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Abstract
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MSC: 34A08; 34A12; 34B40

Keywords: boundary value problem; fractional differential system;
Riemann-Liouville fractional derivative; fixed-point theorem

1 Introduction
In recent years, the subject of fractional differential equations has gained a considerable
attention and it has emerged as an interesting and popular field of research. It is mainly
due to the fact that the tools of fractional calculus are found to be more practical and ef-
fective than the corresponding ones of classical calculus in the mathematical modeling of
several phenomena involving fractals and chaos. In fact, fractional calculus has numerous
applications in various disciplines of science and engineering such as mechanics, elec-
tricity, chemistry, biology, economics, control theory, signal and image processing, poly-
mer rheology, regular variation in thermodynamics, biophysics, blood flow phenomena,
aerodynamics, electro-dynamics of complex medium, viscoelasticity and damping, con-
trol theory, wave propagation, percolation, identification, fitting of experimental data, etc.
For theoretical development and methods of solution for fractional differential equations,
see the books [1-6] and references therein. For details on the geometric and physical in-
terpretation of the derivatives of non-integer order, see [7—9]. Some recent results on frac-
tional boundary value problems on a finite interval can be found in [10-21] and references
therein.

In [10], using the monotone iterative method, Zhang investigated the existence and
uniqueness of solutions for the following initial value problem of the fractional differential
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equations:

DG u(t) =f(tu(?), te(0,T], "
7 u(t)| =0 = tho,
where 0 < T < oo and D” is the Riemann-Liouville fractional derivative of order « € (0,1).
Arara et al. [22] studied the existence of bounded solutions for differential equations
involving the Caputo fractional derivative on the unbounded domain given by

Dy u(t) = f(t,u(t)), tel0,00),
u(0) = uy, (2)

u is bounded on [0, 00),

where « € (1,2), °D§, is the Caputo fractional derivative of order o, uy € R, and f :
[0,00) x R — R is continuous. Using the Schauder fixed point theorem combined with
the diagonalization method, it is proved that BVP (2) has at least one solution on [0, c0).

Zhao and Ge [23] considered the following boundary value problem for fractional dif-
ferential equations:

Dy u(t) +f(t,u®) =0, O0<t<ool<a<2,
u(0) =0, 3)
lim;_, oo D& u(t) = 0,

where 0 <& <00, B > 0 and f is a given function, Dj, is the Riemann-Liouville fractional
derivative. By using the properties of the Green’s function together with the Schauder fixed
point theorem, it has been proved that BVP (3) has at least one positive solution subject to
the assumptions: f : [0,00) x R — [0,00) is continuous; and there exist a nondecreasing
function w € C([0, 00), [0,00)) and a function ¢ € L'[0,00) such that |[f(¢, (1 + £ Hu)| <
¢(t)w(u) on [0,00) x [0, 00).

In [24], Liu and Jia investigated the boundary value problem for a fractional differential
equation of the form

‘D [pOu' )] + q(O)f (&, u(®)) =0, ¢>0,
p(0)u'(0) =0, (4)
limy o0 u(t) = [ g(s)u(s) ds,

where °Dj. is the Caputo fractional derivative of order o € (0,1), f, g, p, g are given func-
00 (r-s)*~

tions, p(¢) > 0 for all £ > 0 with [;* ﬁ ds < oo and k(s) = [ )
on [0,00), g € L'[0, 00) with fooo g(s)ds < 1. The existence of at least three nonnegative so-

1 .
dr being continuous

lutions of the problem (4) was established by using fixed point theory and the method of
upper and lower solutions.

For some more work on boundary value problems of fractional differential equations on
a half-line/semi-infinite interval, we refer the reader to the papers [25-29].

On the other hand, the study for coupled systems of fractional differential equations is
also important as such systems occur in various problems of applied nature; for instance,
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see [30—33]. Some recent results on coupled systems of fractional differential equations
on a finite interval can be found in [34-37].
In this paper, we discuss the existence of solutions to a boundary value problem of a

coupled system of nonlinear fractional differential equations on the half-line given by

D x(t) = £(t,5(8), DG y(®)), ¢ € (0,00),
0+y(t) g(t,x(2), D0+x(t)), t €(0,00),
alim_.q £>~*x(t) — blim,_, o D§"x(¢) = xo, )

clim_o > Py(t) — dlim,_o D x(t) = yo,

lim;_, oo D% %(2) = %1,

lim; . o0 DA %() = 31,

where a,b,c,d >0, «,8 € (1,2), p € (B -1,8), q € (@ — 1,a), x0,Y0,%1,%1 € R, Do+ is the
standard Riemann-Liouville fractional derivative and f, g : (0, 00) x R? — R are continuous
functions and f, ¢ may be singular at ¢ = 0.

