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Abstract
In this paper, by using a fixed point result on ordered metric spaces, we prove the
existence and uniqueness of a solution of the nonlinear fractional differential
equation Dαu(t) = f (t,u(t)) (t ∈ I = [0, T ], 0 < α < 1) via the periodic boundary condition
u(0) = 0, where T > 0 and f : I×R →R is a continuous increasing function and cDα

denotes the Caputo fractional derivative of order α. Also, we solve it by using the
anti-periodic boundary conditions u(0) + u(T ) = 0 with u(0) ≤ 0 and u(0) +μu(T ) = 0
with u(0)≤ 0 and μ > 0 separately.

1 Introduction
Fractional calculus started to be used intensively as an important tool in several branches
of science and engineering (see, for example, [–] and the references therein). This type
of calculus has an important impact in describing the dynamics of complex phenomena
[–, ]. During the last few years, some new experimental confirmations have appeared
in the literature in addition to the ones already established in chemistry, engineering, biol-
ogy, physics, etc. As a result, the fractional differential equations were investigated inten-
sively during the last few years. A special attention was devoted to the solvability of linear
initial fractional differential equations on terms of special functions. On the other hand,
the fixed point theory has wide applications in several fields (see Ref. [] and the refer-
ences therein) and it is continuously developing. Having these above mentioned things in
mind, in this manuscript we have the main aim to prove the existence and uniqueness of a
nonlinear fractional differential equation of Caputo type with the help of results obtained
within ordered metric spaces. The paper is organized as follows. After the introductory
part, in the second section, we present some of the basic tools needed in the rest of the
manuscript. The third section is devoted to the main result as well as to the illustrative
examples. Finally, the manuscript ends with our conclusions.

2 Basic tools
Recall that for a continuous function f : [,∞) → R, the Caputo derivative of fractional
order α is defined as follows.

Definition . The Caputo fractional derivative of order α for a continuous function f is
defined by

cDαf (t) =


�(n – α)

∫ t



f (n)(s)
(t – s)α–n+

ds, n = [α] + .
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Definition . The Riemann-Liouville fractional integral of order α is defined by

Iαf (t) =


�(α)

∫ t



f (s)
(t – s)–α

ds, α > ,

whenever the integral exists (see, for example, [, ] and []).

Theorem . Let (M,�,d) be a complete ordered metric space, and let f be an increas-
ing self-map on M. Suppose that there exist x ∈ M and β ∈ � such that x � f (x) and
d(f (x), f (y)) ≤ β(d(x, y))d(x, y) for all x, y ∈ M with x � y. Assume that either f is continu-
ous or M has the property that if {xn} is an increasing sequence and xn → x for some x ∈M,
then xn � x for all n. Also, suppose that for each x, y ∈ M, there exists z ∈ M such that z is
comparable with x and y. Then f has a unique fixed point.

3 Main result
We study the existence and uniqueness of a solution for fractional differential equations
with two types of boundary conditions.

3.1 Existence results for a nonlinear fractional differential equation in ordered
metric spaces

Consider the nonlinear fractional differential equation:

cDαu(t) = f
(
t,u(t)

) (
t ∈ I = [,T],  < α < 

)

via the boundary condition u() = , where T >  and f : I ×R →R is a continuous func-
tion. A function β is called a lower solution of the fractional boundary value problem
whenever β ∈ C[,T] and β satisfies cDαβ(t) ≤ f (t,β(t)) and β() ≤ . Let � denote the
class of the functions β : [,∞)→ [, ) satisfying the condition β(tn) →  implies tn → .
Also, let � denote the class of increasing functions φ : [,∞) → [,∞) such that φ(x) < x
for all x >  and φ(x)

x ∈ �. By using the following result of [], we study the existence of
solution for the above nonlinear fractional differential equation. One can compare it with
the relation () in []. This nonlinear fractional differential equation has been solved for
 < α ≤  and different boundary value conditions []. Also, our technique in this section
was used in [] for solving another nonlinear fractional differential equation.

