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1 Introduction
Studies on q-difference equations appeared already at the beginning of the twentieth cen-
tury in intensive works especially by Jackson [], Carmichael [] and other authors such
as Poincare, Picard, Ramanujan. Up to date, q-difference equations have evolved into a
multidisciplinary subject; for example, see [–] and the references therein. For some re-
cent work on q-difference equations, we refer the reader to the papers [–], and basic
definitions and properties of q-difference calculus can be found in the book []. On the
other hand, fractional differential equations have gained importance due to their numer-
ous applications in many fields of science and engineering including fluid flow, rheology,
diffusive transport akin to diffusion, electrical networks, probability, etc. For details, see
[, ]. Many researchers studied the existence of solutions to fractional boundary value
problems; see, for example, [–] and the references therein.
The fractional q-difference calculus had its origin in the works by Al-Salam [] and

Agarwal [].More recently, perhaps due to the explosion in researchwithin the fractional
differential calculus setting, newdevelopments in this theory of fractional q-difference cal-
culus were made, specifically, q-analogues of the integral and differential fractional opera-
tors properties such as theMittag-Leffler function, the q-Laplace transform, and q-Taylor’s
formula [, , , ], just to mention some.
However, the theory of boundary value problems for nonlinear q-difference equations

is still in the initial stage and many aspects of this theory need to be explored. Recently,
there have been somepaper considering the existence of solutions to boundary value prob-
lems of fractional q-difference equations, for example, [, –, ] and the references
therein.
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In [], Ferreira considered the Dirichlet type nonlinear q-difference boundary value
problem

⎧⎨
⎩
Dα

qu(t) + f (u(t)) = ,  < t < ,  < α ≤ ,

u() = u() = .

By applying a fixed point theorem in cones, sufficient conditions for the existence of non-
trivial solutions were enunciated.
In [], Graef and Kong investigated the boundary value problem with fractional q-

derivatives

⎧⎨
⎩
(Dα

qu)(t) + f (t,u(t)) = ,  < t < ,n –  < α ≤ n,n ∈N,

(Di
qu)() = , i = , . . . ,n – , bDqu() =

∑m
j= ajDqu(tj) + λ,

where λ ≥  is a parameter, and the uniqueness, existence, and nonexistence of positive
solutions are considered in terms of different ranges of λ.
Furthermore, Ahmad, Ntouyas, and Purnaras [] studied the following nonlinear frac-

tional q-difference equation with nonlocal boundary conditions:

⎧⎨
⎩
(CDα

qu)(t) = f (t,u(t)),  ≤ t ≤ ,  < α ≤ ,

au() – bDqu() = cu(η), au() + bDqu() = cu(η),

where CDα
q is the fractional q-derivative of the Caputo type and ai,bi, ci,ηi ∈ R. The exis-

tence of solutions for the problem is shown by applying some well-known tools of fixed
point theory such as Banach’s contraction principle, Krasnoselskii’s fixed point theorem,
and the Leray-Schauder nonlinear alternative.
In this paper, we deal with the following nonlocal q-integral boundary value problem of

nonlinear fractional q-derivatives equation:

⎧⎨
⎩
(Dα

qu)(t) + f (t,u(t)) = , t ∈ (, ),

u() = , u() = μIβq u(η) = μ
∫ η


(η–qs)(β–)

�q(β) u(s)dqs,
(.)

where q ∈ (, ),  < α ≤ ,  < β ≤ ,  < η < , and μ >  is a parameter, Dα
q is the q-

derivative of Riemann-Liouville type of order α, f : [, ] × R+ → R+ is continuous, in
which R+ = [,+∞). To the authors’ knowledge, no one has studied the existence of posi-
tive solutions for the fractional q-difference boundary value problem (.). In the present
work, we gave the correspondingGreen’s function of the boundary value problem (.) and
its properties. By using the generalized Banach contraction principle, the monotone iter-
ative method, and Krasnoselskii’s fixed point theorem, some existence results of positive
solutions to the above boundary value problems are enunciated.

2 Preliminaries on q-calculus and lemmas
For the convenience of the reader, below we recall some known facts on fractional q-
calculus. The presentation here can be found in, for example, [, , , ].
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Let q ∈ (, ) and define

[a]q =
 – qa

 – q
, a ∈ R.

