (.), we see that the function H(t,x) is
allowed to be

H(t,x) –H(t, ) =G(t,x,x) –G(t, , )→ –∞ as |x| → +∞,

which implies condition (B) for guaranteeing the coercive potential does not hold
for (.). Moreover, we do not require that G(t,x, y) is τ -periodic function with respect
to t, which is required by [], and local condition (C) is essentially different from as-
sumption [H] in [].
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If μ in assumption (C) is the case μ = p, then we have further the following result.

Theorem . Assume that assumption (C) in Theorem . is satisfied together with the
following conditions:

(D) there are constants ρ > , b > , bi >  (i = , , ), μ >  and  < λ < p such that for
all (t,x, y) ∈ R× Rn × Rn with |x| ≤ ρ , |y| ≤ ρ ,

G(t,x, y) ≥ G(t, , ) + b|x|p – b|y|p – b|x – y|p

– b|x – y|λ(|x|(p–λ) + |y|(p–λ))

or

G(t,x, y) ≥ G(t, , ) + b|y|p – b|x|p – b|x – y|p

– b|x – y|λ(|x|(p–λ) + |y|(p–λ));

(D) e �≡  is a continuous and bounded function such that M := (
∫
R |e(t)|p/(p–) dt) p–p <

+∞.

Then (.) possesses a nontrivial homoclinic solution, if

b – b –
b(p – λ)

p
τλ > 

and

min

{

p
– bτ p –

bλ
p

τλ,



(
b – b –

b(p – λ)
p

τλ

)}
ρp(T –q + T

)–p

–



(
b – b –

b(p – λ)
p

τλ

)
(p – )

(
M

(b – b – b(p–λ)
p τλ)p

) p
p–

> . (.)

Suppose there are constants b > , bi >  (i = , , ), cj > , mj > p (j = , , . . . , l), μ > ,
and  < λ < p such that for all (t,x, y) ∈ R× Rn × Rn,

G(t,x, y) ≥ G(t, , ) + b|x|p – b|y|p

–
l∑
j=

cj|x|mj – b|x – y|p – b|x – y|λ(|x|(p–λ) + |y|(p–λ)) (.)

or

G(t,x, y) ≥ G(t, , ) + b|y|p – b|x|p

–
l∑
j=

cj|y|mj – b|x – y|p – b|x – y|λ(|x|(p–λ) + |y|(p–λ)). (.)
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If there is a constant ρ >  such that

δ := b –
l∑
j=

cjρmj–p > , (.)

then for all (t,x, y) ∈ R× Rn × Rn with |x| ≤ ρ , |y| ≤ ρ ,

G(t,x, y) ≥G(t, , ) + δ|x|p – b|y|p – b|x – y|p – b|x – y|λ(|x|(p–λ) + |y|(p–λ))

or

G(t,x, y) ≥G(t, , ) + δ|y|p – b|x|p – b|x – y|p – b|x – y|λ(|x|(p–λ) + |y|(p–λ)).
So by using Theorem ., we have the following result.

Corollary . Assume that assumption (C) in Theorem ., assumption (D) in Theo-
rem ., condition (.) (or condition (.)) and condition (.) hold. Then (.) possesses
a nontrivial homoclinic solution, if

δ – b –
b(p – λ)

p
τλ > 

and

min

{

p
– bτ p –

bλ
p

τλ,



(
δ – b –

b(p – λ)
p

τλ

)}
ρp(T –q + T

)–p

–



(
δ – b –

b(p – λ)
p

τλ

)
(p – )

(
M

(δ – b – b(p–λ)
p τλ)p

) p
p–

> ,

where δ is determined in (.).

2 Preliminaries
Throughout this paper, (·, ·) : Rn×Rn → R denotes the standard inner product in Rn and | · |
is the induced norm. For each k ∈ N, Ek =W ,p

kT (R,Rn) denotes the Banach space of kT-
periodic functions on R with values in Rn under the norm

‖u‖Ek :=
[∫ kT

–kT

(∣∣u′(t)
∣∣p + ∣∣u(t)∣∣p)dt

]/p

,

LpkT (R,Rn) denotes the Banach space of kT-periodic functions on R with values in Rn

under the norm

‖u‖p =
[∫ kT

–kT

∣∣u(t)∣∣p dt
]/p

and L∞
kT (R,Rn) denotes the Banach space of kT-periodic essentially boundedmeasurable

functions from R to Rn with the norm

‖u‖∞ = ess sup
{∣∣u(t)∣∣ : t ∈ [–kT ,kT]

}
.

http://www.advancesindifferenceequations.com/content/2014/1/244
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Lemma . [, ] Let x ∈ C(R,Rn) with | d
dt [|x′(t)|p–x′(t)]| ≤ R and

∫ +∞
–∞ |x′(s)|σ ds≤ R,

where R, R, and σ are positive constants. Then x′(t)→  as t → ±∞.