Lemma . Suppose that  < α < , t ∈ I = [,T] and T > . Then the problem cDαu(t) =
f (t,u(t)) with the boundary value condition u() =  is equivalent to the fractional integral
equation

u(t) =
∫ T


G(t, s)f

(
s,u(s)

)
ds,

where

G(t, s) =

⎧⎨
⎩

(t–s)α–
�(α) ,  ≤ s≤ t ≤ T ,

,  ≤ t ≤ s≤ T .
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Proof From cDαu(t) = f (t,u(t)),  < α <  and boundary conditions, one can see that u(t) –
u() = Iαf (t,u(t)). By the definition of the fractional integral, we get

u(t) – u() =
∫ t



(t – s)α–

�(α)
f
(
s,u(s)

)
ds.

Thus,

u(t) =
∫ t



(t – s)α–

�(α)
f
(
s,u(s)

)
ds

=
∫ t



(t – s)α–

�(α)
f
(
s,u(s)

)
ds +

∫ T

t
f

(
s,u(s)

)
ds

=
∫ T


G(t, s)f

(
s,u(s)

)
ds.

This completes the proof. �

Now, we are ready to state and prove our main result.

Theorem . Consider the nonlinear fractional differential equation cDαu(t) = f (t,u(t))
(t ∈ I = [,T],  < α < ) via the boundary condition u() = , where T > , φ ∈ �, f :
I ×R→R is an increasing continuous function and  ≤ f (t, y) – f (t,x)≤ �(α+)

Tα φ(y– x) for
all x, y ∈R with x ≤ y. If there exists a lower solution for the problem, then the problem has
a unique solution.

Proof Note that by using Lemma ., the problem is equivalent to the integral equation
u(t) =

∫ T
 G(t, s)f (s,u(s))ds, where

G(t, s) =

⎧⎨
⎩

(t–s)α–
�(α) ,  ≤ s < t ≤ T ,

,  ≤ t < s ≤ T .

Define F : C(I,R) → C(I,R) by (Fu)(t) =
∫ T
 G(t, s)f (s,u(s))ds. Note that u ∈ C(I,R) is a

fixed point of F if and only if u is a solution of the problem. Let M = C(I,R). Define the
order ≤ on M by f ≤ g if and only if f (t) ≤ g(t) for all t ∈ I . Then (M,≤,d) is a complete
ordered metric space, where d(f , g) = supt∈I |f (t) – g(t)|. It is easy to check that F is an
increasing self-map. Thus,

d(Fu,Fv) = sup
t∈I

∣∣(Fu)(t) – (Fv)(t)
∣∣

≤ sup
t∈I

∫ T


G(t, s)f

(
s,u(s)

)
ds

≤ sup
t∈I

∫ T


G(t, s)

�(α + )
Tα

φ
(
u(s) – v(s)

)
ds

for all u ≥ v. Since the function φ is increasing and u ≥ v, we get

φ
(
u(s) – v(s)

) ≤ φ
(
d(u, v)

)
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and so

d(Fu,Fv) ≤ sup
t∈I

∫ T


G(t, s)

�(α + )
Tα

φ
(
u(s) – v(s)

)
ds

≤ �(α + )
Tα

φ
(
d(u, v)

)
sup
t∈I

∫ T


G(t, s)ds

≤ φ
(
d(u, v)

)�(α + )
Tα


�(α + )

Tα = φ
(
d(u, v)

)

=
φ(d(u, v))
d(u, v)

d(u, v) = β
(
d(u, v)

)
d(u, v)

for all u� v. Now, let β be a lower solution for the problem.We show that β � F(β). Since
β is a lower solution for the problem, we get IαDαβ(t)≤ Iαf (t,β(t)) and u() ≤ , and so

β(t)≤ β() +
∫ t



(t – s)α–

�(α)
f
(
s,β(s)

)
ds

for all t ∈ I . Since u() ≤ , we have β(t) ≤ ∫ t


(t–s)α–
�(α) f (s,β(s))ds. Thus, we obtain β(t) ≤

F(β)(t) for all t ∈ I . Thus, β ≤ F(β). Note that the space (M,≤,d) has the property that if
{fn} is an increasing sequence and fn → f for some f ∈ M, then fn � f for all n. Therefore
by using Theorem ., F has a unique fixed point. �

Example . Consider the nonlinear fractional differential equation

D

 u(t) = f

(
t,u(t)

) (
t ∈

[
,

π



])

via the periodic boundary condition u() = , where φ(t) = 
 t and the function f : I×R →

R is defined by f (t,u(t)) = 
 (t + u(t)). Note that

 ≤ f
(
t, y(t)

)
– f

(
t,x(t)

)
=



(
y(t) – x(t)

) ≤ �(  + )√
π


φ
(
y(t) – x(t)

)

for all x, y ∈ C([, π
 ],R) with x ≤ y. Then, by using Theorem ., the existence of a lower

solution for the problem provides the existence of a unique solution.