The q-analogue of the power function (a – b)n with n ∈N := {, , , . . .} is

(a – b)() = , (a – b)(n) =
n–∏
k=

(
a – bqk

)
, n ∈N,a,b ∈ R.

More generally, if γ ∈ R, then

(a – b)(γ ) = aγ

∞∏
k=

a – bqk

a – bqγ+k , a �= . (.)

Clearly, if b = , then a(γ ) = aγ . The q-gamma function is defined by

�q(x) =
( – q)(x–)

( – q)x–
, x ∈ R \ {,–,–, . . .},

and satisfies �q(x + ) = [x]q�q(x).
The q-derivative of a function f is defined by

(Dqf )(x) =
f (qx) – f (x)
(q – )x

, (Dqf )() = lim
x→

(Dqf )(x),

and the q-derivatives of higher order by

(
D

qf
)
(x) = f (x),

(
Dn

qf
)
(x) =Dq

(
Dn–

q f
)
(x), n ∈N.

The q-integral of a function f defined in the interval [,b] is given by

(Iqf )(x) =
∫ x


f (s)dqs = x( – q)

∞∑
k=

f
(
xqk

)
qk , x ∈ [,b],

provided the sum converges absolutely.
If a ∈ [,b] and f is defined in the interval [,b], then its integral from a to b is defined

by

∫ b

a
f (s)dqs =

∫ b


f (s)dqs –

∫ a


f (s)dqs.

Obviously, if f (x)≥ g(x) on [a,b], then
∫ b
a f (x)dqx ≥ ∫ b

a g(x)dqx.
Similar as done for derivatives, an operator Inq is given by

(
Iq f

)
(x) = f (x),

(
Inq f

)
(x) = Iq

(
In–q f

)
(x), n ∈N.

The fundamental theorem of calculus applies to these operators Iq and Dq, i.e.,

(DqIqf )(x) = f (x),

http://www.advancesindifferenceequations.com/content/2013/1/48
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and if f is continuous at x = , then

(IqDqf )(x) = f (x) – f (). (.)

The following formulas will be used later, namely, the integration by parts formula

∫ x


f (s)(Dqg)(s)dqs =

[
f (s)g(s)

]s=x
s= –

∫ x


(Dqf )(s)g(qs)dqs,

and

[
a(t – s)

](γ ) = aγ (t – s)(γ ), (.)

tDq(t – s)(γ ) = [γ ]q(t – s)(γ–), (.)

sDq(t – s)(γ ) = –[γ ]q(t – qs)(γ–), (.)(
xDq

∫ x


f (x, s)dqs

)
(x) =

∫ x


xDqf (x, s)dqs + f (qx,x), (.)

where tDq denotes the derivative with respect to the variable t.

Definition . Let α ≥  and f be a function defined on [, ]. The fractional q-integral
of Riemann-Liouville type is (Iq f )(x) = f (x) and

(
Iαq f

)
(x) =


�q(α)

∫ x


(x – qs)(α–)f (s)dqs, α > ,x ∈ [, ].

Definition . The fractional q-derivative of the Riemann-Liouville type of order α ≥ 
is defined by (D

qf )(x) = f (x) and

(
Dα

q f
)
(x) =

(
D[α]

q I[α]–α
q f

)
(x), α > ,

where [α] is the smallest integer greater than or equal to α.

Lemma . Assume that γ ≥  and a ≤ b ≤ t, then (t – a)(γ ) ≥ (t – b)(γ ).

Lemma . Let α,β ≥  and f be a function defined on [, ]. Then the following formulas
hold:
() (Iβq Iαq f )(x) = (Iα+β

q f )(x),
() (Dα

q Iαq f )(x) = f (x).

Lemma . ([]) Let α >  and n be a positive integer. Then the following equality holds:

(
Iαq D

n
qf

)
(x) =

(
Dn

qI
α
q f

)
(x) –

n–∑
k=

xα–n+k

�q(α + k – n + )
(
Dk

qf
)
().

