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1 Introduction

The subject of fractional differential equations has evolved as an interesting and popular
field of research. It is mainly due to the extensive applications of fractional calculus in
the mathematical modeling of physical, engineering, and biological phenomena etc. [1-
4]. For some developments on the theory of fractional differential equations, we can refer
to [5—25] and the references therein.

Integral boundary conditions have various applications in applied fields such as blood
flow problems, chemical engineering, thermo-elasticity, underground water flow, popula-
tion dynamic, and so forth. Recently, there has been a great deal of research on the ques-
tions of existence and uniqueness of solutions for boundary value problems of fractional
differential equations with integral boundary conditions. For example, Ahmad et al. [8]
investigated the existence and uniqueness of solutions for a boundary value problem of
nonlinear fractional differential equations with three-point integral boundary conditions

given by

D*x(t) = f(t,x(t)), tel0,1,1<a <2,
x(0) =0, x(1)=a ) x(s)ds, 0<n<l,

where °D* denotes the Caputo fractional derivative of order «, f is a given continuous

function, and 2 € R with an? #2.
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In [13], Guezane-Lakoud and Khaldi discussed the fractional differential equations with
fractional integral boundary conditions as the following form:
°Dx(t) = f(t,x(2),°DPx(t)), te[0,1],1<a<2,0<pB<],
x(0)=0,  I!x(1)=x'(1),
where °D? denotes the Caputo fractional derivative of order g, I? the Riemann-Liouville
fractional integral of order 8, f is a given continuous function.
For the case of nonlinear impulsive fractional differential equations with integral bound-

ary conditions, Ahmad and Sivasundaram [9] studied the existence of solutions for the

following equation:

Dx(t) = f(t,x(t)), te]=[0,1,t#tik=12,...,m,
Ax(t) = Lx(8)),  AX(&) = kx(&)), k=12,...,m,
ax(0) + bx'(0) = [y qi(x(s))ds,  ax() + ba'(1) = [, ga(x(s)) s,

where D% denotes the Caputo fractional derivative of order « € (1,2), f € C(J x R,R),
IsJk € CRR), 0=ty < f <+ <ty < b = 1, Ax(tr) = x(]) — x(t;) with x(£]) =
lime_, o+ x(tx + €), x(¢;) = lime_o- x(tx + €), k = 1,2,...,m, Ax'() has a similar meaning
for x'(tx), q1,q2 : R —> Randa >0, b > 0.

Motivated by the above mentioned papers, in this article, we will consider the following

impulsive problem:

D*x(t) = f(t,x(2)), te]=[0,1],tF#tx,k=1,2,...,m,
Ax(tr) = I(x(t;)), Ax' () = Jek(x(8;)),  k=1,2,...,m, (1)
x(0) =0, al”x(1) + bx'(1) = ¢,

where D* denotes the Caputo fractional derivative of order « € (1,2), I the Riemann-
Liouville fractional integral of order y, f € C(J x R,R), I,Jk € C(R,R), k = 1,2,...,m,
O=ty <ty < <tw<btme =1, Ax(ty) = x(£5) — x(t;) with x(£7) = lim._ o+ x(&x + €), x(&;) =
lim,_, o- x(¢x + €) representing the right and left limits of x(¢) at ¢ = £, Ax'(#) has a similar
meaning for x'(f), a, b, c are real constants and a # —bI'(y +2).

The paper is organized as follows: in Section 2 we present the notations, definitions and
give some preliminary results that we need in the sequel, Section 3 is dedicated to the
existence results of problem (1), in the final Section 4, two examples are given to illustrate

the results.

2 Preliminaries
Definition 2.1 The Riemann-Liouville fractional integral of order g for a function f :
[0,00) — R is defined as

1 t
_ &ds’ q>0,

O vg )y wsps

provided the integral exists.
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Definition 2.2 For a function f : [0, 00) — R, the Caputo derivative of fractional order ¢
is defined as

Cqu(t)zr(l n-l<g<mn=[ql+1

where [g] denotes the integer part of the real number 4.
Lemma 2.1 ([23]) Let « > 0, then the differential equation
‘D*h(t)=0
has solutions h(t) = co + a1t + cot> + - - - + ¢y t" ' and
I*“Dh(t) = h(t) + co + c1t + Cot® + - - - + Cuy "7,
wherec; € R,i=0,1,2,...,n—-1,n=[a] +1
For the sake of convenience, we introduce the following notation.
Let Jo = [0,4], i = (ti, tals oo w1 = (Guets b, Jin = (G 11, T = [0,1], " := I\ {t1, t2, - - b}
and PC(J,R) = {u:] — Rlu € C(i,R),k=0,1,2,...,m,u(t}) and u(t;) exist,k = 1,2,...,m,

and u(t;) = u(tx)}. Obviously, PC(/, R) is a Banach space with the norm ||u|| = sup,; [u(t)|.