Example . Let m ≥  be given. Consider the nonlinear fractional differential equation

D

 u(t) = f

(
t,u(t)

) (
t ∈ [, ]

)

via the boundary condition u() = , where φ(t) = 
 t and the function f : I × R → R is

defined by f (t,u(t)) = tm + 
u(t). Note that

 ≤ f
(
t, y(t)

)
– f

(
t,x(t)

)
=


(
y(t) – x(t)

) ≤ �(  + )

 


φ
(
y(t) – x(t)

)

for all x, y ∈ C([, ],R) with x ≤ y. Then, by using Theorem ., the existence of a lower
solution for the problem provides the existence of a unique solution.
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3.2 Existence result for a nonlinear fractional differential equation with the
anti-periodic boundary condition

In this section, we solve the nonlinear fractional differential equation

cDαu(t) = f
(
t,u(t)

) (
t ∈ I = [,T],  < α < 

)

via the boundary condition u() + u(T) =  with u()≤ , where T >  and f : I ×R →R

is an increasing continuous function and f ≤ .

Lemma . Suppose that  < α < , t ∈ I = [,T] and T > . Then the problem cDαu(t) =
f (t,u(t)) with the boundary value condition u() + u(T) =  with u() ≤  is equivalent to
the fractional integral equation u(t) =

∫ T
 G(t, s)f (s,u(s))ds, where

G(t, s) =

⎧⎨
⎩

(t–s)α––(T–s)α–
�(α) ,  ≤ s ≤ t ≤ T ,

–(T–s)α–
�(α) ,  ≤ t ≤ s ≤ T .

Proof It is easy to see that u(t) – u() = Iαf (t,u(t)). Hence,

u(t) = u() +
∫ t



(t – s)α–

�(α)
f
(
s,u(s)

)
ds,

and so u(T) = u() +
∫ T


(T–s)α–
�(α) f (s,u(s))ds. Thus,

u() =
∫ T



–(T – s)α–

�(α)
f
(
s,u(s)

)
ds,

u(t) =
∫ T



–(T – s)α–

�(α)
f
(
s,u(s)

)
ds +

∫ t



(t – s)α–

�(α)
f
(
s,u(s)

)
ds,

u(t) =
∫ t



(t – s)α– – (T – s)α–

�(α)
f
(
s,u(s)

)
ds –

∫ T

t

(T – s)α–

�(α)
f
(
s,u(s)

)
ds

=
∫ T


G(t, s)f

(
s,u(s)

)
ds.

This completes the proof. �

Now, we present the next result.

Theorem . Consider the nonlinear fractional differential equation cDαu(t) = f (t,u(t))
via the boundary condition u()+u(T) = with u() ≤ ,where T > ,φ ∈ �, f : I×R →R

is an increasing continuous function and f ≤  and  ≤ f (t, y) – f (t,x)≤ �(α+)
Tα φ(y – x) for

all x, y ∈R with x ≤ y. If there exists a lower solution for the problem, then the problem has
a unique solution.

Proof Note that by using Lemma ., the problem is equivalent to the integral equation
u(t) =

∫ T
 G(t, s)f (s,u(s))ds, where

G(t, s) =

⎧⎨
⎩

(t–s)α––(T–s)α–
�(α) ,  ≤ s ≤ t ≤ T ,

–(T–s)α–
�(α) ,  ≤ t ≤ s ≤ T .
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Define F : C(I,R) → C(I,R) by (Fu)(t) =
∫ T
 G(t, s)f (s,u(s))ds. Note that u ∈ C(I,R) is a

fixed point of F if and only if u is a solution of the problem. Let M = C(I,R). Define the
order ≤ on M by f ≤ g if and only if f (t) ≤ g(t) for all t ∈ I . Then (M,≤,d) is a complete
ordered metric space, where d(f , g) = supt∈I |f (t) – g(t)|. It is easy to check that F is an
increasing self-map. Thus,

d(Fu,Fv) = sup
t∈I

∣∣(Fu)(t) – (Fv)(t)
∣∣

≤ sup
t∈I

∫ T


G(t, s)f

(
s,u(s)