Lemma . ([]) Let α ∈ R+, λ ∈ (–,+∞), the following is valid:

Iαq
(
(t – a)(λ)

)
=

�q(λ + )
�q(α + λ + )

(t – a)(α+λ),  < a < t < b.
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Particularly, for λ = , a = , using q-integration by parts, we have

(
Iαq 

)
(t) =


�q(α)

∫ t


(t – qs)(α–) dqs =


�q(α)

∫ t



sDq((t – s)(α))
–[α]q

dqs

= –


�q(α + )

∫ t


sDq

(
(t – s)(α)

)
dqs =


�q(α + )

t(α).

Obviously, we have
∫ t
 (t – qs)(α–) dqs = 

[α]q t
(α).

In order to define the solution for the problem (.), we need the following lemmas.

Lemma. LetM := �q(α+β)–μ�q(α)ηα+β– > .Then, for a given y ∈ C[, ], the unique
solution of the boundary value problem

(
Dα

qu
)
(t) + y(t) = , t ∈ (, ),  < α ≤ , (.)

subject to the boundary condition

u() = ,

u() = μIβq u(η) = μ

∫ η



(η – qs)(β–)

�q(β)
u(s)dqs,  < β ≤ ,  < η < ,

(.)

is given by

u(t) =
∫ 


G(t,qs)y(s)dqs, (.)

where

G(t,qs) = g(t,qs) +
μtα–

M
H(η,qs), (.)

g(t, s) =

⎧⎨
⎩

tα–(–s)(α–)–(t–s)(α–)
�q(α) , ≤ s ≤ t ≤ ,

tα–(–s)(α–)
�q(α) , ≤ t ≤ s ≤ ,

(.)

and

H(η, s) =

⎧⎨
⎩

ηα+β–( – s)(α–) – (η – s)(α+β–),  ≤ s ≤ η < ,

ηα+β–( – s)(α–),  < η ≤ s≤ .
(.)

Proof Since  < α ≤ , we take n = . In view of Definition . and Lemma ., we have

(
Dα

qu
)
(t) = –y(t) ⇔ (

Iαq D

qI

–α
q u

)
(t) = –

(
Iαq y

)
(t).

Then it follows from Lemma . that the solution u(t) of (.) and (.) is given by

u(t) = ctα– + ctα– –
∫ t



(t – qs)(α–)

�q(α)
y(s)dqs (.)

for some constants c, c ∈ R. Since u() = , we have c = .

http://www.advancesindifferenceequations.com/content/2013/1/48
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Using the Riemann-Liouville integral of order β for (.), we have

(
Iβq u

)
(t) =

∫ t



(t – qs)(β–)

�q(β)

(
csα– –

∫ s



(s – qx)(α–)

�q(α)
y(x)dqx

)
dqs

= –
∫ t



(t – qs)(α+β–)

�q(α + β)
y(s)dqs + c

∫ t



(t – qs)(β–)

�q(β)
sα– dqs

= –
∫ t



(t – qs)(α+β–)

�q(α + β)
y(s)dqs + c

�q(α)
�q(α + β)

tα+β–,

where we have used Lemma . and Lemma .. Using the boundary condition u() =
μIβq u(η), we get

c =
�q(α + β)

M

(∫ 



( – qs)(α–)

�q(α)
y(s)dqs –μ

∫ η



(η – qs)(α+β–)

�q(α + β)
y(s)dqs

)
.

Hence, we have

u(t) =
�q(α + β)tα–

M

(∫ 



( – qs)(α–)

�q(α)
y(s)dqs –μ

∫ η



(η – qs)(α+β–)

�q(α + β)
y(s)dqs

)

–
∫ t



(t – qs)(α–)

�q(α)
y(s)dqs

=
∫ 



tα–( – qs)(α–)

�q(α)
y(s)dqs –

∫ t



(t – qs)(α–)

�q(α)
y(s)dqs

+
μtα–

M

(∫ 


ηα+β–( – qs)(α–)y(s)dqs –

∫ η


(η – qs)(α+β–)y(s)dqs

)

=
∫ 


g(t,qs)y(s)dqs +

μtα–

M

∫ 


H(η,qs)dqs

=
∫ 


G(t,qs)y(s)dqs.

This completes the proof of the lemma. �

Remark . For the special case where μ = , Lemma . has been obtained by Ferreira
[].

Lemma . ([]) The function g(t, s) defined by (.) satisfies the following properties:

g(t,qs) ≥  and g(t,qs) ≤ g(qs,qs) for all  ≤ t, s ≤ .

