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Abstract
In this article, we study a boundary value problem of a coupled system of nonlinear
Riemann-Liouville type fractional differential equations with fractional boundary
conditions on the half-line. An appropriate compactness criterion is established to
prove the existence of solutions of the problem by means of the Schauder fixed point
theorem. An illustrative example is also given.
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1 Introduction
In recent years, the subject of fractional differential equations has gained a considerable
attention and it has emerged as an interesting and popular field of research. It is mainly
due to the fact that the tools of fractional calculus are found to be more practical and ef-
fective than the corresponding ones of classical calculus in the mathematical modeling of
several phenomena involving fractals and chaos. In fact, fractional calculus has numerous
applications in various disciplines of science and engineering such as mechanics, elec-
tricity, chemistry, biology, economics, control theory, signal and image processing, poly-
mer rheology, regular variation in thermodynamics, biophysics, blood flow phenomena,
aerodynamics, electro-dynamics of complex medium, viscoelasticity and damping, con-
trol theory, wave propagation, percolation, identification, fitting of experimental data, etc.
For theoretical development andmethods of solution for fractional differential equations,
see the books [–] and references therein. For details on the geometric and physical in-
terpretation of the derivatives of non-integer order, see [–]. Some recent results on frac-
tional boundary value problems on a finite interval can be found in [–] and references
therein.
In [], using the monotone iterative method, Zhang investigated the existence and

uniqueness of solutions for the following initial value problem of the fractional differential
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equations:

⎧⎨
⎩
Dα

+u(t) = f (t,u(t)), t ∈ (,T],

t–αu(t)|t= = u,
()

where  < T <∞ and Dα is the Riemann-Liouville fractional derivative of order α ∈ (, ).
Arara et al. [] studied the existence of bounded solutions for differential equations

involving the Caputo fractional derivative on the unbounded domain given by

⎧⎪⎪⎨
⎪⎪⎩

cDα
+u(t) = f (t,u(t)), t ∈ [,∞),

u() = u,

u is bounded on [,∞),

()

where α ∈ (, ), cDα
+ is the Caputo fractional derivative of order α, u ∈ R, and f :

[,∞) × R → R is continuous. Using the Schauder fixed point theorem combined with
the diagonalization method, it is proved that BVP () has at least one solution on [,∞).
Zhao and Ge [] considered the following boundary value problem for fractional dif-

ferential equations:

⎧⎪⎪⎨
⎪⎪⎩
Dα

+u(t) + f (t,u(t)) = ,  < t <∞,  < α < ,

u() = ,

limt→∞ Dα–
+ u(t) = ,

()

where  < ξ < ∞, β ≥  and f is a given function, Dα
+ is the Riemann-Liouville fractional

derivative. By using the properties of theGreen’s function togetherwith the Schauder fixed
point theorem, it has been proved that BVP () has at least one positive solution subject to
the assumptions: f : [,∞) × R → [,∞) is continuous; and there exist a nondecreasing
function ω ∈ C([,∞), [,∞)) and a function φ ∈ L[,∞) such that |f (t, ( + tα–)u)| ≤
φ(t)ω(u) on [,∞)× [,∞).
In [], Liu and Jia investigated the boundary value problem for a fractional differential

equation of the form

⎧⎪⎪⎨
⎪⎪⎩

cDα
+[p(t)u′(t)] + q(t)f (t,u(t)) = , t > ,

p()u′() = ,

limt→∞ u(t) =
∫ ∞
 g(s)u(s)ds,

()

where cDα
+ is the Caputo fractional derivative of order α ∈ (, ), f , g , p, q are given func-

tions, p(t) >  for all t ≥  with
∫ ∞



p(s) ds < ∞ and k(s) =

∫ ∞
s

(r–s)α–
p(r) dr being continuous

on [,∞), g ∈ L[,∞) with
∫ ∞
 g(s)ds < . The existence of at least three nonnegative so-

lutions of the problem () was established by using fixed point theory and the method of
upper and lower solutions.
For somemore work on boundary value problems of fractional differential equations on

a half-line/semi-infinite interval, we refer the reader to the papers [–].
On the other hand, the study for coupled systems of fractional differential equations is

also important as such systems occur in various problems of applied nature; for instance,
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see [–]. Some recent results on coupled systems of fractional differential equations
on a finite interval can be found in [–].
In this paper, we discuss the existence of solutions to a boundary value problem of a

coupled system of nonlinear fractional differential equations on the half-line given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
+x(t) = f (t, y(t),Dp

+y(t)), t ∈ (,∞),

Dβ

+y(t) = g(t,x(t),Dq
+x(t)), t ∈ (,∞),

a limt→ t–αx(t) – b limt→Dα–
+ x(t) = x,

c limt→ t–βy(t) – d limt→Dβ–
+ x(t) = y,

limt→∞ Dα–
+ x(t) = x,

limt→∞ Dβ–
+ x(t) = y,

()

where a,b, c,d > , α,β ∈ (, ), p ∈ (β – ,β), q ∈ (α – ,α), x, y,x, y ∈ R, D+ is the
standardRiemann-Liouville fractional derivative and f , g : (,∞)×R → R are continuous
functions and f , g may be singular at t = .
We establish sufficient conditions for the existence of solutions of () by applying the

Schauder fixed point theorem. Our results are new in the sense that we consider BVP
() on a half-line with the assumptions on p, q of the form p ∈ (β – ,β), q ∈ (α – ,α).
Moreover, both the nonlinear functions f and g are allowed to be linear as well as super
linear. The paper is organized as follows: the preliminary results are given in Section ,
the main results are presented in Section , while an example is discussed in Section  to
illustrate the main theorems.

