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1 Introduction
In this paper, we consider the existence of multiple periodic solutions for the following
nonlinear difference equations:

(P)

{
–� u(k – ) = λmu(k) + f (k,u(k)), k ∈ Z[,N],
u() = u(N), u() = u(N + ),

where N >  is a fixed integer, �u(k) = u(k + ) – u(k), �u(k) = �(�u(k)), f (k, ·) : R → R

is a differential function satisfying

f (k, ) = , k ∈ Z[,N], (.)

and λm is them + th eigenvalue of the linear periodic boundary value problem

(P)

{
–� u(k – ) = μu(k), k ∈ Z[,N],
u() = u(N), u() = u(N + ).

Since (.) implies that (P) possesses a trivial periodic solution u ≡ , we are interested
in finding nontrivial periodic solutions for (P). It follows from [] that all the eigenvalues
of (P) are μk =  sin kπ

N , k ∈ Z[,N – ]. Thus μ = , μj = μN–j for j ∈ Z[,N], where

N =

{
N–
 if N is odd,

N
 if N is even.

For the convenience of later use, we denote by  = λ < λ < · · · < λN the distinct eigenval-
ues of (P).Moreover, ifN is odd then all eigenvalues of (P) aremultiplicity two except λ,
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and let

φ,φ,ψ, . . . ,φN ,ψN

be the corresponding orthonormal eigenvectors; if N is even then all eigenvalues are mul-
tiplicity two except λ and λN , and let

φ,φ,ψ, . . . ,φN–,ψN–,φN

be the corresponding orthonormal eigenvectors.
Now we establish the variational framework associated with (P). Set

u =
(
u(),u(), . . . ,u(N)

)T , f(u) =
(
f
(
,u()

)
, f

(
,u()

)
, . . . , f

(
N ,u(N)

))T ,
and

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

 –  · · ·   –
–  – · · ·   
...

...
...

...
...

...
   · · · –  –
–   · · ·  – 

⎞⎟⎟⎟⎟⎟⎟⎟⎠
N×N

.

Then we can rewrite (P) and (P) as

Au = λmu + f(u) and Au = μu,

respectively.
Let E =RN with inner product 〈u, v〉 =∑N

k= u(k)v(k) and norm ‖u‖ =√〈u,u〉. Then

 = λ‖u‖ ≤ 〈Au,u〉 ≤ λN‖u‖, u ∈ E. (.)

For p ≥ , define ‖u‖p = (
∑N

k= |u(k)|p)/p, then there exist positive numbers ap, bp such
that

ap‖u‖ ≤ ‖u‖p ≤ bp‖u‖, ∀u ∈ E. (.)

Define the functional J : E →R by

J(u) =


〈Au,u〉 – 


λm‖u‖ –

N∑
k=

F
(
k,u(k)

)
, u ∈ E, (.)

where F(k,x) =
∫ x
 f (k, s)ds. Then J ∈ C(E,R) with derivatives

J ′(u) = Au – λmu – f(u), u ∈ E, (.)

J ′′(u) = A – λmIN – f ′(u), u ∈ E, (.)
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where IN is the identity matrix of order N , f ′(u) = diag{f ′(,u()), . . . , f ′(N ,u(N))}. Hence
the periodic solutions of (P) are exactly the critical points of J or –J in E.
We assume that the nonlinearity f satisfies the following conditions:

(f) f ′(k, ) =  for k ∈ Z[,N].
(f + ) There exists δ >  such that

F(k,x)≥ , k ∈ Z[,N], |x| ≤ δ.

(f – ) There exists δ >  such that

F(k,x)≤ , k ∈ Z[,N], |x| ≤ δ.

(f +∞) There exist r >  and θ >  such that

 ≤ θF(k,x)≤ f (k,x)x, k ∈ Z[,N], |x| > r.

(f –∞) There exist r >  and θ >  such that

 ≥ θF(k,x)≥ f (k,x)x, k ∈ Z[,N], |x| > r.

(f ) For any a fixed number τ > θ , there exists C >  such that

∣∣F(k,x)∣∣ ≤ C
(
 + |x|τ ), k ∈ Z[,N],x ∈R.