Lemma . The function G(t,qs) defined by (.) satisfies the following properties:
(i) G is a continuous function and G(t,qs)≥  for (t, s) ∈ [, ]× [, ].
(ii) There exists a positive function ρ ∈ C((, ), (, +∞)) such that

max
≤t≤

G(t,qs) ≤ ρ(s),

http://www.advancesindifferenceequations.com/content/2013/1/48
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where

ρ(s) = g(qs,qs) +
μ

M
H(η,qs), s ∈ (, ).

Proof It is easy to prove that the statement (i) holds. On the other hand, we note that g(t, s)
defined by (.) is decreasing with respect to t for s ≤ t and increasing with respect to t
for t ≤ s. Hence, we have

max
≤t≤

G(t,qs) = max
≤t≤

(
g(t,qs) +

μtα–

M
H(η,qs)

)

≤ g(qs,qs) +
μ

M
H(η,qs) := ρ(s), s ∈ (, ).

The proof is completed. �

3 Themain results
Let X = C([, ]) be a Banach space endowed with the norm ‖u‖X =max≤t≤ |u(t)|. Define
the cone P ⊂ X by P = {u ∈ X : u(t) ≥ , ≤ t ≤ }.
Define the operator T : P → X as follows:

(Tu)(t) =
∫ 


G(t,qs)f

(
s,u(s)

)
dqs. (.)

It follows from the nonnegativeness and continuity ofG and f that the operator T : P → X
satisfies T(P) ⊂ P and is completely continuous.

Theorem . Suppose that f : [, ] × R+ → R+ is continuous and there exists a function
h : [, ] → R+ such that

∣∣f (t,u) – f (t, v)
∣∣ ≤ h(t)|u – v|, t ∈ [, ],u, v ∈ R+. (.)

Then the BVP (.) has a unique positive solution provided

∫ 


sα–( – qs)(α–)h(s)dqs <

�q(α)M
�q(α + β)

. (.)

Proof We will prove that under the assumptions (.) and (.), Tm is a contraction oper-
ator form sufficiently large.
By (.), (.), and (.), for u, v ∈ P, we obtain the estimate

∣∣(Tu)(t) – (Tv)(t)
∣∣ ≤

∫ 


G(t,qs)

∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣dqs

=
∫ 



[
g(t,qs) +

μtα–

M
H(η,qs)

]∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣dqs

≤
∫ 



tα–( – qs)(α–)

�q(α)
h(s)dqs · ‖u – v‖X

+μηα+β–
∫ 



tα–( – qs)(α–)

M
h(s)dqs · ‖u – v‖X

http://www.advancesindifferenceequations.com/content/2013/1/48
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=
�q(α + β)tα–‖u – v‖X

�q(α)M

∫ 


( – qs)(α–)h(s)dqs

=
	�q(α + β)tα–

�q(α)M
‖u – v‖X ,

where 	 =
∫ 
 ( – qs)(α–)h(s)dqs.

Consequently,

∣∣(Tu
)
(t) –

(
Tv

)
(t)

∣∣ ≤
∫ 


G(t,qs)

∣∣f (s, (Tu)(s)) – f
(
s, (Tv)(s)

)∣∣dqs

≤ 	�q(α + β)‖u – v‖X
�q(α)M

∫ 


G(t,qs)sα–h(s)dqs

≤ 	[�q(α + β)]tα–‖u – v‖X
[�q(α)M]

∫ 


sα–( – qs)(α–)h(s)dqs

=
		[�q(α + β)]tα–

[�q(α)M]
‖u – v‖X ,

where 	 =
∫ 
 s

α–( – qs)(α–)h(s)dqs.
By introduction, we have

∣∣(Tmu
)
(t) –

(
Tmv

)
(t)

∣∣ ≤ 		
m–
 [�q(α + β)]mtα–

[�q(α)M]m
‖u – v‖X .

According to (.), we can choosem sufficiently large such that

		
m–
 [�q(α + β)]m

[�q(α)M]m
=

	

	

[
	�q(α + β)

�q(α)M

]m

<
(



)m
	

	
<


,

which implies

∥∥(
Tmu

)
(t) –

(
Tmv

)
(t)

∥∥
X <



‖u – v‖X .