2 Preliminary results
Let us begin this section with some basic concepts of fractional calculus [–]. For a > 
and b, c > , denote the gamma function and beta function respectively as

�(a) =
∫ +∞


sa–e–s ds, B(b, c) =

∫ 


( – x)b–xc– dx.

Definition . The Riemann-Liouville fractional integral of order α >  of a continuous
function f : (,∞)→ R is given by

Iα+ f (t) =


�(α)

∫ t


(t – s)α–f (s)ds,

provided that the right-hand side exists.

Definition . TheRiemann-Liouville fractional derivative of order α >  of a continuous
function f : (,∞)→ R is given by

Dα
+ f (t) =


�(n – α)

dn+

dtn+

∫ t



f (s)
(t – s)α–n+

ds,

where n –  < α ≤ n, provided that the right-hand side is point-wise defined on (,∞).
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It is easy to show that for � ≥  and μ > –, we have

I�+ t
μ =

�(μ + )
�(μ + � + )

tμ+� , D�

+ t
μ =

�(μ + )
�(μ – � + )

tμ–� .

Let C(,∞) be the set of all continuous functions on (,∞). For σ >max{q – α,p – β},
ones sees from p ∈ (β – ,β), q ∈ (α – ,α) that σ > –. We choose

X =

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C(,∞) :

Dq
+x ∈ C(,∞)
t–α

+tσ+ x(t) is bounded on (,∞)
t+q–α

+tσ+D
q
+x(t) is bounded on (,∞)

⎫⎪⎪⎬
⎪⎪⎭

and

Y =

⎧⎪⎪⎨
⎪⎪⎩
y ∈ C(,∞) :

Dp
+y ∈ C(,∞)
t–β

+tσ+ x(t) is bounded on (,∞)
t+p–β

+tσ+D
p
+x(t) is bounded on (,∞)

⎫⎪⎪⎬
⎪⎪⎭
.

For x ∈ X, define the norm by

‖x‖X =max

{
sup

t∈(,∞)

t–α

 + tσ+
∣∣x(t)∣∣, sup

t∈(,∞)

t+q–α

 + tσ+
∣∣Dq

+x(t)
∣∣}.

It is easy to show that X is a real Banach space. For y ∈ Y , define the norm by

‖y‖Y =max

{
sup

t∈(,∞)

t–β

 + tσ+
∣∣y(t)∣∣, sup

t∈(,∞)

t+p–β

 + tσ+
∣∣Dp

+y(t)
∣∣}.

It is easy to show that Y is a real Banach space. Thus, (X × Y ,‖ · ‖) is Banach space with
the norm defined by

∥∥(x, y)∥∥ =max
{‖x‖X ,‖y‖Y}

for (x, y) ∈ X × Y .

Lemma . Let  < α < , x,x ∈ R, and let e : (,∞) → R be a given function such that
there exist numbers M > , σ > – and k >  with |e(t)| ≤ Mtσ e–kt . Then x ∈ X is a solution
of the problem

⎧⎪⎪⎨
⎪⎪⎩
Dα

+x(t) = e(t), t ∈ J = (,∞),

a limt→ t–αx(t) – b limt→Dα–
+ x(t) = x,

limt→∞ Dα–
+ x(t) = x,

()

if and only if x ∈ X and

x(t) =


�(α)

∫ t


(t – s)α–e(s)ds +

x –
∫ ∞
 e(s)ds
�(α)

tα– +
x + bx – b

∫ ∞
 e(s)ds

a
tα–. ()
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Proof It is easy to see that
∫ ∞
 tσ e–kt dt < ∞. For arbitrary constants c, c, the general

solution of the equation Dα
+x(t) = e(t) can be written as

x(t) =


�(α)

∫ t


(t – s)α–e(s)ds + ctα– + ctα– ()

with

Dα–
+ x(t) =

∫ t


e(s)ds + �(α)c.

Using the boundary conditions of (), we find that

c =
x –

∫ ∞
 e(s)ds
�(α)

, c =
x + bx – b

∫ ∞
 e(s)ds

a
.

Substituting the values of c and c in (), we obtain ().
Now, we prove x ∈ X. Clearly,

Dq
+x(t) =

∫ t
 (t – s)α–q–e(s)ds

�(α – q)
+
x –

∫ ∞
 e(s)ds

�(α – q)
tα–q–

+
x + bx – b

∫ ∞
 e(s)ds

a
�(α – )tα–q–

�(α – q – )
. ()

It follows from () and () together with |e(t)| ≤ Mtσ e–kt , σ > – that x,Dq
+x ∈ C(,∞).

Observe that

t–α

 + tσ+
∣∣x(t)∣∣ ≤ |x + bx|

a
+

|x|
�(α)

+
M

�(α)
B(α,σ + ) +

(


�(α)
+

a

)
�(σ + )
kσ+ < +∞

and

t+q–α

 + tσ+
∣∣Dq

+x(t)
∣∣ ≤ M

�(α – q)
tσ+

 + tσ+

∫ 


( –w)α–q–wσ dw

+
|x|

�(α – q)
+

|x + bx|
a

�(α – )
|�(α – q – )|

+
(


�(α – q)

+
�(α – )

a|�(α – q – )|
)

�(σ + )
kσ+ < +∞.