Therefore we regard the problem (P) as resonance at origin under the assumption (f).

Critical point theory has been widely used to study the existence of periodic solutions
and solutions for nonlinear difference boundary value problems since the first result was
established by using variational methods in  (see []). Since then, by using critical
point theory, minimax methods and Mores theory, the existence of solutions for non-
resonant difference equations has been extensively investigated (see [–] and the ref-
erences therein). As for resonant cases, Zhu and Yu [] applied critical point theory to
study the existence of positive solutions for a second order nonlinear discrete Dirichlet
boundary value problem{

–� u(k – ) = f (k,u(k)), k ∈ Z[,N],
u() = , u(N + ) = 

(.)

when nonlinearity f is odd and resonant at infinity. Zheng and Xiao [] employed critical
groups and the mountain pass theorem to study the existence of nontrivial solutions for
(.) when the nonlinearity f (k,u) = V ′(u) and is resonant at infinity. Liu et al. [] used
Morse theory, critical point theory and minimax methods to study the existence of mul-
tiple solutions for (.) with resonance at both infinity and origin, one can refer to [,
].
However, we note that only a few papers concern the existence of periodic solutions

for difference equations with resonance. In , Zhang and Wang [] used variational
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methods and Morse theory to study the multiplicity of periodic solutions for (P) with
double resonance between two consecutive eigenvalues at infinity. The main aim of this
paper is to study the multiplicity of nonzero periodic solutions for (P) with resonance at
origin. The approach is based on critical theory, Morse theory and homological linking.
The rest of this paper is organized as follows. In Section , we collect some useful prelim-

inary results about Morse theory. In Section , we give some auxiliary results. Our main
results and proofs will be given in Section .

2 Preliminaries about Morse theory
In this section, we recall some facts about Morse theory and critical groups [, ]. Let E
be a real Hilbert space.We say that J satisfies the (PS) condition if every sequence {un} ⊂ E
such that J(un) is bounded and J ′(un) →  as n→ ∞ has a convergent subsequence.
Suppose that J ∈ C(E,R) is a functional satisfying the (PS) condition. Let u be an iso-

lated critical point of J with J(u) = c ∈R, and let U be a neighborhood of u. The group

Cq(J ,u) :=Hq
(
Jc ∩U ,

(
Jc \ {u}

) ∩U
)
, q ∈ Z

is called the qth critical group of J at u, where Jc = {u ∈ E | J(u) ≤ c}, H∗(A,B) denotes
the singular relative homology group of the topological pair (A,B) with coefficient field F.
Define

K =
{
u ∈ E | J ′(u) = 

}
.

Assume that K is a finite number. Take a < inf J(K). The group

Cq(J ,∞) :=Hq
(
E, Ja

)
, q ∈ Z

is called the qth critical group of J at infinity (see []). The Morse type numbers of the
pair (E, Ja) are defined byMq :=

∑
u∈K dimCq(J ,u). Denote by βq := dimCq(J ,∞) the Betti

numbers of the pair (E, Ja). By Morse theory, the relationship between Mq and βq is de-
scribed by

q∑
j=

(–)q–jMj ≥
q∑
j=

(–)q–jβj (.)

and

∞∑
q=

(–)qMq =
∞∑
q=

(–)qβq. (.)

From Mq ≥ βq, for each q ∈ N, it follows that if Cl(J ,∞)�  for some l ∈ N, then J must
have a critical point u∗ with Cl(J ,u∗) � . If K = {u∗}, then Cq(J ,∞) ∼= Cq(J ,u∗) for all
q ∈N. Thus if Cl(J ,∞)� Cl(J ,u∗) for some l ∈N, then J must have a new critical point.
For some k ∈ Z, define

δq,kF :=

{
F, q = k,
, q �= k.

http://www.advancesindifferenceequations.com/content/2014/1/236
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Then

Cq(J ,u)∼=
{

δq,F if u is an isolated local minimum of J ,
δq,lF if u is an isolated local maximum of J and l = dimE <∞.