Hence, it follows from the generalized Banach contraction principle that the BVP (.) has
a unique positive solution. �

Remark . When h(t) ≡ h is a constant, the condition (.) reduces to a Lipschitz con-
dition.
For the sake of convenience, we set

l =
(

μτα–

M

∫ τ

τ

H(η,qs)dqs
)–

,

L =
(∫ 



(
qα–( – qs)(α–)

�q(α)
+

μ

M
H(η,qs)

)
dqs

)–

,

where τ = qm , τ = qm withm,m ∈ N,m >m.

http://www.advancesindifferenceequations.com/content/2013/1/48
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Theorem . Suppose that there exists  < ξ < ξ such that
(Hf ) f (t,u) : [, ]× [, ξ] → R+ is continuous and nondecreasing relative to u, and

max
≤t≤

f (t, ξ)≤ Lξ, (.)

min
τ≤t≤τ

f (t, ξ) ≥ lξ. (.)

Then the BVP (.) has one positive solution u* satisfying

ξ ≤ ∥∥u*∥∥X ≤ ξ and lim
m→∞Tmu = u*, u(t) = ξ.

Proof We denote �[ξ, ξ] = {u ∈ P : ξ ≤ u ≤ ξ}. In what follows, we first show that T :
�[ξ, ξ] → �[ξ, ξ].
Let u ∈ �[ξ, ξ]; then  < ξ ≤ u(t)≤ ‖u‖X ≤ ξ. By assumption (Hf ), we have

 ≤ f
(
t,u(t)

) ≤ f (t, ξ) ≤ max
≤t≤

f (t, ξ)≤ Lξ,  ≤ t ≤ ,

f
(
t,u(t)

) ≥ f (t, ξ) ≥ min
τ≤t≤τ

f (t, ξ) ≥ lξ.

Hence, for any u ∈ �[ξ, ξ],

‖Tu‖X = max
≤t≤

∫ 



∣∣G(t,qs)f (s,u(s))∣∣dqs

≤
∫ 


ρ(s)f

(
s,u(s)

)
dqs

≤ Lξ

∫ 


ρ(s)dqs

≤ Lξ

∫ 



(
qα–( – qs)(α–)

�q(α)
+

μ

M
H(η,qs)

)
dqs = ξ,

and

‖Tu‖X ≥ min
τ≤t≤τ

(∫ 



∣∣g(t,qs)f (s,u(s))∣∣dqs + μtα–

M

∫ 



∣∣H(η,qs)f
(
s,u(s)

)∣∣dqs
)

≥ μτα–

M

(∫ τ

τ

H(η,qs)dqs
)

· lξ = ξ.

Thus, we get T :�[ξ, ξ] → �[ξ, ξ].
Let u(t) = ξ,  ≤ t ≤ ; then u ∈ �[ξ, ξ]. Let u(t) = Tu(t); then u ∈ �[ξ, ξ].

We denote um+ = Tum = Tm+u, m = , , , . . . . According to T : �[ξ, ξ] → �[ξ, ξ],
we have un ∈ �[ξ, ξ], n = , , , . . . . Since T is completely continuous, we assert that
{um}∞m= has a convergent subsequence {umk }∞k= and there exists u* ∈ �[ξ, ξ] such that
limk→+∞ umk = u*. Since u ∈ �[ξ, ξ], then ξ ≤ u ≤ ‖u‖X ≤ ξ = u. According to the
definition of T and (Hf ), we have

u(t) = (Tu)(t)

=
∫ 


G(t,qs)f

(
s,u(s)

)
dqs

http://www.advancesindifferenceequations.com/content/2013/1/48
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≤
∫ 


ρ(s)f (s, ξ)dqs

≤ Lξ

∫ 



(
qα–( – qs)(α–)

�q(α)
+

μ

M
H(η,qs)

)
dqs = ξ = u(t),

which implies

u(t) = Tu(t) ≤ Tu(t) = u(t),  ≤ t ≤ .

By introduction, we have um+(t) ≤ um(t) for  ≤ t ≤ , m = , , , . . . . Thus, there exists
u* ∈ �[ξ, ξ] such that limm→+∞ um = u*. From the continuity of T and um+ = Tum, we
have u* = Tu*. The proof is completed. �

Our next existence result is based on Krasnoselskii’s fixed point theorem [].

