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Abstract
In this paper, we are concerned with the theoretical analysis of the bifurcations for a
deterministic SIR epidemic model in discrete time. By deriving equations describing
flows on the center manifolds, we discuss the transcritical bifurcation at the
disease-free equilibrium point and the direction and stability of the flip bifurcation at
the positive endemic equilibrium point. We give explicit conditions to check the
stability of equilibrium points and the critical parameter for the emergence of a flip
bifurcation. For illustrating the theoretical analysis, we also give some numerical
simulation examples.
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1 Introduction
Since Kermack andMcKendrick [] proposed the Susceptible-Infective-Recovered model
(or SIR for short) in , a lot of glorious studies on the dynamics of epidemicmodels have
been presented (see [–]). The basic and important research subjects for these systems
are local and global stability of the disease-free equilibrium point and the endemic equi-
librium point, existence of periodic solutions, persistence and extinction of the disease,
etc. According to the dependence on the variable (i.e., time), these systems were classified
into two types: continuous-time systems and discrete-time systems.
For the epidemic models, there has been a lot of research focusing on the case of contin-

uous time (see [–] and that cited therein). However, discrete-time models (also called
difference equations) are also useful formodeling situations of epidemic. They cannot only
have the basic features of the corresponding continuous-time models but also provide a
substantial reduction of computer time (see []). What is more, a lot of discrete-time
models are not trivial analogs of their continuous ones and simple models can even ex-
hibit complex behavior. The following two logistic difference equations are such examples
that have received much attention (see [, ]):

xn+ = ( + r)xn( – xn)

and

xn+ = xn exp
(
r( – xn)

)
.
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As the value of r increases above , we have period doubling and eventually chaos.
In view of the above-mentioned reasons, Allen systematically compared the discrete-

time SI, SIS, and SIR models with the corresponding continuous-time ones in [] and
later compared deterministic discrete-time SIS and SIR models with stochastic ones in
[]. She showed in [] that the simple discrete-time SI and SIR models without positive
feedback (e.g. recovery or births) to the susceptible class do not have a periodic solution.
This behavior is qualitatively similar to that of the continuous counterparts. On the con-
trary, if there are some types of positive feedback to the susceptible class, the behavior in
the discrete-time SI, SIS, and SIR models differs from that of their continuous analogs.
The author also showed that for a sufficiently large contact rate the period-doubling and
chaotic behavior for the SIS model is possible. However, for the case of the SIR model
with positive feedback (births and deaths) the author only obtained the simulation results
of periodic behavior.More specific andmore in-depth questions, such as the kinds of peri-
odic behavior and the conditions the periodic behavior arises from, have not been studied.
Therefore, the following questions will be naturally asked on the discrete-time SIR model
with births and deaths.
. What kinds of periodic behavior may occur?
. What restriction is enough to guarantee this periodic behavior?
. Is the period-doubling behavior possible?
As far as we know, there was no literature of theoretical analysis to answer the above

questions up till now. In this paper, we pay attention to the theoretical analysis of structural
stabilities of the disease-free equilibrium point and the endemic equilibrium point under
certain restrictive conditions of α, β , and γ . By applying center manifold theory, we find
and prove the existence of a transcritical bifurcation at a disease-free equilibrium point
and flip bifurcation (or period-doubling bifurcation) at a positive endemic equilibrium
point. The transcritical bifurcation behavior (see Theorem .) shows that when we have
the restrictive condition s =  the SIR system has only one equilibrium point (disease-free
equilibrium point), when s is slightly away from zero, another equilibrium point (endemic
equilibrium point) occurs, and, moreover, their stabilities exchange at s = . The flip bi-
furcation behavior (see Theorem .) demonstrates that when the restrictive parameter
γ crosses over the critical value slightly with a given direction, two endemic equilibrium
points appear and form a period-two orbit (cycle). From these results we properly answer
the above question. For illustrating our theoretical conclusions, we also give some numer-
ical simulation examples.
For the literature and more information on bifurcation of the equilibrium point of map,

one should refer to the references [–] and those cited therein.
We consider the following deterministic epidemic model studied by Allen []:

⎧⎪⎨
⎪⎩
Sn+ = Sn( – α�t

N In) + β�t(N – Sn),
In+ = In( – γ�t – β�t + α�t

N Sn),
Rn+ = Rn( – β�t) + γ�tIn,

()

where Sn, In, and Rn represent susceptible, infective, and removed (or isolated) subgroups,
respectively, n represents n�t, n = , , , . . . , �t is a fixed time interval (e.g.,  hour or
 day). It is assumed that S > , I > , R ≥ , and S + I +R =N and the parameters are
positive, α > , β > , γ > . To guarantee the solutions of system () to be non-negative for
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all initial conditions, we further assume β + γ ≤  (see []). It is easy to see that Sn + In +
Rn =N for all time, i.e. the total population size remains constant. α�t is the value of the
force of infection (number of contacts that result in infection per susceptible individual
in the time interval �t), β�t is the number of births or deaths per individual during the
time interval �t (number of births = number of deaths) and γ�t is the removal number
(number of individuals that recover in the time interval�t). In addition, it is assumed that
there are no deaths due to the disease, no recruitment, and no vertical transmission of the
disease (all new-born members are susceptible) and that the individual’s recovery leads to
immunity.
In order to discuss the model () easily, some preliminary transformations will be made

hereafter.
Dividing both sides of every equation of () by N and performing a scaling

n→ n�t, α → α�t, β → β�t, γ → γ�t,

Sn → Sn
N
, In → In

N
, Rn → Rn

N
,

we write () in the form

⎧⎪⎨
⎪⎩
Sn+ = ( – αIn)Sn + β( – Sn),
In+ = ( – β – γ )In + αInSn,
Rn+ = ( – β)Rn + γ In,

()

where α > , β > , γ > , and β + γ ≤ . In view of the relation Sn + In +Rn = , system ()
becomes the following one:

{
In+ = ( – β – γ )In + αIn( – In – Rn),
Rn+ = ( – β)Rn + γ In.

()

Rewrite () as a planar map F :

[
I
R

]
�→

[
( + α – β – γ )I – αI – αIR

γ I + ( – β)R

]
. ()

Set

s =
α – (β + γ )

β + γ
β .

It is obvious that s > –β . If –β < s ≤  then the map () has only one equilibrium point
P(, ); if s >  then it has two equilibrium points P(, ) and Q(I∗,R∗), where

I∗ =
s
α
, R∗ =

γ s
αβ

.

The organization of this paper is as follows. In the next section, we identify all cases
of non-hyperbolic and hyperbolic equilibrium points, which is the fundament for all suc-
ceeding studies. In Section , we discuss the transcritical bifurcation at the disease-free
equilibrium point of (). Section  is devoted to the investigation of the direction and
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stability of the flip bifurcation at the positive endemic equilibrium point by computing a
center manifold. In Section , some simulations are made to demonstrate our results.

2 Non-hyperbolic and hyperbolic cases
In this section, s, γ will be taken as two parameters and the non-hyperbolic and hyperbolic
cases will be discussed in the parameter space of s, γ . For the discussion of the property
of equilibrium point P(, ) we define the notation first:

β =  – β ,

� =
{
(s,γ ) | s = , < γ ≤ β

}
,

D =
{
(s,γ ) |  ≤ γ ≤ β,  ≤ s

}
,

D =
{
(s,γ ) |  ≤ γ ≤ β, –β ≤ s ≤ 

}
.

It is obvious that the domain {(s,γ ) ∈ R
 | –β < s,  < γ ≤ β} is divided by the line � into

two districts D and D for equilibrium point P (see Figure ).

Lemma . Assume that  < β < . The equilibrium point P of () has the following prop-
erties:
() It is non-hyperbolic if and only if (s,γ ) lies on the line �.
() (a) If (s,γ ) ∈D, it is a saddle node; (b) if (s,γ ) ∈D, it is a stable node.

Proof The Jacobian matrix of () at P is

DF(P) =

[
α + β – γ 

γ β

]

and its eigenvalues are

λ = α + β – γ , λ = β.

() From the assumption  < β < , we see that  < λ < . Then non-hyperbolicity hap-
pens in the case λ = ±. In view of  < α and  < β +γ ≤ , we know λ = – is impossible.
From λ = , we get α – β – γ = , i.e. s = , implying that (s,γ ) lies on �.
() (a) When s >  (referred to the case D), the equilibrium point P is a saddle node

since λ > . (b) When –β < s <  (referred to the case D), the eigenvalue ≤ λ < , then
the equilibrium point P is a stable node. The proof is complete. �

Figure 1 Districts for equilibrium point P.
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Figure 2 Districts for equilibrium point Q.