Suppose that J ∈ C(E,R) and u ∈K. Then J ′′(u) is a self-adjoint linear operator on E.
The dimension of the largest negative space of J ′′(u) is called the Morse index of J at u,
and the dimension of the kernel of J ′′(u) is called the nullity of J at u. We say that u
is nondegenerate if the nullity of J at u is zero, i.e., J ′′(u) has a bounded inverse. For an
isolated critical point, the following important result is valid.

Proposition . ([, ]) Suppose that u is an isolated critical point of J ∈ C(E,R) with
finite Morse index μ(u) and nullity ν(u).

(i) Cq(J ,u) ∼=  for q /∈ [μ(u),μ(u) + ν(u)].
(ii) If u is nondegenerate, then Cq(J ,u) ∼= δq,μ(u)F.
(iii) If Cl(J ,u)� , then Cq(J ,u)∼= δq,lF for l = μ(u) or l = μ(u) + ν(u).

Proposition . ([–]) Let  be an isolated critical point of J ∈ C(E,R) with finite
Morse index μ() and nullity ν(). Assume that J has a local linking at  with respect to a
direct sum decomposition E = E– ⊕ E+, l = dimE– < ∞, i.e., there exists ρ >  such that

J(z) ≤  for z ∈ E–,‖u‖ ≤ ρ,

J(u) ≥  for u ∈ E+,‖u‖ ≤ ρ.

Then Cq(J , ) ∼= δq,lF for either l = μ() or l = μ() + ν().

Proposition . ([, ]) Let E be a real Banach space with E = X ⊕ Y and suppose that
l = dimX is finite. Assume that J ∈ C(E,R) satisfies the (PS) condition and

(H) there exist ρ >  and α >  such that

J(u) > α, u ∈ Y ∩ Bρ , (.)

where Bρ = {u ∈ E | ‖u‖ ≤ ρ},
(H) there exist R > ρ >  and φ ∈ Y with ‖φ‖ =  such that

J(u) ≤ α, u ∈ ∂Q, (.)

where Q = {u = v + sφ | v ∈ X,‖v‖ ≤ R, ≤ s ≤ R}.
Then J has a critical point u∗ with J(u∗) = c∗ ≥ α and

Cl+(J ,u∗)� . (.)

3 Auxiliary results
We first show that the functional J satisfies the (PS) condition.

http://www.advancesindifferenceequations.com/content/2014/1/236
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Lemma . Assume that f satisfies (f +∞) or (f –∞), then J defined by (.) satisfies the (PS)
condition.

Proof We only prove the case where (f +∞) holds; the other case can be proved similarly. Let
{un} ⊂ E be such that

∣∣J(un)∣∣ ≤ C, n ∈N, J ′(un) →  as n→ ∞. (.)

We only need to show that {un} is bounded. Taking positive number α ∈ (/θ , /), it fol-
lows from (.) that there exists K ∈N such that

C + α‖un‖ ≥ J(un) – α
〈
J ′(un),un

〉
, n > K .

By (f +∞), there exist C,C >  such that

F(k,x)≥ C
(|x|θ – 

)
, x ∈R,k ∈ Z[,N], (.)∣∣θF(k,x) – f (k,x)x

∣∣ ≤ C, |x| ≤ r,k ∈ Z[,N]. (.)

Hence, by (.), (f +∞), (.) and (.), we have

C + α‖un‖ ≥ J(un) – α
〈
J ′(un),un

〉
=

(


– α

)
〈Aun,un〉 –

(


– α

)
λm‖un‖

–
N∑
k=

[
F
(
k,un(k)

)
– αf

(
k,un(k)

)
un(k)

]
≥

(
α –




)
λm‖un‖ –

∑
|un(k)|>r

[
F
(
k,un(k)

)
– αf

(
k,un(k)

)
un(k)

]
–

∑
|un(k)|≤r

[
F
(
k,un(k)

)
– αf

(
k,un(k)

)
un(k)

]

≥
(

α –



)
λm‖un‖ + (θα – )

N∑
k=

F
(
k,un(k)

)
– α

∑
|un(k)|≤r

[
θF

(
k,un(k)

)
– f

(
k,un(k)

)
un(k)

]
≥

(
α –




)
λm‖un‖ + (θα – )C

(‖un‖θ
θ –N

)
–NC

≥
(

α –



)
λm‖un‖ + (θα – )Caθ

θ‖un‖θ

–N
[
(θα – )C +C

]
, n > K .