)
ds

≤ sup
t∈I

∫ T


G(t, s)

�(α + )
Tα

φ
(
u(s) – v(s)

)
ds

for all u≥ v. Since the function φ is increasing and u≥ v, we get φ(u(s) – v(s))≤ φ(d(u, v)),
and so

d(Fu,Fv) ≤ sup
t∈I

∫ T


G(t, s)

�(α + )
Tα

φ
(
u(s) – v(s)

)
ds

≤ �(α + )
Tα

φ
(
d(u, v)

)
sup
t∈I

∫ T


G(t, s)ds

≤ φ
(
d(u, v)

)�(α + )
Tα


�(α + )

Tα = φ
(
d(u, v)

)

=
φ(d(u, v))
d(u, v)

d(u, v) = β
(
d(u, v)

)
d(u, v)

for all u� v. Now, let β be a lower solution for the problem.We show that β � F(β). Since
β is a lower solution for the problem, we get IαDαβ(t) ≤ Iαf (t,β(t)), β() + β(T) ≤  and
β()≤ . Hence,

β(t)≤ β() +
∫ t



(t – s)α–

�(α)
f
(
s,β(s)

)
ds,

and so β(t)≤ –β(T)+
∫ t


(t–s)α–
�(α) f (s,β(s))ds for all t ∈ I . Since –β(T) ≤ ,β(t) ≤ ∫ t


(t–s)α–

�(α) ×
f (s,β(s))ds and

∫ T



–(T – s)α–

�(α)
f
(
s,β(s)

)
ds≥ .

Thus,

β(t)≤
∫ t



(t – s)α–

�(α)
f
(
s,β(s)

)
ds +

∫ T



–(T – s)α–

�(α)
f
(
s,β(s)

)
ds,

and so

β(t) ≤
∫ t



(t – s)α– – (T – s)α–

�(α)
f
(
s,β(s)

)
ds

+
∫ T

t

–(T – s)α–

�(α)
f
(
s,β(s)

)
ds.
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Hence, β(t) ≤ ∫ T
 G(t, s)f (s,β(s))ds = (Fβ)(t), that is, β ≤ F(β). Note that the space (M,≤,

d) has the property that if {fn} is an increasing sequence and fn → f for some f ∈ M, then
fn � f for all n. Therefore, by using Theorem ., F has a unique fixed point. �

3.3 Existence result for a nonlinear fractional differential equation with another
boundary condition

In this section, we solve the nonlinear fractional differential equation

cDαu(t) = f
(
t,u(t)

) (
t ∈ I = [,T],  < α < 

)

via the boundary condition u() + μu(T) =  with u() ≤  and μ > , where T >  and
f : I ×R →R is an increasing continuous function and f ≤ .

Lemma . Suppose that  < α < , t ∈ I = [,T] and T > . Then the problem cDαu(t) =
f (t,u(t)) with the boundary value condition u() + μu(T) =  with u() ≤  and μ >  is
equivalent to the fractional integral equation u(t) =

∫ T
 G(t, s)f (s,u(s))ds, where

G(t, s) =

⎧⎨
⎩

–μ(T–s)α–
(μ+)�(α) + (t–s)α–

�(α) ,  ≤ s ≤ t ≤ T ,
–μ(T–s)α–
(μ+)�(α) ,  ≤ t ≤ s ≤ T .

Proof It is easy to see that u(t) – u() = Iαf (t,u(t)), and so

u(t) = u() +
∫ t



(t – s)α–

�(α)
f
(
s,u(s)

)
ds.

Hence, u(T) = u() +
∫ T


(T–s)α–
�(α) f (s,u(s))ds. Since u(T) = –u()

μ
, u() = –μ

μ+
∫ T


(T–s)α–
�(α) ×

f (s,u(s))ds, and so

u(t) =
∫ T



–μ(T – s)α–

(μ + )�(α)
f
(
s,u(s)

)
ds +

∫ t



(t – s)α–

�(α)
f
(
s,u(s)

)
ds.