Lemma 2.2 For any y € PC(J,R), the unique solution of the impulsive boundary value
problem

D*x(t) =y(t), tel,t#tr,k=12,...,m,
AX(tk) = Ik(x(t]:)): Ax,(’fk) = ]k(x(t]:)): k= 1,2,...,m, (2)
x(0) =0, al”x(1) + bx'(1) =c¢

is given by

Jo CEEy(s) ds + ”(A )"fﬁf
- Z 1]l(x(tj Nt teo

Jo CEE y(s) ds + 1 (w(t7)) — 0 (u(ey)) + A2
- Zl Jilx@E Nt tel

fot 1"( ) y(s) ds + Zz 1 Lix(87)) - Zf:l tJi(x(t7))
¢ AW NG Ee ik =2,3,..,m,

3)

T(y+2)
where
(1 oz+]/ -1 1 (1 _S)a—Z
A= a/ a+y) )ds+b/0 F(a—_l)y(s)ds,
W e a(Y ol L) - 20 tf]i(x(t,-’)))'

C(y+1)
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Proof For 1 < o < 2, by Lemma 2.1, we know that a general solution of the equation
¢D*x(t) = y(¢) on each interval J (k=0,1,2,...,m) is given by

t (t _ S)oz—l
x(8) = I°y(t) + dy + ext = / y(s)ds + dy + ext, te,

o TIla)

where dy, ex € R are arbitrary constants.
Since x(0) = 0, al”x(1) + bx'(1) =,

t _ Qa2
K () = I y(8) + e = / =" ds+en teli

o Ma-1)

wehavedy =0,c= (ﬁ +b)e,, + % + A. By using the impulsive conditions in (2), we

obtain, for k=1,2,...,m,

di — dr1 + (ex — ex1)ti = Ie(x(£;))

ey — ex_1 :]k(x(tl;))'

Now we can derive the values of dj, e,
k k
di =) L(x(t)) - Y tilx(t7))
i=1

i=1

fork=1,2,...,m and

c-A-W
m=—¢7
F(y+2)+b

m
ex=e,— Z]i(x(ti_)), fork=0,1,2,...,m—1.
i=k+1

Hence for k =1,2,...,m, we have

k k (C A= W)t m
div it = 1)) - D ee() + oS )
i=1 i=1 T2 * i=k+1
This completes the proof. O

The following are two fixed point theorems which will be used in the sequel.

Theorem 2.1 (Nonlinear alternative of Leray-Schauder type [26]) Let X be a Banach
space, C a nonempty convex subset of X, U a nonempty open subset of C with 0 € U. Sup-
pose that P: U — C is a continuous and compact map. Then either (a) P has a fixed point
in U, or (b) there exist a x € U (the boundary of U) and A € (0,1) with x = AP(x).

Theorem 2.2 (Schaefer fixed point theorem [26]) Let X be a normed space, P a continuous
mapping of X into X which is compact on each bounded subset B of X. Then either (1) the
equation x = A\Px has a solution for A =1, or (2) the set of all such solutions x is unbounded
forO<a<l.
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3 Main results

This section deals with the existence and uniqueness of solutions for problem (1). In view
of Lemma 2.2, we define an operator F : PC(J,R) — PC(J,R) by

(Fx)(t) = / T ) ds Zl - Xk: Ats
o Tl Y
M—ZL Nt teuk=0,12,...,m, (4)
'(y+2) +b i=k+1
with
~ 1 (1 _ S)a+y—1 1 (1 _ S)uz—z

Ax =a A Wf(s,x(s)) ds + b/(; mf(s,x(s)) dS,
A HE) - X )

T T'(y +1) ’

Here A,, W, mean that A, W defined in Lemma 2.2 are related tox € PC(J, R). It is obvious
that F is well defined because of the continuity of f, Iy and Ji. Observe that problem (1)
has solutions if and only if the operator F has fixed points.

Let L*°(J,R") be the essentially bounded function space from J to R* and m(¢) an ele-
ment of L*°(/,R*), we denote the sup-norm of m by ||m|| = sup,; |m(t)|. Now, we are in a

position to present our main results.