Since θ >  and α ∈ ( 
θ
,  ), we get that {un} is bounded. �

Remark . By the proof of Lemma ., we have that if f satisfies (f +∞) or (f –∞), then –J
satisfies the (PS) condition.

http://www.advancesindifferenceequations.com/content/2014/1/236
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For k ∈ Z[,N – ], defining

Ek = span{φ,φ,ψ, . . . ,φk ,ψk}, E = Ek ⊕ E⊥
k , ωk = dimEk ,

then ωk = k +  and

E⊥
k =

{
span{φk+,ψk+, . . . ,φN ,ψN} while N is odd,
span{φk+,ψk+, . . . ,φN–,ψN–,φN} while N is even.

Nowwe construct a linkingwith respect to the decomposition E = Em⊕E⊥
m orE = E⊥

m–⊕
Em–.

Lemma . Suppose that f satisfies (f) and (f ). Then
(i) for any fixed m ∈ Z[,N – ], there exist ρm >  and αm >  such that

J(u) > αm for u ∈ E⊥
m with ‖u‖ = ρm; (.)

(ii) for any fixed m ∈ Z[,N], there exist ρ̃m >  and α̃m >  such that

–J(u) > α̃m for u ∈ Em– with ‖u‖ = ρ̃m. (.)

Proof By (f) and (f ), for any ε > , there exists Cε >  such that

∣∣F(k,x)∣∣ ≤ 

εx +Cε|x|τ , k ∈ Z[,N],x ∈R. (.)

(i) For any u ∈ E⊥
m, it follows from (.) that

J(u) =


〈Au,u〉 – 


λm‖u‖ –

N∑
k=

F
(
k,u(k)

)

≥ 

(λm+ – λm)‖u‖ –

N∑
k=

(


ε
∣∣u(k)∣∣ +Cε

∣∣u(k)∣∣τ)

≥ 

(λm+ – λm – ε)‖u‖ –Cεbτ

τ‖u‖τ

=


(λm+ – λm – ε)‖u‖ – C̃ε‖u‖τ .

Taking ε = λm+–λm
 , we then have

J(u) ≥ 

ε‖u‖ – C̃ε‖u‖τ .

Because τ > , the function h(ρ) = 
ερ

 – C̃ερ
τ defined on [,∞) achieves its maximum

hmax =
τ – 


(
τ–ε

) τ
τ– C̃


–τ
ε

http://www.advancesindifferenceequations.com/content/2014/1/236
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at

ρm =
(
ε–τ C̃ε

) 
–τ .

Hence we get (.), where αm := 
hmax.

(ii) For any u ∈ Em–, by (.), we obtain

J(u) =


〈Au,u〉 – 


λm‖u‖ –

N∑
k=

F
(
k,u(k)

)

≤ 

(λm– – λm)‖u‖ +

N∑
k=

(


ε
∣∣u(k)∣∣ +Cε

∣∣u(k)∣∣τ)

≤ 

(λm– – λm + ε)‖u‖ +Cεbτ

τ‖u‖τ

=


(λm– – λm + ε)‖u‖ + C̃ε‖u‖τ .

Taking ε = λm–λm–
 , we then obtain

J(u) ≤ –


ε‖u‖ + C̃ε‖u‖τ .

As τ > , the function h(ρ) = – 
ερ

 + Ĉερ
τ defined on [,∞) achieves its minimum

hmin = –
τ – 


(
τ–ε

) τ
τ– C̃


–τ
ε

at

ρ̃m =
(
ε–τ C̃ε

) 
–τ .