Hence x ∈ X.
Conversely, if x ∈ X satisfies (), then it can easily be shown that x ∈ X and satisfies ().

This completes the proof. �

Consider the coupled system of integral equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x(t) = 
�(α)

∫ t
 (t – s)α–f (s, y(s),Dp

+y(s))ds +
x–

∫ ∞
 f (s,y(s),Dp

+ y(s))ds
�(α) tα–

+ x+bx–
∫ ∞
 f (s,y(s),Dp

+ y(s))ds
a tα–,

y(t) = 
�(β)

∫ t
 (t – s)α–g(s,x(s),Dq

+x(s))ds +
y–

∫ ∞
 g(s,x(s),Dq

+x(s))ds
�(α) tβ–

+ y+dy–
∫ ∞
 g(s,x(s),Dq

+x(s))ds
c tβ–.

()
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For the sequel, we need the following assumptions:
(H) There exist numbers σi,μi ∈ (–,σ ), ki > , li >  (i = , , ) and positive numbers

A, B, C, A, B, C such that for t ∈ (,∞), u,u, v, v ∈ R, f and g satisfy the
conditions

∣∣∣∣f
(
t,
 + tσ+

t–β
u,

 + tσ+

t+p–β
u

)
–Ctσe–kt

∣∣∣∣ ≤ Atσe–kt|u| + Btσe–kt|u|

and
∣∣∣∣g

(
t,
 + tσ+

t–α
v,

 + tσ+

t+q–α
v

)
–Ctμe–lt

∣∣∣∣ ≤ Atμe–lt|v| + Btμe–lt|v|;

(G) There exist numbers σi,μi ∈ (–,σ ), ki > , li >  (i = , , ), δ >  and positive
numbers A, B, C, A, B, C such that for t ∈ (,∞), u,u, v, v ∈ R, f and g satisfy
the conditions

∣∣∣∣f
(
t,
 + tσ+

t–β
u,

 + tσ+

t+p–β
u

)
–Ctσe–kt

∣∣∣∣ ≤ Atσe–kt|u|δ + Btσe–kt|u|δ

and
∣∣∣∣g

(
t,
 + tσ+

t–α
v,

 + tσ+

t+q–α
v

)
–Ctμe–lt

∣∣∣∣ ≤ Atμe–lt|v|δ + Btμe–lt|v|δ .

Lemma . Suppose that (H) or (G) holds. Then (x, y) ∈ X × Y is a solution of () if and
only if (x, y) ∈ X × Y is a solution of ().

Proof Let (x, y) ∈ X × Y . In view of the assumption (H), it follows that

∣∣f (t, y(t),Dp
+y(t)

)∣∣ =
∣∣∣∣f

(
t,
 + tσ+

t–β

t–β

 + tσ+
y(t),

 + tσ+

t+p–β

t+p–β

 + tσ+
Dp

+y(t)
)∣∣∣∣

≤ Ctσe–kt +Atσe–kt‖y‖Y + Btσe–kt‖y‖Y

and

∣∣g(t,x(t),Dq
+px(t)

)∣∣ ≤ Ctμe–lt +Atμe–lt‖x‖X + Btμe–lt‖x‖X .

The rest of the proof follows from Lemma .. Similarly, we can show that the result holds
if (G) holds. This completes the proof. �

Let us define an operator F : X × Y → X × Y as

F(x, y)(t) =
(
(Fy)(t), (Fx)(t)

)
,

where

(Fy)(t) =


�(α)

∫ t


(t – s)α–f

(
s, y(s),Dp

+y(s)
)
ds +

x –
∫ ∞
 f (s, y(s),Dp

+y(s))ds
�(α)

tα–

+
x + bx –

∫ ∞
 f (s, y(s),Dp

+y(s))ds
a

tα–

http://www.advancesindifferenceequations.com/content/2013/1/46
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and

(Fx)(t) =


�(β)

∫ t


(t – s)α–g

(
s,x(s),Dq

+x(s)
)
ds +

y –
∫ ∞
 g(s,x(s),Dq

+x(s))ds
�(α)

tβ–

+
y + dy –

∫ ∞
 g(s,x(s),Dq

+x(s))ds
c

tβ–.

Lemma . Suppose that (H) or (G) holds. Then the fixed point of the operator F coincides
with the solution of () and F : X × Y → X × Y is completely continuous.

Proof It follows from Lemma . that the fixed point of the operator F coincides with the
solution of (). Suppose that (H) holds. The remaining proof consists of the following five
steps.
Step . We show that F : X × Y → X × Y is well defined and maps bounded sets into

bounded sets.
For (x, y) ∈ X × Y , we get

r = max
{‖x‖X ,‖y‖Y}

= max

{
sup

t∈(,∞)

t–α

 + tσ+
∣∣x(t)∣∣, sup

t∈(,∞)

t–β

 + tσ+
∣∣y(t)∣∣,

sup
t∈(,∞)

t+q–α

 + tσ+
∣∣Dq

+x(t)
∣∣, sup
t∈(,∞)

t+p–β

 + tσ+
∣∣Dp

+y(t)
∣∣} < ∞.

By the definition of F , we have

(Fy),D
q
+(Fy) ∈ C(,∞).