For the discussion of the property of the equilibrium pointQ(I∗,R∗) we define the nota-
tion

s∗ = ( –
√

β),

s∗ = ( +
√

β),

s∗ = ( + β),

C =
{
(s,γ ) | γ = (s – β)/(s), s∗ ≤ s≤ β

}
,

C =
{
(s,γ ) | γ = (s – β)/(s),β < s≤ s∗

}
,

C =
{
(s,γ ) | γ = ( – β)(s – )/s, ≤ s≤ s∗

}
,

D =
{
(s,γ ) |  ≤ γ ≤ β,  ≤ s≤ s, where s satisfies: (s,γ ) ∈ C

}
,

D =
{
(s,γ ) |  ≤ γ ≤ β, s ≤ s≤ s, where si satisfy: (si,γ ) ∈ Ci, i = , 

}
,

D =
{
(s,γ ) |  ≤ γ ≤ β, s ≤ s ≤ s, where si satisfy: (si,γ ) ∈ Ci, i = , 

}
,

D =
{
(s,γ ) |  ≤ γ ≤ β, s ≤ s, where s satisfies: (s,γ ) ∈ C

}
.

Obviously, the domain {(s,γ ) ∈ R
 |  < s,  < γ ≤ β} is divided by the curves C, C and

C into four districts D, D, D, and D for equilibrium point Q (see Figure ).

Lemma . The equilibrium point Q of () has the following properties:
() It is non-hyperbolic if and only if (s,γ ) lies on the curve C.
() (a) If (s,γ ) ∈ C,C,D or D, it is a stable node; (b) if (s,γ ) ∈D, it is a saddle node;

(c) if (s,γ ) ∈D, it is a stable focus.

Proof Performing a coordinate shift as follows:

Ĩ = I – I∗, R̃ = R – R∗,

and letting F̃ denote the transformed F , we translate the equilibrium point Q(I∗,R∗) into
Q̃(, ) and discuss the equilibrium point Q̃ of the map F̃ . The matrix of linearization of F̃
at Q̃ is

DF̃
(
(, )

)
=

[
 – α–β–γ

β+γ
β – α–β–γ

β+γ
β

γ β

]
=

[
 – s –s
γ β

]
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and its eigenvalues are

λ =
( – s + β) +

√
( – s + β) – (β + (γ – β)s)


,

λ =
( – s + β) –

√
( – s + β) – (β + (γ – β)s)


.

()

() It is well known that Q̃ is hyperbolic if and only if none of the eigenvalues λ, λ lies
on the unit circle S. Denote � := ( – s + β) – (β + (γ – β)s). In the case of � ≥ ,
λ and λ are both real. Then the non-hyperbolicity happens when |λ| or |λ| is . For
whether λ =  or λ = , we get

(β + γ )s = .

However, for positive equilibrium point Q̃, we have β + γ >  and s > . Therefore, neither
λ =  nor λ =  is possible. Next, we examine λ = – and λ = –. From whether λ = –
or λ = –, we get

γ = ( + β)(s – )/s.

By condition  < γ ≤ β = –β , we see that  < s≤ (+β). It is easy to check that λ = –
and λ =  – s + β – λ =  – s + β ∈ (–, ) if and only if (s,γ ) ∈ C.
() When � ≥  and (s,γ ) /∈ C, the equilibrium point Q̃ is hyperbolic.
(a) If � = , the matrix has a double real eigenvalue λ = λ = ( – s + β)/. It is obvious

that λ = λ < . Considering the line γ = β and the curve γ s = ( – s – β), we can get
two intersection points (s∗ ,β) and (s∗,β) where s∗ = ( –

√
β) and s∗ = ( +

√
β). Then

s∗ ≤ s ≤ s∗ as γ ≤ β. This implies λ = λ ≥ ( + β – s∗)/ = –
√

β > –. Therefore, the
equilibrium point Q̃ is a stable node in the cases of C and C.
If � > , the eigenvalues λ and λ are different real numbers. We first discuss the case

that  < s ≤ s, i.e. (s,γ ) ∈D. In this case we have

λ <
 – s + β


< ,

dλ

dγ
=

s√
( – s + β) – (β + (γ – β)s)

> .