Therefore, we obtain (.), where α̃m := 
hmin. �

Now we define

Bm =
{
u ∈ E⊥

m,‖u‖ = ρm
}
, Em+ = Em ⊕ span{φm+}, m ∈ Z[,N – ],

B̃m =
{
u ∈ Em–,‖u‖ = ρ̃m

}
, Ẽm+ = span{φm–} ⊕ E⊥

m–, m ∈ Z[,N],

F–(k,x) =max
{
–F(k,x), 

}
, F+(k,x) =max

{
F(k,x), 

}
,

M– = sup
(k,x)∈Z[,N]×R

F–(k,x), M+ = sup
(k,x)∈Z[,N]×R

F+(k,x).

Lemma. (i) Suppose that f satisfies (f +∞).Then, for any fixedm ∈ Z[,N –], there exist
σ >  and R >  such that when M– ≤ σ ,

J(u) ≤ αm for u ∈ ∂Qm, (.)

where Qm = {u ∈ Em+ | ‖u‖ ≤ R,u = vm + tφm+, vm ∈ Em, t ≥ }.

http://www.advancesindifferenceequations.com/content/2014/1/236


Zhang et al. Advances in Difference Equations 2014, 2014:236 Page 9 of 14
http://www.advancesindifferenceequations.com/content/2014/1/236

(ii) Suppose that f satisfies (f –∞). Then, for any fixed m ∈ Z[,N], there exist σ >  and
R >  such that when M+ ≤ σ ,

–J(u) ≤ α̃m, for u ∈ ∂Q̃m,

where Q̃m = {u ∈ Ẽm+ | ‖u‖ ≤ R,u = tφm– + vm–, vm– ∈ Em–, t ≥ }.

Proof We only prove (i); the proof of (ii) is similar. For any u ∈ Em+, it follows from (f +∞)
and (.) that

J(u) =


〈Au,u〉 – 


λm‖u‖ –

N∑
k=

F
(
k,u(k)

)

≤ 

(λm+ – λm)‖u‖ –

N∑
k=

C
(∣∣u(k)∣∣θ – 

)
≤ 


(λm+ – λm)‖u‖ –Caθ

θ‖u‖θ +NC.

As θ > , we get

J(u) → –∞, u ∈ Em+,‖u‖ → ∞.

Therefore, there exists R > ρm such that

J(u) ≤ , u ∈ Em+,‖u‖ = R. (.)

For u ∈ Em,

J(u) =


〈Au,u〉 – 


λm‖u‖ –

N∑
k=

F
(
k,u(k)

)
≤ –

∑
F(k,u(k))≤

F
(
k,u(k)

)
≤NM–.

Taking σ = αm
N , whenM– ≤ σ ,

J(u) ≤ αm for u ∈ Em with ‖u‖ ≤ R. (.)

By (.) and (.), we get (.). �

4 Main results and proofs
In this section, we give our main results and proofs. First, we compute the critical groups
of J at both infinity and the origin.

Lemma . Assume that f satisfies (f). Then
(i) Cq(J ,∞) ∼= δq,NF if f satisfies (f +∞).
(ii) Cq(–J ,∞) ∼= δq,NF if f satisfies (f –∞).

http://www.advancesindifferenceequations.com/content/2014/1/236
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Proof We only prove (i); (ii) can be proved similarly. Fix λm ∈ R. Defining B = {u ∈ E |
‖u‖ ≤ }, we then have ∂B = {u ∈ E | ‖u‖ = }. For any u ∈ ∂B and t > , it follows from
(.) and (.) that

J(tu) =


t〈Au,u〉 – 


λmt –

N∑
k=

F
(
k, tu(k)

)

≤ 

(λN – λm)t –

N∑
k=

C
(∣∣tu(k)∣∣θ – 

)
≤ 


(λN – λm)t –Caθ

θ t
θ +NC.

As θ > , this implies that

J(tu) → –∞ as t → +∞. (.)