Theorem 3.1 Assume that there exist h € L*(J,R") and positive constants L, L* such that,
forte],x,yeR, k=1,2,...,m,

If(t%) - £ (& )| < h®lx -, 5)
| (%) = ()| < LIx -yl @) = Jc)| < L*|x - yl. (6)
Moreover,
||h||< .\ |al |b] )
MNa+1) Ito +b|1"(oz+y+1) Ito J/+2 +b|T (@)
* - . |a|Z:ﬂl i
+L (m+;t,+ |1~(y+2 T BICGy +1)>
|al
+mL<1 = +b|F(y+1)><1 (7)

Then BVP (1) has a unique solution on J.

Proof Denote ||h| = sup,; |h(¢)| and N(x,y) = f(s,%(s)) — f(s,(s)). For any x,y € PC(J,R)
and each ¢t € J, we have

|(Fx)(2) - (Fy)(8)|

< [ sl lntet) 146
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A —A|+|W—Wy|

X itivi(x(t{)) IO =

y+2 +b|
+Z\L J(&)]-
Since
1 (1 a+ -1
Ae— Ayl < al ”7|N<x,y)|ds+|b| / |N(x,y)|a's

0
A

" T(a+y+1) Y I'(a) ’

and

- vm_F(""H)il|a<x(t;>)—n<y<t;>>| oy St ) -1

|a|mL
S ——lxe-yll+ tillx =yl
Iy +1) Z Y

we can deduce that

1 |al I )
Fx—Fy| <||h + +
” J’|| = |:|| ”(F(Ol-l-l) |F(y+2 +b|F(Ol+)/+1) | y+2 +b|F(Ol)
+mL<1 | )
75 +oIT (v +1)

m m
|a|Z‘_1ti
L E L = -]l
+ <m+i=1 +| bl + D) lle = Il

I(y+2)

Therefore, by (7), the operator F is a contraction mapping on PC(J,R). Then it follows
from Banach’s fixed point theorem that problem (1) has a unique solution on J. This com-

pletes the proof. O
Lemma 3.1 The operator F: PC(J,R) — PC(J,R) defined by (4) is completely continuous.

Proof Since f, I and J; are continuous, it is easy to show that F is continuous on PC(/, R).

Let B C PC(J,R) be bounded, then there exist three positive constants Nj, i = 1,2, 3, such
that |[f(¢,2(£))| < N1, [k (x(;))| <Ny and |/i(x(£;))| <Nz forallt e/, x € B, k=1,2,...,m
Thus, for x € B and ¢ € J, we have

” (el + [ Axl + [ W2))
Fx)(t)| < 1 N, + N. & —_
( x)()\_r(a+1)+m )+ 3(%: +m)+ peCE—
la|Ny |bINy
A, , 8
| |_F(a+y+1)+F(a) ®)
|Wx|§ |"Z|(W1N2+Zi=1tiN3) (9)

C(y +2)
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This means that forallx e Band t €],

’(Fx)(t) < N N ( |al + |b] )
F(a+1) |F(y+2 +b|\T'(a+y+1) T'(x)
+mN2<1+ i ) i

I + b +2)) 7 Iy + B

- ) |“|Z:M1
(o) i)

which shows that the operator F is uniformly bounded on B.
On the other hand, let x € B and for any 1, ¢, € Jx, k= 0,1,2,...,m, with f; < t,, we have

|(Fx)(82) - (Fx) (1) |

t _erl fn (tl_s)a—l
’/ F( ) s,x(s)) ds—/o Wf(s,x(s)) ds

(|C|+|A|+|W|)

(&, —t) + mL*(t, - 1)

| y+2) + bl
Ny(t5 -t c| + | Ayl + | W,
_ N -8) (|| Al + Wi mL*>(t2_tl).
F(Ol+1) |m+b|

By (8), (9), and the above inequality, we can deduce that
”(Fx)(tz) - (Fx)(t1)|| —0 ast, —> 4.

This implies that F is equicontinuous on the interval J;. Hence by PC-type Arzela-Ascoli
Theorem (see [27]), the operator F : PC(J,R) — PC(J,R) is completely continuous. O

Theorem 3.2 Assume that: (a) there exist h € L>(J,R*) and ¢ : [0,00) — (0, 00) contin-
uous, nondecreasing such that |f(¢,x)| < h(t)p(|x|) for (¢t,x) € ] x R; (b) there exist v, ™ :
[0,00) — (0, 00) continuous, nondecreasing such that |I;(x)| < ¥ (|x|), Jk ()] < ¥*(|x|) for
allxeRand k=1,2,...,m; (c) there exists a constant M > 0 such that

M
>1, (10)
Po(M) + Qyr(M) + Ryr*(M) + H
where
Al . ||h|| |al N D]
T T(x+1) fogy TI\T(@+y +1)  T(@) ’
m|a|
=m+
Qo b +2)
- lal 30 & el
R= L+m+ = Hz ——.
(; |F(y+2 +bT(y +2) ) o) + b

Then BVP (1) has at least one solution.
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Proof We will show that the operator F defined by (4) satisfies the assumptions of the
nonlinear alternative of Leray-Schauder type.