Since

lim
γ→+

λ = lim
γ→+

( – s + β) –
√
( – s + β) – (β + (γ – β)s)


= β > ,

we have  < λ <  for (s,γ ) ∈ D. On the other hand, there also exists  < λ <  for
(s,γ ) ∈D. In fact, since

lim
γ→+

λ = lim
γ→+

( – s + β) +
√
( – s + β) – (β + (γ – β)s)


=  – s < 

and

dλ

dγ
= –

s√
( – s + β) – (β + (γ – β)s)

< ,

we have  < λ < λ < . Therefore, the equilibrium point Q̃ is a stable node as (s,γ ) ∈D.

http://www.advancesindifferenceequations.com/content/2014/1/168
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In the case s < s ≤ s, i.e. (s,γ ) ∈ D, by a similar method to the above we easily get
– < λ, <  and the equilibrium point Q̃ is also a stable node.
(b) We discuss the case that s < s, i.e. (s,γ ) ∈D. In this case we have

dλ

ds
=



(
 – s – β + γ√

( – s + β) – (β + (γ – β)s)
– 

)

≤ 


(
–β√

( – s + β) – (β + (γ – β)s)
– 

)
< .

Then, in view of λ|s=s = –, we have λ < – for (s,γ ) ∈D. By a simple computation one
derives λ > – for s > s∗ = ( + β) and γ = β. Moreover, we have

lim
γ→+

λ = β < ,
dλ

dγ
< .

Then – < λ <  for (s,γ ) ∈ D. This means that the equilibrium point Q̃ is a saddle for
(s,γ ) ∈D. The proof is complete.
(c) In the case of � < , λ and λ are a pair of conjugate complex. Since

|λ| = |λ| = 


[
( – s + β) + 

(
β + (γ – β)s

)
– ( – s + β)

]
= β + (γ – β)s ≤ β < ,

λ and λ lie inside of S and the equilibrium point Q is a stable focus for the case (D).
�

3 Transcritical bifurcation
In this section we consider the case that (s,γ ) ∈ �, where the transcritical bifurcation at
equilibrium point P(, ) will happen.

Theorem . A transcritical bifurcation occurs at the equilibrium point P when s = .
More concretely, for a parameter s being slightly less than zero there are two equilibrium
points: a stable point P and an unstable negative equilibrium point which coalesce at s = ;
for parameter s being slightly greater than zero there are also two equilibrium points: an
unstable equilibrium point P and a stable positive equilibrium point Q. Thus an exchange
of stability has occurred at s = .

Proof For (s,γ ) ∈ �, we have λ =  and  < λ =  – β < . Consider s as the bifurcation
parameter and write F as Fs to emphasize the dependence on s. One can easily see that
the matrix DFs(, ) is

[
 
γ  – β

]

and it has eigenvectors

(
,

γ

β

)T

, (, )T ()

http://www.advancesindifferenceequations.com/content/2014/1/168
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corresponding to λ and λ, respectively, where T means the transpose of the matrices.
Our goal is to determine the nature of the stability of (, ) for s near zero. First, we must
put the matrix DFs(, ) into a diagonal form.
Using the eigenvectors (), we obtain the transformation

[
I
R

]
=

[
 
γ

β


][
u
v

]
()

with inverse

[
u
v

]
=

[
 
– γ

β


][
I
R

]
()

which transforms system () into

[
u
v

]
�→

[
 
  – β

][
u
v

]
+

[
β+γ

β
su – α( β+γ

β
u + γ

β
uv)

βγ+γ 

β su + α
γ

β
( β+γ

β
u + γ

β
uv)

]
. ()

Rewrite system () in the suspended form

⎡
⎢⎣
u
v
s

⎤
⎥⎦ �→

⎡
⎢⎣
  
  – β 
  

⎤
⎥⎦

⎡
⎢⎣
u
v
s

⎤
⎥⎦ +

⎡
⎢⎣

β+γ

β
su – α( β+γ

β
u + γ

β
uv)

βγ+γ 

β su + α
γ

β
( β+γ

β
u + γ

β
uv)



⎤
⎥⎦ . ()

Thus, from the center manifold theory (see Theorem .. in []), the stability of the
equilibrium point (u, v) = (, ) near s =  can be determined by studying a one-parameter
family of maps on a center manifold which can be represented as follows:

Wc(, ) =
{
(u, v, s) ∈R

 | v = h(u, s),h(, ) = ,Dh(, ) = 
}

for sufficiently small u and s.
We now want to compute the center manifold and derive the mapping on the center

manifold. We assume

h(u, s) = au + bus + cs +O() ()

near the origin, whereO() means terms of order ≥ . By Theorem .. in [], the coef-
ficients a, b, and c can be determined by the equation