On the other hand, by (f +∞), we have

dJ(tu)
dt

= t〈Au,u〉 – λmt –
N∑
k=

f
(
k, tu(k)

)
u(k)

=

t

(
J(tu) +

N∑
k=

(
F

(
k, tu(k)

)
– f

(
k, tu(k)

)
tu(k)

))

≤ 
t

(
J(tu) +

∑
|tu(k)|≤r

(
F

(
k, tu(k)

)
– f

(
k, tu(k)

)
tu(k)

))

≤ 
t
(
J(tu) +NM

)
,

whereM :=max{|x|≤r,k∈Z[,N]} |F(k,x) – f (k,x)x|. Hence, for any fixed number a with a <
–NM, we obtain that

J(tu) ≤ a implies
dJ(tu)
dt

< . (.)

By J() = , (.) and (.), we get that for any u ∈ ∂B, there exists a unique ξ (u) >  such
that

J
(
ξ (u)u

)
= a, u ∈ ∂B. (.)

By (.) and the implicit function theorem, we obtain that ξ ∈ C(∂B,R). Define h :
E\{} →R as

h(u) =

{
 if J(u) ≤ a,
‖u‖–ξ (‖u‖–u) if J(u) > a,u �= .

Then h ∈ C(E\{},R). Now define η : [, ]× E\{} → E\{} as

η(t,u) = ( – t)u + th(u)u.

http://www.advancesindifferenceequations.com/content/2014/1/236
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Clearly, η is continuous, and for any u ∈ E\{} with J(u) > a, it follows from (.) that

J
(
η(,u)

)
= J

(
ξ
(‖u‖–u)‖u‖–u)

= a.

Therefore

η(,u) ∈ Ja, ∀u ∈ E\{}, η(t,u) = u, ∀t ∈ [, ],u ∈ Ja.

So Ja is a strong deformation retract of E\{}. Notice that dimE =N . Hence we have

Cq(J ,∞) :=Hq
(
E, Ja

) ∼= Hq
(
E,E\{}) ∼= H(B, ∂B) ∼= δq,NF. �

Lemma . Assume that f satisfies (f).
(i) If f satisfies (f – ), then for m ∈ Z[,N],

Cq(J , )∼= δq,m–F, Cq(–J , ) ∼= δq,N–m+F.

(ii) If f satisfies (f + ), then form ∈ Z[,N – ],

Cq(J , )∼= δq,m+F, Cq(–J , ) ∼= δq,N–m–F.

Proof By (f) and (.), we have J ′′() = A – λmIN .
It follows from (f) that u =  is a degenerate critical point of J with Morse index μ() =

ωm– and nullity ν(). This implies that u =  is a degenerate critical point of –J withMorse
index μ̃() =N –ωm and nullity ν̃() = ν().
(i) By (f – ), we can verify that J has a local linking structure at  with respect to E =

Em– ⊕ E⊥
m– (see []). That implies –J has a local linking structure at  with respect to

E = E⊥
m– ⊕ Em–. Notice that ωm– = m –  and μ̃() + ν̃() =N – m +  form ∈ Z[,N].

Using Proposition ., we get

Cq(J , )∼= δq,m–F, Cq(–J , ) ∼= δq,N–m+F.

(ii) Similarly, by (f + ), we can verify that J has a local linking structure at  with respect
to E = Em ⊕E⊥

m (see []). That implies –J has a local linking structure at  with respect to
E = E⊥

m⊕Em. Notice thatμ()+ν() = ωm = m+ form ∈ Z[,N –]. By Proposition .,
we have

Cq(J , )∼= δq,m+F, Cq(–J , ) ∼= δq,N–m–F. �

Next, we give our main results.

Theorem . Let f satisfy (f) and (f ).
(i) If f satisfies (f +∞), then for any fixed m ∈ Z[,N – ], there exists σ >  such that

whenM– ≤ σ , (P) has at least one nonzero periodic solution u satisfying

Cm+(J ,u)� . (.)
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(ii) If f satisfies (f –∞), then for any fixed m ∈ Z[,N], there exists σ >  such that when
M+ ≤ σ , (P) has at least one nonzero periodic solution u satisfying

CN–m+(–J ,u)� . (.)