Lemma. [] Let n > ,ω >  and β ∈ [, +∞) be constants, s ∈ C(R,R)with s(t) ∈ [,β)
or s(t) ∈ (–β , ]. Then for each x ∈ C(R,Rn) with x(t +ω) ≡ x(t), we have

∫ ω



∣∣x(t) – x
(
t – s(t)

)∣∣n dt ≤ βn
∫ ω



∣∣x′(t)
∣∣n dt.

Lemma . [] If q : R → Rn is continuous differential on R, a > , μ >  and p >  are
constants, then for every t ∈ R the following inequality holds:

∣∣q(t)∣∣ ≤ (a)–

μ

(∫ t+a

t–a

∣∣q(s)∣∣μ ds
)/μ

+ a(a)–/p
(∫ t+a

t–a

∣∣q′(s)
∣∣p ds

)/p

.

Lemma . [] Let X be a real reflexive Banach space and 
 ⊂ X be a bounded convex
closed subset of X. Suppose that ϕ : X → R is a lower weakly semi-continuous functional. If
there exists a point x ∈ 
 \ ∂
 such that

ϕ(x) > ϕ(x), ∀x ∈ ∂
,

then there must be a x∗ ∈ 
 \ ∂
 such that

ϕ
(
x∗) = inf

u∈

ϕ(u).

In order to investigate the existence of homoclinic solutions to (.), we should study
the existence of kT-periodic solutions to (.) for each k ∈ N in the first case.

Lemma . Assume that the functions G and e satisfy conditions (C)-(C), and also con-
dition (.) holds. Then for each k ∈ N, (.) possesses a kT-periodic solution uk(t) such
that

‖uk‖μ ≤ A and
∥∥u′

k
∥∥
p ≤ A, (.)

where A and A are constants independent of k.

Proof For each k ∈N, let ϕk : Ek → R be defined by

ϕk(u) =
∫ kT

–kT

[

p
∣∣u′(t)

∣∣p +G
(
t,u(t),u(t + τ )

)
+

(
ek(t),u(t)

)]
dt.

Then ϕk ∈ C(Ek ,R) and is weakly lower semi-continuous. Furthermore, one can easily
check

ϕ′
k(u)v =

∫ kT

–kT

[(∣∣u′(t)
∣∣p–u′(t), v′(t)

)
+

(∇xG
(
t,u(t),u(t + τ )

)
, v(t)

)

+
(∇yG

(
t,u(t),u(t + τ )

)
, v(t + τ )

)
+

(
ek(t), v(t)

)]
dt, ∀v ∈ Ek . (.)

http://www.advancesindifferenceequations.com/content/2014/1/244


Lu and Lu Advances in Difference Equations 2014, 2014:244 Page 8 of 15
http://www.advancesindifferenceequations.com/content/2014/1/244

Since
∫ kT
–kT (∇yG(t,u(t),u(t+τ )), v(t+τ ))dt =

∫ kT
–kT (∇yG(t–τ ,u(t–τ ),u(t)), v(t))dt, it follows

from (.) that

ϕ′
k(u)v =

∫ kT

–kT

[(∣∣u′(t)
∣∣p–u′(t), v′(t)

)
+

(∇xG
(
t,u(t),u(t + τ )

)
, v(t)

)

+
(∇yG

(
t – τ ,u(t – τ ),u(t)

)
, v(t)

)
+

(
ek(t), v(t)

)]
dt, ∀v ∈ Ek .

So if u ∈ Ek is a critical point of ϕk , then u must be a kT-periodic solution to (.). Thus,
we should prove that ϕk possesses a critical point. In order to do it, let C =

∫ T
 G(t, , )dt

and 
 = {x ∈ Ek :
∫ kT
–kT |u′(t)|p dt + ∫ kT

–kT |u(t)|μ dt ≤ ρ}, where

ρ =
ρ – μ–

μ
T

–μ
μ – T(p–)

p

max{ 
μ
, p }

, (.)