By the method used in Lemma ., we get (H) implies that

∣∣f (t, y(t),Dp
+y(t)

)∣∣
=

∣∣∣∣f
(
t,
 + tσ+

t–β

t–β

 + tσ+
y(t),

 + tσ+

t+p–β

t+p–β

 + tσ+
Dp

+y(t)
)∣∣∣∣

≤ Ctσe–kt +Atσe–kt
∣∣∣∣ t–β

 + tσ+
y(t)

∣∣∣∣ + Btσe–kt
∣∣∣∣ t+p–β

 + tσ+
Dp

+y(t)
∣∣∣∣

≤ Ctσe–kt +Artσe–kt + Brtσe–kt

and

∣∣g(t,x(t),Dq
+x(t)

)∣∣ ≤ Ctμe–lt +Artμe–lt + Brtμe–lt .

Hence

t–α

 + tσ+
∣∣(Fy)(t)∣∣

≤ 
�(α)

C
∫ 


( –w)α–wσ dw +Ar

∫ 


( –w)α–wσ dw

http://www.advancesindifferenceequations.com/content/2013/1/46
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+ Br
∫ 


( –w)α–wσ dw +

|x|
�(α)

+
|x + bx|

a

+
(


�(α)

+

a

)[
C

kσ+


�(σ + ) +
Ar
kσ+


�(σ + ) +
Br
kσ+


�(σ + )
]
< +∞.

Furthermore, we have

Dq
+(Fy)(t) =

∫ t
 (t – s)α–q–f (s, y(s),Dp

+y(s))ds
�(α – q)

+
(
x –

∫ ∞


f
(
s, y(s),Dp

+y(s)
)
ds

)
tα–q–

�(α – q)

+
(
x + bx –

∫ ∞


f
(
s, y(s),Dp

+y(s)
)
ds

)
�(α – )tα–q–

�(α – q – )
.

Similarly, we obtain

t+q–α

 + tσ+
∣∣Dq

+(Fy)(t)
∣∣

≤ 
�(α – q)

C
∫ 


( –w)α–p–wσ dw +Ar

∫ 


( –w)α–q–wσ dw

+ Br
∫ 


( –w)α–q–wσ dw +

|x|
�(α – q)

+
|x + bx|�(α – )

|�(α – q – )|

+
(


�(α – q)

t
 + tσ+

+
�(α – q)

|�(α – q – )|


 + tσ+

)

×
[

C
kσ+


�(σ + ) +
Ar
kσ+


�(σ + ) +
Br
kσ+


�(σ + )
]
< +∞.

Then Fy ∈ X. Similarly, we can prove that Fx ∈ Y . Thus F : X×Y → X×Y is well defined.
It is easy to show similarly that F maps bounded sets into bounded sets.
Step . We show that F is continuous.
Let (un, vn) ∈ X×Y with (un, vn) → (u, v) as n → ∞. We will prove that (Fvn,Fun) →

(Fv,Fu) as n→ ∞. It is easy to see that there exists r >  such that

∥∥(un, vn)∥∥ = max
{‖un‖X ,‖vn‖Y}

= max

{
sup

t∈(,∞
t–α

 + tσ+
∣∣un(t)∣∣, sup

t∈(,∞
t–β

 + tσ+
∣∣vn(t)∣∣,

sup
t∈(,∞)

t+q–α

 + tσ+
∣∣Dq

+un(t)
∣∣, sup
t∈(,∞)

t+p–β

 + tσ+
∣∣Dp

+vn(t)
∣∣} ≤ r <∞.

Then (H) implies that

∣∣f (t, vn(t),Dp
+vn(t)

)∣∣ =
∣∣∣∣f

(
t,
 + tσ+

t–β

t–β

 + tσ+
vn(t),

 + tσ+

t+p–β

t+p–β

 + tσ+
Dp

+vn(t)
)∣∣∣∣

≤ Ctσe–kt +Artσe–kt + Brtσe–kt

http://www.advancesindifferenceequations.com/content/2013/1/46
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and

∣∣g(t,un(t),Dq
+un(t)

)∣∣ ≤ Ctμe–lt +Artμe–lt + Brtμe–lt .

Observe that

(Fvn)(t) =


�(α)

∫ t


(t – s)α–f

(
s, vn(s),D

p
+vn(s)

)
ds

+
x –

∫ ∞
 f (s, vn(s),D

p
+vn(s))ds

�(α)
tα–

+
x + bx –

∫ ∞
 f (s, vn(s),D

p
+vn(s))ds

a
tα–,

(Fun)(t) =


�(β)

∫ t


(t – s)α–g

(
s,un(s),D

q
+un(s)

)
ds

+
y –

∫ ∞
 g(s,un(s),D

p
+un(s))ds

�(α)
tβ–

+
y + dy –

∫ ∞
 g(s,un(s),D

p
+un(s))ds

c
tβ–.

Hence

t–α

 + tσ+
∣∣(Fvn)(t) – (Fv)(t)

∣∣

≤ 
�(α)

C
∫ 


( –w)α–wσ dw + Ar

∫ 


( –w)α–wσ dw + Br

∫ 


( –w)α–wσ dw

+
(


�(α)

+

a

)[
C

kσ+


�(σ + ) +
Ar
kσ+


�(σ + ) +
Br
kσ+


�(σ + )
]
< +∞.

It follows from the Lebesgue dominated convergence theorem that

lim
n→∞

t–α

 + tσ+
∣∣(Fvn)(t) – (Fv)(t)

∣∣ = .