Theorem . Let f satisfy (f) and (f ).
(i) If f satisfies (f – ) and (f +∞), then, for any fixed m ∈ Z[,N – ], there exists σ >  such

that whenM– ≤ σ , (P) has at least three nonzero periodic solutions.
(ii) If f satisfies (f + ) and (f –∞), then, for any fixed m ∈ Z[,N – ], there exists σ >  such

that whenM+ ≤ σ , (P) has at least three nonzero periodic solutions.

Finally, we prove our main results.

Proof of Theorem . We only prove (i); the proof of (ii) is similar. It follows from (f +∞)
and Lemma . that J satisfies the (PS) condition. By Lemmas . and ., J satisfies (H)
and (H). This implies that Bm and ∂Qm homologically link with respect to the direct sum
decomposition E = Em ⊕ E⊥

m (see Example  of Chapter II in []). Notice that dimEm =
m+ . Applying Proposition ., we get that J has a critical point u such that J(u) = c ≥
αm and (.). Moreover, it follows from (f) that J() = . Hence u �= . �

Proof of Theorem . We only prove (i); (ii) can be proved similarly. It follows from
Lemma .(i) that

Cq(J ,∞)∼= δq,NF. (.)

Using Lemma .(i), we have

Cq(J , )∼= δq,m–F. (.)

By Theorem ., we know that there exists σ >  such that when M– ≤ σ , (P) has at least
one nonzero periodic solution u satisfying (.).
By Proposition .(i), we have

Cq(J ,u) ∼=  for q /∈ [
μ(u),μ(u) + ν(u)

]
.

Combining with (.), we get that m +  ∈ [μ(u),μ(u) + ν(u)]. Note that ν(u) =
dimker J ′′(u)≤ .
() If ν(u) = , then by Proposition .(ii) and (.),

Cq(J ,u) ∼= δq,m+F.

() If ν(u) = , then m +  = μ(u) or m +  = μ(u) + ν(u). By Proposition .(iii),

Cq(J ,u) ∼= δq,m+F.
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() If ν(u) = , then m +  = μ(u) or m +  = μ(u) + ν(u) or Cq(J ,u) ∼=  for q �=
μ(u) + . It follows from Proposition .(iii) and (.) that

Cq(J ,u) ∼=
{

δq,m+F if m +  = μ(u) or m +  = μ(u) + ν(u),
 ∀q �= m + .

Thus, we conclude that

Cq(J ,u) ∼=
{

δq,m+F if ν(u) = , ,
 ∀q �= m + , if ν(u) = .

(.)

Assume that K = {,u}. Then the mth Morse inequality (.) is expressed as – > .
This is impossible. Thus J must have another nonzero critical point u. By Morse theory,
we have either

Cm(J ,u)�  (.)

or

Cm–(J ,u)� . (.)

Suppose that (.) holds. Then it follows from (.) and Proposition .(i), (iii) that

Cq(J ,u) ∼=
{

δq,mF if ν(u) = , ,
 ∀q �= m, if ν(u) = .

(.)

Noticing thatm ∈ Z[,N – ], we have that{
m + ≤N while N is odd,
m +  <N while N is even.

(.)

Assume that K = {,u,u}. We will divide the consideration into four cases.
() ν(u) = ,  and ν(u) = , . By (.)-(.), (.) and (.), we get{

(.) is described as  = – while N is odd,
the m + th (.) is expressed as – ≥  while N is even.

(.)

These are impossible.
() ν(u) =  and ν(u) = . By the mth and m + th Morse inequalities, we get that

rankCm(J ,u) = . (.)

It then follows from (.)-(.), (.), (.) and (.) that{
(.) is expressed as rankCm+(J ,u) = – while N is odd,
the m + th (.) is expressed as – rankCm+(J ,u) ≥  while N is even.

(.)

These contradict (.).
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() ν(u) = ,  and ν(u) = . We have (.) and (.). These are impossible.
() ν(u) =  and ν(u) = , . Then we have (.), which contradicts (.).
Hence, J must have a third nonzero critical point u. The proof of the case where (.)

holds is similar. This completes the proof. �
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