N
(
h(u, s)

)
:= h

(
u +

β + γ

β
su – α

(
β + γ

β
u +

γ

β
uh(u, s)

)
, s

)

– ( – β)h(u, s) +
βγ + γ 

β su + α
γ

β

(
β + γ

β
u +

γ

β
uh(u, s)

)

= . ()

http://www.advancesindifferenceequations.com/content/2014/1/168
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Substituting () into () and comparing coefficients of u, us, and s in (), we get

⎧⎪⎨
⎪⎩
a – ( – β)a – α

γ

β
( + γ

β
) = ,

b – ( – β)b + γ

β
= ,

c – ( – β)c = ,

from which we resolve

a =
αγ 

β
(β + γ ), b = –

γ

β , c = .

Therefore the expression of () is approximately determined. Substituting () into (),
we obtain a one-dimensional map reduced to the center manifold

u �→ φs(u) = u +
β + γ

β
us – α

β + γ

β
u +

αγ 

β (β + γ )u –
(β + γ )γ 

β us +O(). ()

It is easy to check that

∂φs

∂s
(, ) = ,

∂φs

∂u ∂s
(, ) 	= ,

∂φs

∂u
(, ) 	= . ()

The condition () implies that in the study of the orbit structure near the bifurcation point
terms ofO() do not qualitatively affect the nature of the bifurcation, namely they do not
affect the geometry of the curves of equilibrium points passing through the bifurcation
point. Thus, () shows that the orbit structure of () near (u, s) = (, ) is qualitatively
the same as the orbit structure near (u, s) = (, ) of the map

u �→ u +
β + γ

β
us – α

β + γ

β
u. ()

The map () can be viewed as a truncated normal form for the transcritical bifurcation
(see [, p.]). The stability of the two branches of equilibriumpoints lying on both sides
of s =  are easily verified. �

Remark . (The biological explanation of Theorem .) Because the epidemic model ()
cannot have a negative equilibrium point in real life, when s <  (i.e. α < β +γ ), () has only
a disease-free equilibrium point (N , , ) which is stable. In this case, for any given initial
value (S, I,R) with I > , the state (Sn, In,Rn) will finally tend to (N , , ), namely, the
final situation of epidemic is free fromdisease. However, when s > , a positive equilibrium
point will occur. It is an endemic equilibrium point (S∗, I∗,R∗) and stable, meanwhile, the
disease-free equilibrium point (N , , ) changes to unstable. For any given initial value
(S, I,R) with I > , the state (Sn, In,Rn) will finally tend to (S∗, I∗,R∗).

4 Flip bifurcation
This section is devoted to the analysis for the case (s,γ ) ∈ C, where bifurcation happens
at the equilibrium point Q(I∗,R∗). From Section , we have, for (s,γ ) ∈ C,

λ = –, λ =  – s + β – λ = β +  – s,

http://www.advancesindifferenceequations.com/content/2014/1/168
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λ – λ = β +  – s, s =
(β + )
β +  – γ

.

For convenience, we let

E :=
α( – λ)( – λ)
(λ – λ)(λ

 – λ)
,

E :=


λ – λ

[
( – λ)(λ – λ) + α( – λ)s – (λ – λ)s – αs

]
,

E :=


λ – λ

[
( – λ)(λ – λ) + α( – λ)s – (λ – λ)s – αs

]
.

Then we have the following theorem.

Theorem . If E
 – EE 	= , then a flip bifurcation occurs at the equilibrium point

Q(I∗,R∗) when (s,γ ) ∈ C, i.e. γ = (β + )( – /s) and s ∈ (, s∗). More concretely, for
E
 – EE > , an attractive -periodic orbit of map F emerges near the equilibrium point

when γ < (β + )( – /s), but the -periodic orbit does not exist when γ ≥ (β + )( – /s),
for E

 – EE < , a repellent -periodic orbit of map F emerges near the equilibrium point
when γ > (β + )( – /s), but the -periodic orbit does not exist when γ ≤ (β + )( – /s).

Proof For (s,γ ) ∈ C, we have λ = – and λ ∈ (–, ). Consider s as the bifurcation param-
eter and write F̃ as F̃s to emphasize the dependence on s, where F̃ defined as in Lemma .
is the transformed F from (I∗,R∗) into (, ). Then we have

DF̃s(, ) =

[
 – s –s
γ β

]
.