We establish sufficient conditions for the existence of solutions of (5) by applying the
Schauder fixed point theorem. Our results are new in the sense that we consider BVP
(5) on a half-line with the assumptions on p, g of the form p € (8 - 1,8), g € (@ — 1, ).
Moreover, both the nonlinear functions f and g are allowed to be linear as well as super
linear. The paper is organized as follows: the preliminary results are given in Section 2,
the main results are presented in Section 3, while an example is discussed in Section 4 to

illustrate the main theorems.

2 Preliminary results
Let us begin this section with some basic concepts of fractional calculus [1-3]. For a > 0

and b, c > 0, denote the gamma function and beta function respectively as

+00 1
[(a) = / s*leds, B(b,c) = / (1 —x)" "% da.
0 0

Definition 2.1 The Riemann-Liouville fractional integral of order > 0 of a continuous

function £ : (0,00) — R is given by

1 t
e L
0 f F(a) 0 f
provided that the right-hand side exists.

Definition 2.2 The Riemann-Liouville fractional derivative of order @ > 0 of a continuous

function f : (0,00) — R is given by

N 1 dn+1
D0+f(t) 0{) dt””/ (t S)O’ n+1

where n —1 <« < n, provided that the right-hand side is point-wise defined on (0, c0).
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It is easy to show that for ¢ > 0 and p > —1, we have

(u+1)

S+ DO g = [(u+1)
F(u+o+1) o

, T e
Mu-0+1)

0 —
Lt =

Let C(0, 00) be the set of all continuous functions on (0, c0). For o > max{q — o, p — B},
ones sees from p € (8 -1, 8), g € (@ — 1,«) that o > —1. We choose

Di.x € C(0,00)

2

X=1xeC(0,00): lit%x(t) is bounded on (0, o)
2+
14+£0+2

Dg+x(t) is bounded on (0, 00)
and

D,y € C(0,00)
Y=4y€C(0,00): li%x(t) is bounded on (0, c0)
2 LD}, x(t) is bounded on (0, 00)

1+£9+2
For x € X, define the norm by

2-a 2+g—a

|Mm,wpf:FEW§MM}

t
IIxIIX:max{ sup 1+ o772

It is easy to show that X is a real Banach space. For y € Y, define the norm by

tZ—ﬂ t2+p—ﬁ
Hﬂh=mﬂ{g§>1 WQU@%SW)T:EEV%JGH}

It is easy to show that Y is a real Banach space. Thus, (X x Y, || - ||) is Banach space with
the norm defined by

|(x,9)| = max{[l|lx, [ylly} for (x,y) € X x Y.

Lemma 2.1 Let 1<« <2, x9,%1 € R, and let e: (0,00) — R be a given function such that
there exist numbers M > 0, o > —1 and k > 0 with |e(t)| < Mt° e ™. Then x € X is a solution
of the problem

De.x(t) = e(t), te]=(0,00),
alim_.o £>~*x(t) — blim,_, o DI %(¢) = xo, (6)

lim,_, oo D x(2) = %1,
ifand only if x € X and

1 ¢ el x1 - fOOO e(s)ds , | xo+bx;— bfooo e(s)ds ,_,
x(t) = m/(; (t=3s)""e(s)ds + @ 1 a 2. (7)
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Proof 1t is easy to see that fooo t”e ¥ dt < co. For arbitrary constants ci, ¢, the general
solution of the equation D, x() = e() can be written as

x(t) = ﬁ /Ot(t —5)*e(s)ds + c1t* 7 + ot 2 ®)
with
Dg:lx(t) = /te(S) ds + I'(a)cy.
0

Using the boundary conditions of (6), we find that

x1— [y e(s)ds x0+bxy—b [ e(s)ds
0= — c = .
I'(x) a

Substituting the values of ¢; and ¢, in (8), we obtain (7).
Now, we prove x € X. Clearly,

[t =)t e(s)ds  x1— [°els)ds
a _Jo 0
Por0=" e T Te—a)

X0 + bx; — bfooo e(s)ds I'(o — 1)¢*-92
+ .
a MNa-g-1)

oa—gq-1

)

It follows from (7) and (9) together with |e(t)| < Mt” e, o > —1 that «, Di,x € C(0,00).