ρ >  is a constant defined by assumption (C). From [], we see 
 is a closed bounded
convex subset of Ek . Now, for using Lemma ., we should prove that for each k ∈N,

ϕk(u) > ϕk(), ∀u ∈ ∂
.

If u ∈ ∂
, then
∫ kT
–kT |u′(t)|p dt + ∫ kT

–kT |u(t)|μ dt = ρ. So by using Lemma ., we have

‖u‖L∞
kT

≤ T– 
μ

(∫ kT

–kT

∣∣u(s)∣∣μ ds
) 

μ

+ T
p–
p

(∫ kT

–kT

∣∣u′(s)
∣∣p ds

) 
p

≤ 
μ

∫ kT

–kT

∣∣u(s)∣∣μ ds + 
p

∫ kT

–kT

∣∣u′(s)
∣∣p ds + μ – 

μ
T –μ +

(p – )T
p

≤ max

{

μ
,

p

}
ρ +

μ – 
μ

T –μ +
(p – )T

p
.

Substituting ρ in (.) into the above formula,

‖u‖L∞
kT

≤ ρ, ∀u ∈ ∂
.

So, for all u ∈ ∂
, by using conditions (C) and (C),

ϕk(u) =
∫ kT

–kT

[

p
∣∣u′(t)

∣∣p +G
(
t,u(t),u(t + τ )

)
+

(
ek(t),u(t)

)]
dt

≥
∫ kT

–kT

[

p
∣∣u′(t)

∣∣p +G(t, , ) + b
∣∣u(t)∣∣μ – b

∣∣u(t + τ )
∣∣μ – b

∣∣u(t) – u(t + τ )
∣∣p

– b
∣∣u(t) – u(t + τ )

∣∣λ(∣∣u(t)∣∣ (p–λ)μ
p +

∣∣u(t + τ )
∣∣ (p–λ)μ

p
)
+

(
ek(t),u(t)

)]
dt

= kC +
∫ kT

–kT

[

p
∣∣u′(t)

∣∣p + (b – b)
∣∣u(t)∣∣μ +

(
ek(t),u(t)

)]
dt

– b
∫ kT

–kT

∣∣u(t) – u(t + τ )
∣∣p dt – b

∫ kT

–kT

∣∣u(t) – u(t + τ )
∣∣λ∣∣u(t)∣∣ (p–λ)μ

p dt

– b
∫ kT

–kT

∣∣u(t – τ ) – u(t)
∣∣λ∣∣u(t)∣∣ (p–λ)μ

p dt. (.)
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By using the Hölder inequality and Lemma .,

∫ kT

–kT

∣∣u(t) – u(t + τ )
∣∣λ∣∣u(t)∣∣ (p–λ)μ

p dt

≤
(∫ kT

–kT

∣∣u(t) – u(t + τ )
∣∣p dt

) λ
p
(∫ kT

–kT

∣∣u(t)∣∣μ dt
) p–λ

p

≤ τλ
∥∥u′∥∥λ

p‖u‖ (p–λ)μ
p . (.)

Similarly,

∫ kT

–kT

∣∣u(t – τ ) – u(t)
∣∣λ∣∣u(t)∣∣ (p–λ)μ

p dt ≤ τλ
∥∥u′∥∥λ

p‖u‖ (p–λ)μ
p , (.)

∫ kT

–kT

∣∣u(t + τ ) – u(t)
∣∣p dt ≤ τ p∥∥u′∥∥

p. (.)

In view of condition (C), we see

∣∣∣∣
∫ kT

–kT

(
ek(t),u(t)

)
dt

∣∣∣∣ ≤M‖u‖μ. (.)

Substituting (.), (.), (.), and (.) into (.), and using the Young inequality,

ϕk(u)

≥ kC +
(

p
– bτ p

)∥∥u′∥∥p
p + (b – b)‖u‖μ

μ – bτλ
∥∥u′∥∥λ

p‖u‖
(p–λ)μ

p
μ –M‖u‖μ

≥ kC +
(

p
– bτ p

)∥∥u′∥∥p
p + (b – b)‖u‖μ

μ

– bτλ

(
λ

p
∥∥u′∥∥p

p +
p – λ

p
‖u‖μ

μ

)
–M‖u‖μ

= kC +
(

p
– bτ p –

bλ
p

τλ

)∥∥u′∥∥p
p +

(
b – b –

b(p – λ)
p

τλ

)
‖u‖μ

μ –M‖u‖μ

≥ kC +min

{

p
– bτ p –

bλ
p

τλ,



(
b – b –

b(p – λ)
p

τλ

)}(‖u‖μ
μ +

∥∥u′∥∥p
p

)

+



(
b – b –

b(p – λ)
p

τλ

)
‖u‖μ

μ –M‖u‖μ. (.)