Furthermore, we have

Dq
+(Fvn)(t) =

∫ t
 (t – s)α–q–f (s, vn(s),D

p
+vn(s))ds

�(α – q)

+
(
x –

∫ ∞


f
(
s, vn(s),D

p
+vn(s)

)
ds

)
tα–q–

�(α – q)

+
(
x + bx –

∫ ∞


f
(
s, vn(s),D

p
+vn(s)

)
ds

)
�(α – )tα–q–

�(α – q – )
.

In a similar manner, we find that

lim
n→∞

t+q–α

 + tσ+
∣∣Dq

+(Fvn)(t) –Dq
+(Fv)(t)

∣∣ = .
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Thus,

lim
n→∞

t–β

 + tσ+
∣∣(Fun)(t) – (Fu)(t)

∣∣ = ,

lim
n→∞

t+p–η

 + tσ+
∣∣Dp

+(Fun)(t) –Dp
+(Fu)(t)

∣∣ = .

Hence we get

lim
n→∞(Fvn,Fun) = (Fv,Fu),

which shows that F is continuous.
In order to show that F maps bounded sets of X ×Y to relatively compact sets of X ×Y ,

it suffices to prove that both F and F map bounded sets to relatively compact sets.
RecallW ⊂ X is relatively compact if
(i) it is bounded,
(ii) both t–α

+tσ+W and t+q–α

+tσ+W are equicontinuous on any closed subinterval [a,b] of
(,∞),

(iii) both t–α

+tσ+W and t+q–α

+tσ+W are equiconvergent at t = ,
(iv) both t–α

+tσ+W and t+q–α

+tσ+W are equiconvergent at t = ∞.
W ⊂ Y is relatively compact if
(i) it is bounded,
(ii) both t–β

+tσ+W and t+p–β

+tσ+W are equicontinuous on any closed subinterval [a,b] of
(,∞),

(iii) both t–β

+tσ+W and t+p–β

+tσ+W are equiconvergent at t = ,

(iv) both t–β

+tσ+W and t+p–β

+tσ+W are equiconvergent at t = ∞.
Step . We prove that both F : � → Y and F : � → X are equicontinuous on a finite

closed interval of (,∞).
Let � ⊂ Y and � ⊂ X be bounded sets. Then there exists r >  such that

∥∥(u, v)∥∥ = max
{‖u‖X ,‖v‖Y

}

= max

{
sup

t∈(,∞
t–α

 + tσ+
∣∣u(t)∣∣, sup

t∈(,∞
t–β

 + tσ+
∣∣v(t)∣∣,

sup
t∈(,∞)

t+q–α

 + tσ+
∣∣Dq

+u(t)
∣∣, sup
t∈(,∞)

t+p–β

 + tσ+
∣∣Dp

+v(t)
∣∣}

≤ r < ∞, u ∈ �, v ∈ �.

Then (H) implies that

∣∣f (t, v(t),Dp
+v(t)

)∣∣ ≤ Ctσe–kt +Artσe–kt + Brtσe–kt

and

∣∣g(t,u(t),Dq
+u(t)

)∣∣ ≤ Ctμe–lt +Artμe–lt + Brtμe–lt .
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For [a,b]⊂ (,∞) with t, t ∈ [a,b] with t < t and v ∈ �, we have

∣∣∣∣ t–α


 + tσ+
(Fv)(t) –

t–α


 + tσ+
(Fv)(t)

∣∣∣∣
≤ 

�(α)

∣∣∣∣ t–α


 + tσ+

∫ t


(t – s)α–f

(
s, v(s),Dp

+v(s)
)
ds

–
t–α


 + tσ+

∫ t


(t – s)α–f

(
s, v(s),Dp

+v(s)
)
ds

∣∣∣∣
+

|x –
∫ ∞
 f (s, v(s),Dp

+v(s))ds|
�(α)

∣∣∣∣ t
 + tσ+

–
t

 + tσ+

∣∣∣∣
+

∣∣∣∣x + bx –
∫ ∞


f
(
s, v(s),Dp

+v(s)
)
ds

∣∣∣∣
∣∣∣∣ 
 + tσ+

–


 + tσ+

∣∣∣∣.

Since |aν – bν | ≤ |a – b|ν for all a,b ≥  and ν ∈ (, ), therefore, we get

∣∣∣∣ t–α


 + tσ+

∫ t


(t – s)α–f

(
s, v(s),Dp

+v(s)
)
ds

–
t–α


 + tσ+

∫ t


(t – s)α–f

(
s, v(s),Dp

+v(s)
)
ds

∣∣∣∣
≤

∣∣∣∣ t–α


 + tσ+
–

t–α


 + tσ+

∣∣∣∣
×

[
Cbα+σ

∫ 


( –w)α–wσ dw +Arbα+σ

∫ 


( –w)α–wσ dw

+ Brbα+σ

∫ 


( –w)α–wσ dw

]

+Cbα+σ

∫ 

t/t
( –w)α–wσ dw +Arbα+σ

∫ 

t/t
( –w)α–wσ dw

+ Brbα+σ

∫ 

t/t
( –w)α–wσ dw + |t – t|α–

[
Cbσ+

σ + 
+
Arbσ+

σ + 
+
Brbσ+

σ + 

]

→  uniformly in � as t → t.

Moreover, we have

∣∣∣∣x –
∫ ∞


f
(
s, v(s),Dp

+v(s)
)
ds

∣∣∣∣
≤ |x| + C

kσ+


�(σ + ) +
Ar
kσ+


�(σ + ) +
Br
kσ+


�(σ + ).