Observe that
2« b M INT 1
|x(t)|§ %o + x1|+ Gl + B(o,0 +1) + + — (o+ )<+oo
14 ¢o0+2 IMNa) T(a) MNa) a/) kot
and
t2+q—a . to+2 1 )
— IDLa) < ————— | @-w)* T w4
1+t"+2| Ox()|_1"(a—q)1+t‘”2/(;( W) waw
1| lwo +bx1|  T(a—1)
+
INCE)] a |INa-g-1)]
1 IMNa-1) I'lo +1)
+ + < 400
MNa-q) all(l@-g-1)|/) ko
Hence x € X.

Conversely, if x € X satisfies (7), then it can easily be shown that x € X and satisfies (6).
This completes the proof. d

Consider the coupled system of integral equations

o =[5 flsy(6).DL Y ds
#(t) = 1 [0 =) (5,9(9), Dl y(s)) dls + DL DE oy
| 0[5 F0.00 ) ds
‘ ’ (10)

N - y1-J5° gls.x(s).DL x(s)) ds g
()= %ﬂ) Jo (€ =) g(s, x(s), D x(s)) ds + == Fa) 61

gD +dy1-[5° g(s:x(5),DL, x(s)) ds -2
(4

Page 5 of 19


http://www.advancesindifferenceequations.com/content/2013/1/46

Liu et al. Advances in Difference Equations 2013, 2013:46 Page 6 of 19
http://www.advancesindifferenceequations.com/content/2013/1/46

For the sequel, we need the following assumptions:

(H) There exist numbers oy, u; € (-1,0), k; > 0, [; >0 (i = 0,1,2) and positive numbers
A, B, C, Ay, By, C; such that for £ € (0,00), uy, uz,v1,v2 € R, f and g satisfy the
conditions

1+ ta+2 1+ to+2 "
_ 0 ,~kot
}f(t, youT Ui, Py Uy Ct%e

< A e My | + Beo2e Rty |

and

< At e vy + Bitt2e 2ty ;

1+¢°%2  1+¢°*2
g t, V1,

Vg) - Cl o e’lot

12— t2+q-a

(@) There exist numbers o;, u; € (-1,0), k; >0, ;>0 (i =0,1,2), § > 1 and positive
numbers A, B, C, Ay, By, C; such that for ¢ € (0,00), uy, us,v1,v2 € R, f and g satisfy
the conditions

1+2°%2  14+¢°%2 oo kot
t, PR Ui, PP uy | — Cte

< At7e M1y + B®2e 7Ry, |

and

< At"e My P + Bt e 2ty |0,

1 + t0'+2 1 + t0'+2
‘ (tr V1,

Vz) - C1 o 6710£

12— t2+q-a

Lemma 2.2 Suppose that (H) or (G) holds. Then (x,y) € X x Y is a solution of (5) if and
only if (x,y) € X x Y is a solution of (10).

Proof Let (x,y) € X x Y. In view of the assumption (H), it follows that

1+ ta+2 t2—ﬁ 1+ ta+2 t2+p_’3

V(t,y(t),D€+y(t))| = ‘/(t’ £2-B 1+ta+zy(t)’ r2+p-B 1+ta+2D5+y(t)>‘

< Cte™! 4 At e M|y ||y + Bt72e R |y|ly

and
8(6,x(8), D px(0)) | < Cre"0e™™ + Ayet e |lxl|x + Bit2e ™ |lxx.

The rest of the proof follows from Lemma 2.1. Similarly, we can show that the result holds
if (@) holds. This completes the proof. d

Let us define an operator F: X x ¥ — X x Y as
F(x,9)(0) = (F) @), (F22)(0)),

where

X1 - fooof(sfy(s);DgJ(S))ds a1
I'(a)

(E)) = ﬁ /0 (= ) (s,5(5), DL y(s)) ds +

N X0 + bx; — fooof(s,y(s),D’g+y(s))ds ja-2
a
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and

fo (s,%(s), 0+x(s))dstﬂf1
')

(Fox)(t) = —— /:(t - s)“’lg(s,x(s),ng(s)) ds +

+ Yo + dyl - fooog(s¢x(5)7Dg+x(S)) ds t‘g,z
4

Lemma 2.3 Suppose that (H) or (G) holds. Then the fixed point of the operator F coincides
with the solution of (5) and F : X x Y — X x Y is completely continuous.