By using the inequality (see [])

B

xμ –Mx ≥ –

B

(μ – )

(
M
Bμ

) μ
μ–

, ∀x ∈ [, +∞),

where B >  is a constant, we obtain from (.) the result that

ϕk(u)

≥min

{

p
– bτ p –

bλ
p

τλ,



(
b – b –

b(p – λ)
p

τλ

)}(‖u‖μ
μ +

∥∥u′∥∥p
p

)
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–



(
b – b –

b(p – λ)
p

τλ

)
(μ – )

(
M

(b – b – b(p–λ)
p )μ

) μ
μ–

+ kC

=min

{

p
– bτ p –

bλ
p

τλ,



(
b – b –

b(p – λ)
p

τλ

)}
ρ – μ–

μ
T

–μ
μ – T(p–)

p

max{ 
μ
, p }

–



(
b – b –

b(p – λ)
p

τλ

)
(μ – )

(
M

(b – b – b(p–λ)
p )μ

) μ
μ–

+ kC,

which together with (.) yields

ϕk(u) > kC = ϕk() for all u ∈ ∂
. (.)

Thus by using Lemma ., we see that for each k ∈N, there is a point

uk ∈ 
 :=
{
x ∈ Ek :

∫ kT

–kT

∣∣u′(t)
∣∣p dt +

∫ kT

–kT

∣∣u(s)∣∣μ ds < ρ

}

such that

ϕk(uk) = inf
u∈


ϕ(u).

In view of 
 being an open subset of Ek , we see from Theorem . in [] that

ϕ′
k(uk) = ;

and from (.) and the fact uk ∈ 
, we see

∫ kT

–kT

∣∣u′
k(t)

∣∣p dt +
∫ kT

–kT

∣∣uk(s)∣∣μ ds < ρ – μ–
μ
T

–μ
μ – T(p–)

p

max{ 
μ
, p }

.

The proof is complete. �

Lemma . Assume that assumption (C) of Theorem ., assumptions (D)-(D) of The-
orem . and condition (.) hold. Then for each k ∈ N, (.) possesses a kT-periodic so-
lution uk ∈ Ek such that

‖uk‖Ek < ρ
(
T –q + T

)– 
q , (.)

where ρ >  is a constant determined by (D) and (.). Clearly, ρ is independent of k.

Proof Let � := {x ∈ Ek : ‖x‖Ek ≤ ρ(T –q + T)–

q }. Clearly, � is a bounded closed convex

subset of Ek . Similar to the proof of Lemma ., it suffices to show that for each k ∈N,

ϕk(u) > ϕk(), ∀u ∈ ∂�.

If u ∈ ∂�, then ‖u‖Ek = ρ(T –q + T)–

q . So by using Lemma ., we have

‖u‖L∞
KT

≤ (
T –q + T

) 
q ‖u‖Ek =

(
T –q + T

) 
q ρ

(
T –q + T

)– 
q = ρ. (.)
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Furthermore, for all u ∈ ∂�, by using assumptions (D) and (D), and arguing in a similar
way to the proof of Lemma ., we have

ϕk(u) =
∫ kT

–kT

[

p
∣∣u′(t)

∣∣p +G
(
t,u(t),u(t + τ )

)
+

(
ek(t),u(t)

)]
dt

≥
∫ kT

–kT

[

p
∣∣u′(t)

∣∣p +G(t, , ) + (b – b)
∣∣u(t)∣∣p – b

∣∣u(t) – u(t + τ )
∣∣p

– b
∣∣u(t) – u(t + τ )

∣∣λ(∣∣u(t)∣∣(p–λ) +
∣∣u(t + τ )

∣∣(p–λ)) + (
ek(t),u(t)

)]
dt

≥ kC +
∫ kT

–kT

[

p
∣∣u′(t)

∣∣p + (b – b)
∣∣u(t)∣∣p + (

ek(t),u(t)
)]

dt

– b
∫ kT

–kT

∣∣u(t) – u(t + τ )
∣∣p dt

– b
(∫ kT

–kT

∣∣u(t) – u(t + τ )
∣∣p dt

) λ
p
(∫ kT

–kT

∣∣u(t)∣∣p dt
) p–λ

p
–M‖u‖p

≥ min

{

p
– bτ p –

bλ
p

τλ,



(
b – b –

b(p – λ)
p

τλ

)}(‖u‖pp +
∥∥u′∥∥p

p

)