ThematrixDF̃s(, ) has eigenvectors (s, – s–λ)T and (s, – s–λ)T corresponding to λ

and λ, respectively, where T means the transpose of matrices. Hence thematrixDF̃s(, )
can be diagonalized by the change of variables (I,R)T =H(u, v)T , where

H =

[
s s

 – s – λ  – s – λ

]
.

Therefore F̃s can be changed into the map 
s :R →R
,

[
u
v

]
�→

[
λ 
 λ

][
u
v

]
–

α

λ – λ

[
( – s – λ)A
–( – s – λ)A

]
, ()

where A = s(u + v) – (u + v)(( – s – λ)u + ( – s – λ)v).
Rewrite () in the suspended form

⎡
⎢⎣
u
v
s

⎤
⎥⎦ �→

⎡
⎢⎣

λu
λv
s

⎤
⎥⎦ –

α

λ – λ

⎡
⎢⎣

( – s – λ)A
–( – s – λ)A



⎤
⎥⎦ ()

http://www.advancesindifferenceequations.com/content/2014/1/168
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so as to involve the parameter s explicitly in the discussion. Equivalently, the suspended
system () has a two-dimensional center manifold of the form

v = h(u, s) = au + bus + cs +O() ()

near the origin, where O() means terms of order ≥ . By Theorem  in [, pp.-],
these coefficients a, b, and c can be determined by the equation

N
(
h(u, s)

)
:= h

(
λu –

α

λ – λ
( – s – λ)A, s

)

– λh(u, s) +
α

λ – λ
( – s – λ)A

= , ()

where

A = s
(
u + h(u, s)

) – (
u + h(u, s)

)(
( – s – λ)u + ( – s – λ)h(u, s)

)
.

Comparing coefficients of u, us, and s in (), we get

⎧⎪⎨
⎪⎩
aλ – aλ – ( – λ) α(–λ)

λ–λ
= ,

bλ – bλ = ,
c – λc = ,

from which we solve

a =
α( – λ)( – λ)
(λ

 – λ)(λ – λ)
, b = , c = .

Thus the expression of () is determined, i.e.,

v = h(u, s) = Eu +O(). ()

Substituting () into the first equation in (), we obtain a one-dimensional map u �→
φs(u), where

φs(u) = λu –
α

λ – λ
( – s – λ)A

= λu –
α( – s – λ)

λ – λ

[
s
(
u + h(u, s)

) – (
u + h(u, s)

)(
( – s – λ)u

+ ( – s – λ)h(u, s)
)]

= λu –


λ – λ

[
( – λ)(λ – λ) +

(
α( – λ) – (λ – λ)

)
s – αs

]
u

–
E

λ – λ

[
( – λ)(λ – λ) +

(
α( – λ) – (λ – λ)

)
s – αs

]
u +O()

= λu – Eu – EEu +O(). ()

http://www.advancesindifferenceequations.com/content/2014/1/168
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Here we note the dependence of λ on s. From (), one can check that

[
∂φs

∂s
∂φs

∂u
+ 

∂φs

∂u ∂s

]∣∣∣
(u,s)=(,s)

=
λ + λ

λ – λ

(

s
– 

)
<  ()

and

[



(
∂φs

∂u

)

+



∂φs

∂u

]∣∣∣
(u,s)=(,s)

= 
(
E
 – EE

) 	= , ()

as assumed in our theorem. Thus, the conditions (F) and (F) of Theorem .. in []
are checked by () and (), respectively. Therefore a flip bifurcation occurs at (u, s) =
(, (β+)

β+–γ
) and a -periodic orbit arises as stated in the theorem. �

Remark . (The biological explanation of Theorem .) When (s,γ ) ∈ C, the epidemic
model () has only one positive equilibrium point, i.e. the endemic equilibrium point
Q(I∗,R∗). If the parameters (s,γ ) cross the curve C slightly with a given direction, two
new positive equilibrium points (assumed to beQ,Q) of model () will emerge and form
a -periodic orbit, i.e. F(Q) =Q and F(Q) =Q. Their stabilities are determined by the
negative and positive values of E

 –EE, concretely, when E
 –EE >  they are attractive,

when E
 – EE <  they are repellent.