Thus,

∣∣∣∣x + bx –
∫ ∞


f
(
s, v(s),Dp

+v(s)
)
ds

∣∣∣∣
≤ |x + bx| + C�(σ + )

kσ+


+
Ar�(σ + )

kσ+


+
Br�(σ + )

kσ+


.
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Hence

∣∣∣∣ t–α


 + tσ+
(Fv)(t) –

t–α


 + tσ+
(Fv)(t)

∣∣∣∣ →  uniformly in � as t → t. ()

On the other hand, we have

∣∣∣∣ t+q–α



 + tσ+
Dq

+(Fv)(t) –
t+q–α



 + tσ+
Dq

+(Fv)(t)
∣∣∣∣

≤ 
�(α – q)

∣∣∣∣ t+q–α



 + tσ+

∫ t


(t – s)α–q–f

(
s, v(s),Dp

+v(s)
)
ds

–
t+q–α



 + tσ+

∫ t


(t – s)α–q–f

(
s, v(s),Dp

+v(s)
)
ds

∣∣∣∣
+

|x –
∫ ∞
 f (s, v(s),Dp

+v(s))ds|
�(α – q)

∣∣∣∣ t
 + tσ+

–
t

 + tσ+

∣∣∣∣
+

∣∣∣∣x + bx –
∫ ∞


f
(
s, v(s),Dp

+v(s)
)
ds

∣∣∣∣ �(α – )
|�(α – q – )|

∣∣∣∣ 
 + tσ+

–


 + tσ+

∣∣∣∣.

Let

M =max
{
aα–q+σ ,bα–q+σ ,aα–q+σ ,bα–q+σ ,aα–q+σ ,bα–q+σ

}
.

Note that q ∈ (α – ,α – /) and |aν – bν | ≤ |a – b|ν for all a,b ≥  and ν ∈ (, ). Note
σ >max{q – α,p – β}. Then

∣∣∣∣ t+q–α



 + tσ+

∫ t


(t – s)α–q–f

(
s, v(s),Dp

+v(s)
)
ds

–
t+q–α



 + tσ+

∫ t


(t – s)α–q–f

(
s, v(s),Dp

+v(s)
)
ds

∣∣∣∣

≤ M

∣∣∣∣ t+q–α



 + tσ+
–

t+q–α



 + tσ+

∣∣∣∣
× [

CB(α – q,σ + ) +ArB(α – q,σ + ) + BrB(α – q,σ + )
]

+M

[
C

∫ 

t/t
( –w)α–q–wσ dw +Ar

∫ 

t/t
( –w)α–q–wσ dw

+ Br
∫ 

t/t
( –w)α–q–wσ dw

]

+
∣∣tα+σ–q
 – tα+σ–q


∣∣[CB(α – q,σ + ) +ArB(α – q,σ + ) + BrB(α – q,σ + )

]

+M

[
C

∫ 

t/t
( –w)α–q–wσ dw +Ar

∫ 

t/t
( –w)α–q–wσ dw

+ Br
∫ 

t/t
( –w)α–q–wσ dw

]

→  uniformly in � as t → t.
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Similarly, it can be shown that both

|x –
∫ ∞
 f (s, v(s),Dp

+v(s))ds|
�(α – q)

and
∣∣∣∣x + bx –

∫ ∞


f
(
s, v(s),Dp

+v(s)
)
ds

∣∣∣∣ �(α – )
|�(α – q – )|

are uniformly bounded. Then

∣∣∣∣ t+q–α



 + tσ+

∫ t


(t – s)α–q–f

(
s, v(s),Dp

+v(s)
)
ds

–
t+q–α



 + tσ+

∫ t


(t – s)α–q–f

(
s, v(s),Dp

+v(s)
)
ds

∣∣∣∣
→  uniformly in � as t → t. ()

From () and (), we infer that F : � → Y is equicontinuous on a finite closed interval
of (,∞). Similarly, we can show that F : � → X is equicontinuous on a finite closed
interval on (,∞).
Step . Now we prove that both F : � → Y and F : � → X are equiconvergent as

t → . By the assumption (H), we have

∣∣∣∣ t–α

 + tσ+
(Fy)(t) –

x + bx –
∫ ∞
 f (s, y(s),Dp

+y(s))ds
a

∣∣∣∣
≤ 

�(α)


 + tσ+

[
Ct+σ

∫ 


( –w)α–wσ dw

+At+σ

∫ 


( –w)α–wσ dw + Bt+σ

∫ 


( –w)α–wσ dw

]

+
|x|
�(α)

t
 + tσ+

+ |x| tσ+

 + tσ+

→  uniformly in � as t → .

Furthermore, for σi ∈ (–,σ ), we have

∣∣∣∣ t+q–α

 + tσ+
Dq

+(Fv)(t) –
x + bx –

∫ ∞
 f (s, v(s),Dp

+v(s))ds
a

�(α – )
�(α – q – )

∣∣∣∣
≤ 

�(α – q)

[
C

t+σ

 + tσ+
B(α – q,σ + ) +A

t+σ

 + tσ+
B(α – q,σ + )

+ B
t+σ

 + tσ+
B(α – q,σ + )

]

+
|x| + [C�(σ + ) +A�(σ + ) + B�(σ + )]

�(α – q)
t

 + tσ+

+
|x + bx| + [C�(σ + ) +A�(σ + ) + B�(σ + )]

a
�(α – )

�(α – q – )
tσ+

 + tσ+

→  uniformly in � as t → .
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Hence F : � → Y is equiconvergent as t → . Similarly, we can prove that F : � → Y
is equiconvergent as t → .
Step . Finally, we show that both F : � → Y and F : � → X are equiconvergent as

t → ∞. By the assumption (H), we have

∣∣∣∣ t–α

 + tσ+
(Fv)(t)

∣∣∣∣ ≤ r
�(α)

[
Ct+σ

 + tσ+

∫ 


( –w)α–wσ dw

+
At+σ

 + tσ+

∫ 


( –w)α–wσ dw +

Bt+σ

 + tσ+

∫ 


( –w)α–wσ dw

]

+
|x|
�(α)

t
 + tσ+

+
|x|

 + tσ+

→  uniformly in � as t → ∞.