–



(
b – b –

b(p – λ)
p

τλ

)
(p – )

(
M

(b – b – b(p–λ)
p )p

) p
p–

+ kC

= min

{

p
– bτ p –

bλ
p

τλ,



(
b – b –

b(p – λ)
p

τλ

)}
ρ
(
T –q + T

)– 
q

–



(
b – b –

b(p – λ)
p

τλ

)
(p – )

(
M

(b – b – b(p–λ)
p )p

) p
p–

+ kC,

which together with (.) yields

ϕk(u) > kC = ϕk() for all u ∈ ∂�.

The proof is complete. �

Lemma . [] Let uk ∈ Ek be the kT-periodic solution to (.) that satisfies (.) for
each k ∈ N. Then there exists a subsequence {ukj} of {uk} convergent to a u ∈ C(R,Rn)
in C

loc(R,R
n).

3 Proof of main result

Proof of Theorem . Firstly, we will prove that u(t), which is determined by Lemma .,
is a solution to (.). Since ukj (t) is a kT-periodic solution to (.), it follows that

d
dt

(∣∣u′
kj (t)

∣∣p–u′
kj (t)

)

=∇xG
(
t,ukj (t),ukj (t + τ )

)
+∇yG

(
t – τ ,ukj (t – τ ),ukj (t)

)
+ ekj (t), j ∈N. (.)

Take a,b ∈ R with a < b, then there must be a positive integer j such that for j > j,
[–kjT ,kjT] ⊃ [a – τ ,b + τ ]. So for j > j, ekj (t) = e(t) for all t ∈ [a – τ ,b + τ ], and then
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by (.)

d
dt

(∣∣u′
kj (t)

∣∣p–u′
kj (t)

)

=∇xG
(
t,ukj (t),ukj (t + τ )

)
+∇yG

(
t – τ ,ukj (t – τ ),ukj (t)

)
+ e(t), t ∈ [a,b], j > j.

Thus, by using Lemma ., d
dt [|u′

kj (t)|p–u′
kj (t)]→ w(t) uniformly for t ∈ [a,b], where

w(t) = ∇xG
(
t,u(t),u(t + τ )

)
+∇yG

(
t – τ ,u(t – τ ),u(t)

)
+ e(t).

Since |u′
kj (t)|p–u′

kj (t) → |u′
(t)|p–u′

(t) for t ∈ [a,b] and d
dt (|u′

kj (t)|p–u′
kj (t)) is continuous

differential of |u′
kj (t)|p–u′

kj (t) on (a,b) for every j > j, it follows that w(t) =
d
dt [|u′

(t)|p–u′
(t)] on (a,b). In view of a,b ∈ R being arbitrary with a < b, w(t) =

d
dt [|u′

(t)|p–u′
(t)], t ∈ R, that is, u(t), t ∈ R is a solution to (.).

Below, we will prove u(t)→  and u′
(t)→  as |t| → +∞.

Since

∫ +∞

–∞

(∣∣u(t)∣∣μ +
∣∣u′

(t)
∣∣p)dt = lim

i→+∞

∫ iT

–iT

(∣∣u(t)∣∣μ +
∣∣u′

(t)
∣∣p)dt

= lim
i→+∞ lim

j→+∞

∫ iT

–iT

(∣∣ukj (t)∣∣μ +
∣∣u′

kj (t)
∣∣p)dt,

clearly, for every i ∈ N if kj > i, by (.),

∫ iT

–iT

(∣∣ukj (t)∣∣μ +
∣∣u′

kj (t)
∣∣p)dt ≤

∫ kjT

–kjT

(∣∣ukj (t)∣∣μ +
∣∣u′

kj (t)
∣∣p)dt

≤ Aμ
 +Ap

 .

Let i → +∞ and j → +∞, respectively, we have

∫ +∞

–∞

(∣∣u(t)∣∣μ +
∣∣u′

(t)
∣∣p)dt ≤ Aμ

 +Ap
 , (.)

and then
∫

|t|≥r

∣∣u(t)∣∣μ dt → ,
∫

|t|≥r

∣∣u′
(t)

∣∣p dt →  as r → +∞.