5 Simulations
In this section, we will give three simulation examples to illustrate the results obtained in
the above sections.

Example . Let β = ., γ = ., and choose three groups of initial values for
(S, I,R) as follows:

(., ., ), (., ., ), (., ., ).

If let α = ., we see that s <  and we have Figure . If let α = ., we see that s >  and
we have Figure .
From Figures  and , we see that the conclusion of Theorem . is well verified by

numerical simulation.Namely, for given various initial values for (S, I,R), if s <  slightly,
there are a stable point (, ) and an unstable negative point (I∗,R∗) which coalesce as

Figure 3 P : (0, 0) is stable for case of s < 0.

http://www.advancesindifferenceequations.com/content/2014/1/168
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Figure 4 Q : (0.441, 0.118) is stable for the case
of s > 0.

Figure 5 Flip bifurcation in variable I and
parameter γ .

s = , if s >  slightly, point (, ) is unstable and positive point (I∗,R∗) is stable. Thus a
transcritical bifurcation occurs at the equilibrium point (, ) when s = .

Example . Let α = ., β = ., and initial value (S, I,R) = (., ., ). We easily
solve the following equation:

{
γ = (β + )( – 

s ),
s = α–(β+γ )

β+γ
β ,

and we get a flip bifurcation parameters γ = . . . . and s = . . . . . We also calculate
E
 –EE = . . . . . Then fromTheorem.we know that if let γ < . . . . an attractive

-periodic orbit of map F emerges and if let γ ≥ . . . . the -periodic orbit does not
exist, but a stable equilibrium point occurs. Figures , , and  illustrate this fact.

Example . Let α = ., β = ., and initial value (S, I,R) = (., ., ). Using similar
method to Example ., we also solve the flip bifurcation parameters γ = . . . . and
s = . . . . . Moreover, we calculate E

 – EE = . . . . . Then from Theorem . we
know that if we let γ < . . . . slightly an attractive -periodic orbit of map F emerges
and if let γ ≥ . . . . the -periodic orbit does not exist, but a stable equilibrium point
occurs. Figures , , and  give the numerical illustrations of this conclusion.

Additionally, we see from Figure  that the flip bifurcation giving a -periodic orbit oc-
curs at parameter γ = . . . . . The next period doubling takes place at γ = . . . . , and
so on. But from Figure  we do not see this phenomenon because of different parameters

http://www.advancesindifferenceequations.com/content/2014/1/168
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Figure 6 Existence of attractive 2-periodic orbit
of map F for γ = 0.03.

Figure 7 Occurrence of stable equilibrium point
of map F for γ = 0.06.

Figure 8 Flip bifurcation in variable I and
parameter γ .

being between in Examples . and .. Indeed, a -periodic orbit, an -periodic orbit etc.
may occur in the region γ <  in Example .. However, γ <  exceeds the restriction of
the parameter γ in our model. Therefore, in Example . we can only see the emergence
of a stable equilibrium point and an attractive -periodic orbit.

6 Summary
Discrete-time epidemic models are useful for modeling situations of epidemic. They al-
ways exhibit richer and more complicated dynamical behaviors than continuous-time
models, though some of them may be considered as approximations to the continuous-
timemodels. Allen [] gave a systematical comparison between the discrete-timemodels
and the corresponding continuous-timemodels and showed the periodic behavior (which
does not occur in the corresponding continuous cases) for the case of discrete-timemodel

http://www.advancesindifferenceequations.com/content/2014/1/168


Zhou et al. Advances in Difference Equations 2014, 2014:168 Page 15 of 16
http://www.advancesindifferenceequations.com/content/2014/1/168

Figure 9 Occurrence of stable equilibrium point
of map F for γ = 0.13.

Figure 10 Existence of attractive 2-periodic orbit
of map F for γ = 0.09.

SIR with births and deaths by numerical simulations. To reveal the reason for the result-
ing periodic behavior of the discrete-time models SIR with births and deaths, we give a
sufficient theoretical investigation of this model. Our theoretical analysis focuses on the
transcritical bifurcation at the disease-free equilibrium point and the period-doubling bi-
furcation at endemic equilibrium point. Our analytic conclusions well answer the ques-
tions presented in the Introduction section. Using our results, one can check the stability
of the above-mentioned equilibrium points and calculate the critical parameter γ for the
emergence of a flip bifurcation. Finally, we also present some numerical simulation exam-
ples for illustrating our theoretical analysis.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Each of the authors, XZ, XL, and WSW, contributed to each part of this study equally and read and approved the final
version of the manuscript.