Thus,

u(t) =
∫ t



–μ(T – s)α–

(μ + )�(α)
+
(t – s)α–

�(α)
f
(
s,u(s)

)
ds

+
∫ T

t

–μ(T – s)α–

(μ + )�(α)
f
(
s,u(s)

)
ds

=
∫ T


G(t, s)f

(
s,u(s)

)
ds.

This completes the proof. �

Now, we give the following result.

Theorem . Consider the nonlinear fractional differential equation cDαu(t) = f (t,u(t))
via the boundary condition u() +μu(T) =  with u() ≤  and μ > , where T > , φ ∈ �,
f : I × R → R is an increasing continuous function and f ≤  and  ≤ f (t, y) – f (t,x) ≤

http://www.advancesindifferenceequations.com/content/2013/1/83
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�(α)
Tα φ(y – x) for all x, y ∈ R with x ≤ y. If there exists a lower solution for the problem, then
the problem has a unique solution.

Proof Note that by using Lemma ., the problem is equivalent to the integral equation
u(t) =

∫ T
 G(t, s)f (s,u(s))ds, where

G(t, s) =

⎧⎨
⎩

–μ(T–s)α–
(μ+)�(α) + (t–s)α–

�(α) ,  ≤ s ≤ t ≤ T ,
–μ(T–s)α–
(μ+)�(α) ,  ≤ t ≤ s ≤ T .

Define F : C(I,R) → C(I,R) by (Fu)(t) =
∫ T
 G(t, s)f (s,u(s))ds. Note that u ∈ C(I,R) is a

fixed point of F if and only if u is a solution of the problem. Let M = C(I,R). Define the
order ≤ on M by f ≤ g if and only if f (t) ≤ g(t) for all t ∈ I . Then (M,≤,d) is a complete
ordered metric space, where d(f , g) = supt∈I |f (t) – g(t)|. It is easy to check that F is an
increasing self-map. Thus,

d(Fu,Fv) = sup
t∈I

∣∣(Fu)(t) – (Fv)(t)
∣∣

≤ sup
t∈I

∫ T


G(t, s)f

(
s,u(s)

)
ds

≤ sup
t∈I

∫ T


G(t, s)

�(α)
Tα

φ
(
u(s) – v(s)

)
ds

for all u≥ v. Since the function φ is increasing and u≥ v, we get φ(u(s) – v(s))≤ φ(d(u, v)),
and so

d(Fu,Fv) ≤ sup
t∈I

∫ T


G(t, s)

�(α)
Tα

φ
(
u(s) – v(s)

)
ds

≤ �(α)
Tα

φ
(
d(u, v)

)
sup
t∈I

∫ T


G(t, s)ds

≤ φ
(
d(u, v)

)�(α)
Tα

Tα

�(α)
= φ

(
d(u, v)

)

=
φ(d(u, v))
d(u, v)

d(u, v) = β
(
d(u, v)

)
d(u, v)

for all u� v. Now, let β be a lower solution for the problem.We show that β � F(β). Since
β is a lower solution for the problem, we get IαDαβ(t)≤ Iαf (t,β(t)), β() +μβ(T)≤  and
β()≤ . Hence, β(t)≤ β() +

∫ t


(t–s)α–
�(α) f (s,β(s))ds, and so

β(t)≤
∫ t



(t – s)α–

�(α)
f
(
s,β(s)

)
ds

for all t ∈ I . Since f ≤ ,
∫ T


–μ(T–s)α–
(μ+)�(α) f (s,β(s))ds≥ . Thus,

β(t) ≤
∫ t



–μ(T – s)α–

(μ + )�(α)
+
(t – s)α–

�(α)
f
(
s,β(s)

)
ds

+
∫ T

t

–μ(T – s)α–

(μ + )�(α)
f
(
s,β(s)

)
ds,
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and so β(t) ≤ ∫ T
 G(t, s)f (s,β(s))ds = (Fβ)(t). Hence, β ≤ F(β). Note that the space (M,≤,

d) has the property that if {fn} is an increasing sequence and fn → f for some f ∈ M, then
fn � f for all n. Therefore by using Theorem ., F has a unique fixed point. �

Conclusions
In this manuscript, by making use of fixed point techniques on ordered metric spaces, the
existence and uniqueness of the solution of a nonlinear fractional differential equation
with periodic and anti-periodic boundary conditions were investigated. To sustain our
results, two illustrative examples were analyzed in detail.
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