Proof 1t follows from Lemma 2.2 that the fixed point of the operator F coincides with the
solution of (5). Suppose that (H) holds. The remaining proof consists of the following five
steps.

Step 1. We show that F: X x Y — X x Y is well defined and maps bounded sets into
bounded sets.

For (x,y) € X x Y, we get

r = max{llx[lx, lylly}

2—-a 2—

t t
= max sup T i |x(t)|, sup 1+t‘”2
2+q—-a t2+p—5
sup ——= +xt,su —_— LYt < 00.
0 bl s LT D0

By the definition of F, we have
(Fly),Dg+ (Fry) € C(0, 00).
By the method used in Lemma 2.2, we get (H) implies that

Lf(t (@), o+)’(t))|
o+ -B o+ +p—B
=}/(t;“f LT L D’Mn)‘

t2 B 1 + ta+2 t2+p B 1 + t0+2

2-p

t
1+¢o+2 ¥

2+p-p

1+¢07

< Ctooe kot 4 grorghit + Bto2g ket

o+y(t)‘

< Ct0e kot | Aptoreht | Breo2ehat
and
|g(t,x(t),Dg+x(t))| < Cyttoet 4 AypttieTht 4 Bret2ei2t

Hence

2

(Fy) )|

td+2 |

§—C/ (1-w)*?! ”Odw+Ar/ (1-w)* tw dw
()
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|1 | o + bx1]
+ —
I'(x) a

1 1 C Ar
+ @+; FF(GO-FI)-F/Q 7T (o1+1) +

1
+ Brf (1-w)* w2 dw+
0

Br
+ ——=T(02 +1) | < +00.
ky**

Furthermore, we have

Jo (&= 9)*~17Y (s, 9(5), D}y y(s)) s
INGE)

00 o—q-1
+ (x1 _fo f(5,5(5), Dy y(s)) d. )rt(a—q_q)

[N —1)g2172
+ (xo + bx, —/O S (5,5(5), DG y(9) . )m

Similarly, we obtain

D (Fiy)(@®) =

t2+ q—o

e D )

1 1 1
< 7C/ (1 - w)* P 1w dw + Ar/ (1-w)* Ty dw
Fla-q) Jo 0

1| . lxo + bxi T (e — 1)
NGRS Il (e —q—1)|

1
+ Br/ L-w) T2 dw +
0

1 t IN'a-q) 1
+ +
Ma-gq)1+t°*?2  |T(a—-g-1)|1+¢t°+2

C Ar Br
X | —=T (00 +1) + ——=T (01 +1) + —T (02 +1) | < +00.
kg** kM ko

Then F;y € X. Similarly, we can prove that Fox € Y. Thus F: X x Y — X x Y is well defined.
It is easy to show similarly that F maps bounded sets into bounded sets.
Step 2. We show that F is continuous.
Let (uy, v,,) € X x Y with (u,, v,,) = (110, v0) as n — 00. We will prove that (Fv,, Fu,) —

(Fivo, Faug) as n — o00. It is easy to see that there exists r > 0 such that

”(um Vn)” = maX{””n”X’ ”Vn”Y}
2—a 2-8
|un(t)}, sup

t
= maX{ sup m

te(0,00 t<7+2

2+g—a 2+p-f
0+un(t) ’ Sup

0+V,,(t)|} <r<oo.

t
wp g P Tre

te(0,00) 1

Then (H) implies that

If (£, vu(0), Do va(0)) | =

< Ct90e 0! 4 ArgreThit | Breo2ehot

1+ t(7+2 tZ—ﬂ 1+ t{7+2 t2+p—;3
V( T8 1+ta+2V” P28 1 4 po+2

D€+ Vn (t)) ‘
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and
g (2, ua(8), DY (1)) | < Cit'oe™ot 4 Ajretieht 4 Byrtt2e 2t

Observe that

(Ew)6) = 1 f (6= ) (5, (), DL via(s)) dis

x1= fo f($,va(s), Dyuva(s))ds
(@)
+ X0 + bxl - fOOOf(S, V,,(S),D5+Vn(8)) dsta—Z
. ,