Author details
1Department of Mathematics, Zhanjiang Normal University, Zhanjiang, Guangdong 524048, P.R. China. 2Department of
Mathematics, Hechi University, Yizhou, Guangxi 546300, P.R. China.

Acknowledgements
This work has been supported by the NNSF of China (Grant 11161018), the NSF of Guangdong province (Grant
s2013010013385), the Science Innovation Project of Department of Education of Guangdong province (Grant
2013KJCX0125) and NSFP of Zhanjiang Normal University (Grant ZL1303). The authors thank the anonymous reviewers
for their detailed and insightful comments and suggestions for improvement of the manuscript.

Received: 14 January 2014 Accepted: 4 June 2014 Published: 23 June 2014

http://www.advancesindifferenceequations.com/content/2014/1/168


Zhou et al. Advances in Difference Equations 2014, 2014:168 Page 16 of 16
http://www.advancesindifferenceequations.com/content/2014/1/168

References
1. Kermack, WO, McKendrick, AG: Contributions to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115,

700-721 (1927)
2. Anderson, RM, May, RM: Infections Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1991)
3. Diekmann, O, Heersterbeek, JAP: Mathematical Epidemiology of Infectious Diseases: Model Building Analysis, and

Interpretation. Wiley, New York (2000)
4. Murray, JD: Mathematical Biology II, 3rd edn. Springer, Berlin (2003)
5. Ma, Z, Zhou, Y, Wang, W, Jin, Z: Mathematical Modelling and Research of Epidemic Dynamical Systems. Science Press,

Beijing (2004)
6. Hethcote, HW, Stech, HW, van den Driessche, P: Periodicity and stability in epidemic models. In: Busenberg, SN,

Cooke, KL (eds.) Differential Equations and Applications in Ecology, Epidemics and Population Problems, pp. 65-82.
Academic Press, New York (1981)

7. Takeuchi, Y, Ma, W, Beretta, E: Global asymptotic properties of a delay SIR epidemic model with finite incubation
times. Nonlinear Anal. 42, 931-947 (2000)

8. Castillo-Chavez, C, Yakubu, A-A: Disperal, disease and life-history evolution. Math. Biosci. 173, 35-53 (2001)
9. Medlock, J, Kot, M: Spreading disease: integro-differential equations old and new. Math. Biosci. 184, 201-222 (2003)
10. Song, M, Ma, W: Asymptotic properties of a revised SIR epidemic model with density dependent birth rate and time

delay. Dyn. Contin. Discrete Impuls. Syst. 13, 199-208 (2006)
11. Yoshida, N, Hara, T: Global stability of a delayed SIR epidemic model with density dependent birth and death rates.

J. Comput. Appl. Math. 201, 339-347 (2007)
12. Robinson, RC: An Introduction to Dynamical Systems: Continuous and Discrete. Pearson Prentice Hall, Upper Saddle

River (2004)
13. May, RM: Simple mathematical models with very complicated dynamics. Nature 261, 459-467 (1976)
14. Rasband, SN: Chaotic Dynamics of Nonlinear Systems. Wiley-Interscience, New York (1990)
15. Allen, LJS: Some discrete-time SI, SIR and SIS epidemic models. Math. Biosci. 124, 83-105 (1994)
16. Allen, LJS, Burgin, AM: Comparison of deterministic and stochastic SIS and SIR models in discrete time. Math. Biosci.

163, 1-33 (2000)
17. Kuznetsov, YA: Elements of Applied Bifurcation Theory. Springer, New York (1995)
18. Wiggins, S: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)
19. Guckenheimer, J, Holmes, P: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer,

New York (1983)
20. Carr, J: Applications of Center Manifold Theory. Springer, New York (1981)

doi:10.1186/1687-1847-2014-168
Cite this article as: Zhou et al.: Bifurcations for a deterministic SIR epidemic model in discrete time. Advances in
Difference Equations 2014 2014:168.

http://www.advancesindifferenceequations.com/content/2014/1/168

	Bifurcations for a deterministic SIR epidemic model in discrete time
	Abstract
	MSC
	Keywords

	Introduction
	Non-hyperbolic and hyperbolic cases
	Transcritical bifurcation
	Flip bifurcation
	Simulations
	Summary
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