Furthermore, for σi ∈ (–,σ ), we have

∣∣∣∣ t+q–α

 + tσ+
Dq

+(Fv)(t)
∣∣∣∣

≤ r
�(α – q)

[
C

t+σ

 + tσ+
B(α – q,σ + ) +A

t+σ

 + tσ+
B(α – q,σ + )

+ B
t+σ

 + tσ+
B(α – q,σ + )

]

+
|x| + r[C�(σ + ) +A�(σ + ) + B�(σ + )]

�(α – q)
t

 + tσ+

+
|x + bx| + r[C�(σ + ) +A�(σ + ) + B�(σ + )]

a
�(α – )

�(α – q – )


 + tσ+

→  uniformly in � as t → ∞.

Hence F : � → Y is equiconvergent as t → ∞. Similarly, we can prove that F :� → Y
is equiconvergent as t → ∞.
Thus, F and F are completely continuous. Hence F is completely continuous.
Similarly, we can show that the results hold if (G) holds. These complete the proofs.

�

3 Main results
In this section, we present the main results of the paper. For the sake of convenience, let
us set

M =max

{
A

�(α)
B(α,σ + ) +

B
�(α)

B(α,σ + )

+
(


�(α)

+

a

)(
A

kσ+


�(σ + ) +
B

kσ+


�(σ + )
)
,

A
�(α – q)

B(α – q,σ + ) +
B

�(α – q)
B(α – q,σ + )

+
(


�(α – q)

+ a
�(α – )

|�(α – q – )|
)(

A
kσ+


�(σ + ) +
B

kσ+


�(σ + )
)}

,
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M =max

{
A

�(β)
B(β ,μ + ) +

B

�(β)
B(β ,μ + )

+
(


�(β)

+

c

)(
A

lμ+


�(μ + ) +
B

lμ+


�(μ + )
)
,

A

�(β – p)
B(β – p,μ + ) +

B

�(β – p)
B(β – p,μ + )

+
(


�(β – p)

+ c
�(β – )

|�(β – p – )|
)(

A

lμ+


�(μ + ) +
B

lμ+


�(μ + )
)}

.

Theorem . Suppose that (H) holds. Then () has at least one solution (x, y) ∈ X if

max{M,M} < . ()

Proof Let X ×Y be the Banach space equipped with the norm ‖ · ‖ (defined in Section ).
We seek the solutions of () by obtaining the fixed point of F in X ×Y . Note that F is well
defined and completely continuous by Lemma ..
Let

�(t) =
C

�(α)

∫ t


(t – s)α–sσe–ks ds +

x –C
∫ ∞
 sσe–ks ds
�(α)

tα–

+
x + bx –C

∫ ∞
 sσe–ks ds
a

tα–,

�(t) =
C

�(β)

∫ t


(t – s)α–sμe–ls ds +

y –C
∫ ∞
 sμe–ls ds
�(α)

tβ–

+
y + dy –C

∫ ∞
 sμe–ls ds

c
tβ–.

It is easy to show that (� ,�) ∈ X × Y . For r > , we define

Mr =
{
(x, y) ∈ X × Y :

∥∥(x, y) – (� ,�)
∥∥ ≤ r

}
. ()

For (x, y) ∈ Mr , we have ‖(x, y) – (� ,�)‖ ≤ r. Then

∥∥(x, y)∥∥ ≤ ∥∥(x, y) – (� ,�)
∥∥ +

∥∥(� ,�)
∥∥ ≤ r +

∥∥(� ,�)
∥∥,

∥∥(x, y)∥∥ =max
{‖x‖X ,‖y‖Y} ≤ r +

∥∥(� ,�)
∥∥.

Using the condition (H) together with the method employed in Step  of the proof of
Lemma ., we find that

∣∣f (t, vn(t),Dp
+vn(t)

)
–Csσe–ks

∣∣
≤ [

Atσe–kt + Btσe–kt
]∥∥(x, y)∥∥

and

∣∣g(t,un(t),Dq
+un(t)

)
–Ctμe–lt

∣∣ ≤ [
Atμe–lt + Btμe–lt

]∥∥(x, y)∥∥.
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Then

t–α

 + tσ+
∣∣(Fy)(t) –�(t)

∣∣

≤ [
r +

∥∥(� ,�)
∥∥][ A

�(α)
B(α,σ + ) +

B
�(α)

B(α,σ + )

+
(


�(α)

+

a

)(
A

kσ+


�(σ + ) +
B

kσ+


�(σ + )
)]

.

Furthermore, we have

t+q–α

 + tσ+
∣∣Dq

+(Fy)(t) –Dq
+�(t)

∣∣

≤ [
r +

∥∥(� ,�)
∥∥][ A

�(α – q)
B(α – q,σ + ) +

B
�(α – q)

B(α – q,σ + )

+
(


�(α – q)

+ a
�(α – )

|�(α – q – )|
)(

A
kσ+


�(σ + ) +
B

kσ+


�(σ + )
)]

.