By Lemma 3.1, we know that the operator F : PC(J/,R) — PC(J,R) is continuous and
completely continuous.

Let x € PC(J,R) be such that x(¢) = A(Fx)(t) for some A € (0,1). Then using the compu-
tations in proving that F maps bounded sets into bounded sets in Lemma 3.1, we obtain

Ix(6)| < IAlle(llx]) N ||h||<ﬂ(||x||)< |al N |b] )
T Te+1) |F(y+2 +b|\T(ae+y+1) TI(a)
|a] |c|

+mw(||x||)(1+ = b|r(y+2)> o

la| Y t;
(1l ((Z“’”) [ +b|F(y+2))

=Po(|lxl) + Q¥ (llxll) + Ry*(lll) + H.
Consequently, we have

%

Plhliz=g(llxl) + QY (llxll) + Ry*(llxl) + H

Then in view of condition (10), there exists M such that ||x|| # M. Let us set
u-= {x € PC(,R) : |||l <M}.

The operator F : U — PC(J,R) is continuous and compact. From the choice of the set U,
there is no x € U such that x = LFx for some X € (0,1). Therefore by the nonlinear al-
ternative of Leray-Schauder type, we deduce that F has a fixed point x in U which is a
solution of the problem (1). The proof is completed. d

Theorem 3.3 Assume that there exist h € L*°(J,R") and positive constants Hy, Hy such
that, forteJ,xeR, k=12,...,m,

[f(t,%)| < h(2), |Ic(x)| < H,, I (x)| < Ha.
Then the BVP (1) has at least one solution on J.

Proof Lemma 3.1 tells us that the operator F : PC(J,R) — PC(J,R) defined by (4) is con-
tinuous and compact on each bounded subset B of PC(/, R).

Now, we show that the set V = {v € PC(J,R) : v = AFv,0 < A <1} is bounded. Let x € V,
then x = AFx for some 0 < A < 1. For each t € /, by using a discussion similar to the one in

Theorem 3.2, we have

l(t)| = [A(Fx)(2)]

< |lAll F(a+1)+| y+2)+b|( (a+y+1)+F(a)>]
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+mH 1+ i l
! | gy + BIT(y +2) + b

y+2) y+2)

. lal Y0t
H2<<;ti+m> |l"y+2 +b|r(7/+2))

This implies that there exists some M > 0 such that ||x|| < M forallx € V,i.e. V isbounded.
Thus, by Theorem 2.2, the operator F has at least one fixed point. Hence the problem (1)

has at least one solution. The proof is completed. |

4 Examples
In this section, we give two examples to illustrate the main results.

Example 1 Consider the boundary value problem

“DEx(t) = 22 (x(t) + arctanx(t)), te(01)e4,
1y _ G ,
Ax(3) = 10+x(3 )1’ ( )= 20+\x 1 Nk (11)
20)=0,  I3x(1)+ix(1)=2.
Here o = E' y = 3, m=la=1b=:3 and ¢ = 2. Clearly, we can take k(¢) = (ztilé‘ﬁ L=+ and

L*= % such that the relations (5) and (6) hold. Moreover,

||h||< LI |al |5 )
IMNa+1) |r(y“+2)+b|F(a+y+1) |I‘(y+2 + bl ()

* “ |"|szl
L i
. <m+zt+| e

i=1 T(y+2)

|al )
+mL|1+
( |y + BT + 1)

1 1
~ — x 09128 + — x 1.6112 + 0.1223 = 0.2536 < 1.
18 20

Thus, all the assumptions of Theorem 3.1 are satisfied. Hence, by the conclusion of The-
orem 3.1, the impulsive fractional BVP (11) has a unique solution on [0, 1].

Example 2 Consider the following fractional differential equation:

Dix(t) = 663 + e PO ysinx(r), tel0,1],¢ #1,
l _

Ax(}) = oA, AX(]) = 2c0sx(}7) +3, (12)
1

x(0)=0,  Iix(1)-1x(1)=-3.

In the context of this problem, we have

[f(tx)| |6t +e +s1nx|<8 te[0,1],x e R,

L) <3,  |[@|<5 xeR.

Put /(t) = 8, H; = 3 and H, = 5. Then from Theorem 3.3, the impulsive fractional BVP
(12) has at least one solution on [0,1].

Page 9 of 10
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