Lemma . (Krasnoselskii’s) Let E be a Banach space, and let P ⊂ E be a cone. Assume
�, � are open subsets of E with θ ∈ � ⊂ �̄ ⊂ �, and let T : P ∩ (�̄ \ �) → P be a
completely continuous operator such that

‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂� and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂�.

Then T has at least one fixed point in P ∩ (�̄ \ �).

Theorem . Let f (t,u) be a nonnegative continuous function on [, ]×R+. In addition,
we assume that
(H) There exists a positive constant r such that

f (t,u) ≥ κr, for (t,u) ∈ [τ, τ]× [, r],

where τ = qm , τ = qm with m,m ∈N,m >m, and

κ ≥
(∫ τ

τ

(
g(qs,qs) +

μ

M
H(η,qs)

)
dqs

)–

.

(H) There exists a positive constant r with r > r such that

f (t,u) ≤ Lr, for (t,u) ∈ [, ]× [, r].

Then the BVP (.) has at least one positive solution u satisfying  < r ≤ ‖u‖X ≤ r.

Proof By Lemma ., we obtain that max≤t≤ g(t,qs) = g(qs,qs). Let � = {u ∈ X : ‖u‖X <
r}. For any u ∈ X ∩ ∂�, according to (H) and the definitions of τ and τ, we obtain

‖Tu‖X = max
≤t≤

∫ 


g(t,qs)f

(
s,u(s)

)
dqs + max

≤t≤

∫ 



μtα–

M
H(η,qs)f

(
s,u(s)

)
dqs

=
∫ 



[
g(qs,qs) +

μ

M
H(η,qs)

]
f
(
s,u(s)

)
dqs

http://www.advancesindifferenceequations.com/content/2013/1/48
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≥
∫ τ

τ

(
g(qs,qs) +

μ

M
H(η,qs)

)
f
(
s,u(s)

)
dqs

≥ κr
∫ τ

τ

(
g(qs,qs) +

μ

M
H(η,qs)

)
dqs

≥ ‖u‖X = r.

Let � = {u ∈ X : ‖u‖X < r}. For any u ∈ X ∩ ∂�, by (H) and Lemma ., we have

‖Tu‖X = max
≤t≤

∫ 


G(t,qs)f

(
s,u(s)

)
dqs

≤ Lr
∫ 


ρ(s)dqs

≤ Lr
∫ 



(
qα–( – qs)(α–)

�q(α)
+

μ

M
H(η,qs)

)
dqs = ‖u‖X = r.

Now, an application of Lemma . concludes the proof. �

Theorem . Assume that there exist m +  positive numbers  < r < r < · · · < rm+ such
that
(H) f (t,u) > κrj– for (t,u) ∈ [τ, τ]× [, rj–] and f (t,u) < Lrj for

(t,u) ∈ [, ]× [, rj], j = , , . . . , [m+
 ]; or

(H) f (t,u) > κrj for (t,u) ∈ [τ, τ]× [, rj] and f (t,u) < Lrj– for
(t,u) ∈ [, ]× [, rj–], j = , , . . . , [m+

 ],
where τ, τ, κ are given in (H).
Then the BVP (.) has at least n positive solutions u,u, . . . ,um with rj < ‖uj‖X < rj+,

j = , . . . ,m.

Proof Suppose that the condition (H) holds. According to the continuity of f , for every
pair (rj, rj+), there exists (aj,bj) with rj < aj < bj < rj+ such that

f (t,u) ≥ κbj–, f (t,u) ≤ Laj– and

f (t,u) ≥ κaj, f (t,u) ≤ Lbj, j = , , . . . ,
[
m + 


]
.

It follows from Theorem . that every pair (aj,bj) presents a positive solution of the BVP
(.) such that aj ≤ ‖uj‖X < bj, j = , , . . . ,m.
When the condition (H) holds, the proofs are similar to those in the case (H). The

proof is completed. �

4 Examples
Example . The fractional boundary value problem

⎧⎨
⎩
D.

.u(t) +
et (+u)
(+et ) + t sin t +  = ,  < t < ,

u() = , u() = .I..u(.)
(.)

has a unique positive solution.

http://www.advancesindifferenceequations.com/content/2013/1/48
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Proof In this case, α = ., β = q = ., μ = ., η = .. Let

f (t,u) =
et( + u)
( + et)

+ t sin t + , (t,u) ∈ [, ]× [, +∞),

and h(t) = et
(+et ) . It is easy to prove that

∣∣f (t,u) – f (t, v)
∣∣ ≤ h(t)|u – v|, for (t,u), (t, v) ∈ [, ]× [, +∞).