Thus, it follows that

‖Fy –�‖X ≤ [
r +

∥∥(� ,�)
∥∥]
M.

Similarly, one can obtain

‖Fx –�‖Y ≤ [
r +

∥∥(� ,�)
∥∥]
M.

Hence

∥∥F(x, y) – (� ,�)
∥∥ ≤ [

r +
∥∥(� ,�)

∥∥]
max{M,M}.

We choose

r ≥ ‖(� ,�)‖max{M,M}
 –max{M,M} .

Then, for (x, y) ∈Mr , we have

∥∥F(x, y) – (� ,�)
∥∥ ≤ r.

Then the Schauder fixed point theorem implies that F has a fixed point (x, y) ∈Mr , which
is a bounded solution of (). The proof is complete. �

Theorem . Suppose that (G) holds. Then () has at least one solution (x, y) ∈ X × Y if

‖(� ,�)‖–δ(δ – )δ–

δδ
≥ max{M,M}. ()
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Proof With � and � defined in the proof of Theorem ., it is easy to show that (� ,�) ∈
X × Y . For (x, y) ∈Mr (defined in the proof of Theorem .), using (G) and the method of
the proof for Theorem ., we find that

∥∥F(x, y) – (� ,�)
∥∥ ≤ [

r +
∥∥(� ,�)

∥∥]δ
max{M,M}.

Let r = r = ‖(� ,�)‖
δ– , δ > . Then

r
(r + ‖(� ,�)‖)δ =

‖(� ,�)‖–δ(δ – )δ–

δδ
≥ max{M,M}.

Thus, for (x, y) ∈Mr , we have

∥∥F(x, y) – (� ,�)
∥∥ ≤ r.

Hence, we obtain a bounded subsetMr ⊆ X×Y such thatT(Mr ) ⊆Mr . In consequence,
by the Schauder fixed point theorem, F has a fixed point (x, y) ∈ Mr . Hence, (x, y) is a
bounded solution of (). This completes the proof. �

4 An example
Consider the fractional boundary value problem given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D


+x(t) = Ct– 

 e–t +At–

 e–t

+t



y(t) + Bt

 e–t

+t


D



+y(t), t ∈ (,∞),

D


+y(t) = Ct– 

 e–t +At–

 e–t

+t



x(t) + Bt

 e–t

+t


D



+x(t), t ∈ (,∞),

limt→ t–αx(t) – limt→Dα–
+ x(t) = x,

limt→ t–βy(t) – limt→Dβ–
+ x(t) = y,

limt→∞ Dα–
+ x(t) = x,

limt→∞ Dβ–
+ x(t) = y,

()

where A,B,C >  and x,x, y, y ∈ R are constants, α = 
 , β = 

 , p =

 , q =


 , a = b = c =

d =  and

f (t,x, y) = Ct–

 e–t +A

t– 
 e–t

 + t 
x + B

t 
 e–t

 + t 
y,

g(t,x, y) = Ct–

 e–t +A

t– 
 e–t

 + t 
x + B

t 
 e–t

 + t 
y.

Note that p ∈ (β – ,β) and q ∈ (α – ,α).
Choose σ = – 

 >max{q–α,p–β}, σ = μ = –
 , σ = μ = – 

 , σ = μ = – 
 , k = l = ,

k = l = , k = l = . One sees that σi,μi ∈ (–,σ ), ki > , li >  (i = , , ).
Thus,

f
(
t,
 + t 

t 


x,
 + t 

t 
y
)
= Ct–


 e–t +At–


 e–tx + Bt–


 e–ty,

g
(
t,
 + t 

t 


x,
 + t 

t 
y
)
= Ct–


 e–t +At–


 e–tx + Bt–


 e–ty.
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It is easy to show that (H) holds. By direct computation, we get

M =max

{
B(/, /)

�(/)
A +

B(/, /)
�(/)

B +
 + �(/)

�(/)

(
�(/)
/

A +
�(/)
/

B
)
,

B(/, /)
�(/)

A +
B(/, /)

�(/)
B

+
(


�(/)

+
�(/)

|�(–/)|
)(

�(/)
/

A +
�(/)
/

B
)}

,

M =max

{
B(/, /)

�(/)
A +

B(/, /)
�(/)

B +
 + �(/)

�(/)

(
�(/)
/

A +
�(/)
/

B
)
,

B(/, /)
�(/)

A +
B(/, /)

�(/)
B

+
(


�(/)

+
�(/)

|�(–/)|
)(

�(/)
/

A +
�(/)
/

B
)}

.

Thus, Theorem . applies and BVP () has at least one solution (x, y) ∈ X × Y if
max{M,M} < . This solution satisfies that

t 


 + t 

∣∣x(t)∣∣, t 


 + t 

∣∣y(t)∣∣, t 


 + t 

∣∣D 

+x(t)

∣∣, t 

 + t 

∣∣D 

+y(t)

∣∣

are bounded on (,∞).

Remark . It is easy to see that max{M,M} <  holds for sufficiently small A >  and
B > . One notes that α = 

 , β = 
 , p =


 , q =


 in the mentioned example. It is easy to see

that α – q ≥  and β – p≥  do not hold. Hence theorems in [, ] cannot be applied to
solve this example.
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