So by using Lemma .,

∣∣u(t)∣∣ ≤ (T)–/μ
(∫ t+T

t–T

∣∣u(s)∣∣μ ds
)/μ

+ T(T)–/p
(∫ t+T

t–T

∣∣u′
(s)

∣∣p ds
)/p

→ , as |t| → +∞. (.)

Thus, ‖u‖∞ ≤ ρ < +∞, which, together with the fact that u(t) is a solution of (.), i.e.,

d
dt

[∣∣u′
(t)

∣∣p–u′
(t)

]
= ∇xG

(
t,u(t),u(t + τ )

)
+∇yG

(
t – τ ,u(t – τ ),u(t)

)
+ e(t),
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yields

∣∣∣∣ ddt
[∣∣u′

(t)
∣∣p–u′

(t)
]∣∣∣∣ ≤ max

t∈[,T],|x|,|y|≤ρ

∣∣∇xG(t,x, y) +∇yG(t – τ ,x, y)
∣∣ + sup

t∈R

∣∣e(t)∣∣
:= R < +∞.

Furthermore, from (.),
∫ +∞
–∞ |u′

(t)|p dt ≤ Aμ
 + Ap

 ; and then by using Lemma ., we
have

∣∣u′
(t)

∣∣ → , as |t| → +∞. (.)

Combining (.) and (.), we see u(t) is a homoclinic solution to (.). Clearly, u(t) �≡ ,
otherwise, by substituting u(t) ≡  into (.), we have

∇xG(t, , ) +∇yG(t – τ , , )≡ e(t). (.)

By using assumption (C), we get∇xG(t, , )+∇yG(t–τ , , ) =  for all t ∈ R. So it follows
from (.) that e(t) ≡ , which contradicts the fact that e(t) �≡  in assumption (C). The
proof is complete. �

Since the proof of Theorem . works almost exactly as the proof of Theorem ., we
omit the proof of Theorem . here.
For example, consider the following equation:

u′′(t) = .u(t) – u(t) – u(t + τ ) + u(t)u(t + τ ) + u(t – τ )

– u(t)u(t – τ ) – u(t) + u(t + τ ) + u(t – τ ) + e(t), (.)

where x(t) ∈ R, e(t) = e
t


(et+e–t ) , and τ >  is a constant.
By calculating, we can chooseG(t,x, y) = x – 

y
 – x – (x– y) – (x– y)(x + y) + sin t

such that (.) is rewritten as

u′′(t) =
∂G(t,u(t),u(t + τ ))

∂x
+

∂G(t – τ ,u(t – τ ),u(t))
∂y

+ e(t).

Corresponding to Theorem ., we see p = , T = π . So we can choose μ = , λ = ,
c = , b = , b = , b =  and b =  such that conditions (C) and (C) are satisfied; and
also

M =
(∫ +∞

–∞

(
e t


(et + e–t)

)/

dt
)/

= 
(



)/

< +∞,

which implies that condition (C) holds. So we can choose ρ = . such that δ = b – ρ =
. > , and if τ >  is sufficiently small, then

δ – b –
b(p – λ)

p
τλ > 
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and

min

{

p
– bτ p –

bλ
p

τλ,



(
δ – b –

b(p – λ)
p

τλ

)}
ρ – μ–

μ
T

–μ
μ – T(p–)

p

max{ 
μ
, p }

–



(
δ – b –

b(p – λ)
p

τλ

)
(μ – )

(
M

(δ – b – b(p–λ)
p τλ)μ

) μ
μ–

> .

Thus, by using Corollary ., we see that (.) has a nontrivial homoclinic solution for
τ >  small enough.
Especially, if τ = , then (.) is converted to

u′′(t) = .u(t) – u(t) + e(t). (.)

So we can choose G(t,x,x) = .x – x + sin t such that (.) is written as

u′′(t) =
∂G(t,u(t),u(t))

∂x
+

∂G(t,u(t),u(t))
∂y

+ e(t).

Clearly, we can choose ρ = . such that all the conditions of Corollary . are satisfied.
So (.) has a nontrivial homoclinic solution.

Remark . From (.), we see that if set G(t,x,x) = F(t,x), then (.) is the special case
of (.) for τ = . Also, from (.), we see that

F(t,x) =G(t,x,x)→ –∞, as |x| → +∞,

which implies that the crucial assumption (B) for guaranteeing the coercive condition
in [] (see Theorem . in Section ) does not hold. So the results in present paper are
essentially new.
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