By simple calculation, we get

M = �q(α + β) –μ�q(α)ηα+β– ≈ .,∫ 


sα–( – qs)(α–)h(s)dqs =

∫ 


sα–( – qs)(α–) · es

( + es)
dqs

≤ 


∫ 


sα–( – qs)(α–) dqs

≤ 


∫ 


( – qs)(α–) dqs≈ .,

and

∫ 


( – qs)(α–)h(s)dqs =

∫ 


( – qs)(α–) · es

( + es)
dqs

≤ 


∫ 


( – qs)(α–) dqs ≈ .,

which implies that

∫ 


sα–( – qs)(α–)h(s)dqs <

�q(α)M
�q(α + β)

≈ ..

Obviously, for anym ≥ , we have

		
m–
 [�q(α + β)]m

[�q(α)M]m
≤ .× �q(α + β)

m–�q(α)M
< . <



.

Thus Theorem . implies that the boundary value problem (.) has a unique positive
solution. �

Example . Consider the following fractional boundary value problem:

⎧⎨
⎩
D.

.u(t) + 
√
u – t

 +
t
 = ,  < t < ,

u() = , u() = .I..u(.),
(.)

where α = ., β = q = ., μ = ., η = .. Choosing m = , m = , then τ = .,
τ = ..

http://www.advancesindifferenceequations.com/content/2013/1/48


Zhao et al. Advances in Difference Equations 2013, 2013:48 Page 13 of 15
http://www.advancesindifferenceequations.com/content/2013/1/48

A simple computation showed M ≈ .. By Lemma . and with the aid of a com-
puter, we obtain that

l =
(

μτα–

M

∫ τ

τ

H(η,qs)dqs
)–

≈ .,

and

L =
(∫ 



(
qα–( – qs)(α–)

�q(α)
+

μ

M
H(η,qs)

)
dqs

)–

≈ ..

Let f (t,u) = – t
 +

t
 + 

√
u. Take ξ = , ξ = , then f (t,u) satisfies

(i) f (t,u) : [, ]× [, ]→ R+ is continuous and nondecreasing relative to u;
(ii) max≤t≤ f (t, ξ) = f (  , ) ≈ . < Lξ ≈ .;
(iii) min 

≤t≤ 

f (t, ξ) = f (  , ) ≈ . > lξ ≈ ..

So, by Theorem ., the problem (.) has one positive solution u* satisfying

 ≤ ∥∥u*∥∥X ≤  and lim
m→∞Tmu = u*, u(t) = .

Example . Consider the following fractional boundary value problem:

⎧⎨
⎩
D.

.u(t) +
u
 +

sin t
 + t

 +  = ,  < t < ,

u() = , u() = .I..u(.),
(.)

where α = β = ., q = .,μ = η = .. Choosingm = ,m = , then τ = ., τ = ..
By calculation, we get M ≈ .. By Lemma . and with the aid of a computer, we

obtain that

(∫ τ

τ

(
g(qs,qs) +

μ

M
H(η,qs)

)
dqs

)–

≤
(∫ τ

τ

(
(qτ)α–( – qs)(α–)

�q(α)
dqs +

μ

M
H(η,qs)

)
dqs

)–

≈ .,

and

L =
(∫ 



(
qα–( – qs)(α–)

�q(α)
+

μ

M
H(η,qs)

)
dqs

)–

≈ ..

Let f (t,u) = u
 +

sin t
 + t

 + . Take κ =  and r = 
 , r =


 . Then f (t,u) satisfies

(i) f (t,u) : [, ]×R+ → R+ is continuous;
(ii) f (t,u) ≤ u

 +

 +


 +  ≤ . < Lr ≈ ., (t,u) ∈ [, ]× [, 

 ];
(iii) f (t,u) = u

 +
sin t
 + t

 +  ≥  + τ
 = . > κr = , (t,u) ∈ [., .]× [,  ].

So, by Theorem ., the problem (.) has at least one positive solution u with 
 ≤

‖u‖X ≤ 
 .
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