(Eytn)() = %ﬂ) / (6= ) g (5, tn(5), D 1 (5)) s

LN 157 &(s,tn(s), Dfys 1)) ds 1

I'(a)
L Yo+dy- Jo~ &ls,un(s), Dy, 1 (s)) ds ey
C
Hence
2o
= t,,+2|(F1vn)(t) (Fivo) (@)

9 1 1 1
< —C/ (1 —w)* W dw + 2Ar/ 1-w)* " dw+ 2Br/ 1 -w)* w2 dw
') Jo 0 0

+ 1 +1 ¢ ——T(op+1)+ — Ar Fo1+1)+ — Br ;T (02 +1) | < +00.
—_— — (of (o} (o
Tl) " a) kot 70T ot T it 102 | S

It follows from the Lebesgue dominated convergence theorem that

2—a

lim
n—oo 1 + o+

= |(Ev,) (@) - (Fivo)(®)] = 0
Furthermore, we have

Jo =) f (5, v,,(5), Dy vu(s)) s
e —q)

o0 et
o[ i)

00 _ o—-g-2
+ (xo + bx; —/(; f(s, V,,,(S) 0+ Vn(S)) >%

In a similar manner, we find that

D (Fiva)(®) =

2+g-a

lim | DL, (Fyv,)(¢) - DY (Frvo) )| =

n—oo 1 +
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Thus,
2B
Jim 6+2|(F2”n)(t) (Fyuo)(®)] = 0
t2+p n
lim ——— |Df, (Fou,)(t) — Dy (Fau0)(8)| =

nso00 1 4 £o+2

Hence we get
lim (Fyvy, Fau,) = (Fivo, Fato),
n— 00

which shows that F is continuous.
In order to show that F maps bounded sets of X x Y to relatively compact sets of X x Y,
it suffices to prove that both F; and F, map bounded sets to relatively compact sets.
Recall W C X is relatively compact if
(i) itis bounded

(ii) both ¢0+2 W and 2 c0+2 > W are equicontinuous on any closed subinterval [a, b] of
(o, 00)

(iii) both 1 t‘7+2 W and £ o t‘”z S W are equiconvergent at ¢ = 0,

(iv) both tﬁz W and 2 tzﬂ, W are equiconvergent at ¢ = 00.

W CYis relatlvely compact if
(i) itis bounded

(i) both - t0+2 and i ;,ﬁ W are equicontinuous on any closed subinterval [a, b] of
(0,00),
(iif) both ;5= tﬁz and i ;é W are equiconvergent at £ = 0,

(iv) both ttg/; W and £ :Hz W are equiconvergent at ¢ = oco.

Step 3. We prove that both F:Q;— Yand F, : Q; — X are equicontinuous on a finite
closed interval of (0, 00).

Let 1 C Y and 2, C X be bounded sets. Then there exists r > 0 such that

|G w]

max{[lullx, vy}

2 28
maxy sup ———— (ulf)|, sup ———|v(?)|,
{ sup e, sup o o

te(0,00 1+ o +2
t2+q—a t2+17*ﬂ
up — | DL u(t)|, sup ———|DP,v(¢
(OEO) 1+t“+2| -0 te(O,Iso) 1+f“+2| o )}}

<r<oo, uefvel.
Then (H) implies that
If (&:v(®), D v(t))| < Ct0e ™" + Art™ e + Bre™2 ™2t
and

lg(t;u(®), D, u(®))| < Cre"0e™" + Ayrt"te™™ + Byret2e™2!,

Page 10 of 19
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For [a,b] C (0,00) with #, £, € [a, b] with t; < £, and v € ©1, we have

I 2-a 2-a

£2 £2
———(HAv)(t1) - ———= (Fv)(¢
1+ti”2( 1)(f) +t‘2”2( )(t2)

1
<
BRNC)

5
- 1+ta+2

|x1 I f +v(s)) ds|
F(a)

-
1+6+2

/Otl (- s)"‘_lf(s, v(s), Dlg+ v(s)) ds

/tz (ty — s)“‘lf(s, V(S),D€+ v(s)) ds

t t
1+ 144572

1 1
L+4] 1+5%7]

+ |xo + by —/0 f(s, v(s), D o+ V(s))

Since |a" — b"| <|a - b|" for all a,b > 0 and v € (0,1), therefore, we get

2-a
1-?#”2/ (tr = )" (s, v(s), Dy, v(s)) dis
1 + t0+2 / (2 —9)*" lf(s’ v(s), 0+V(S))
e e

<-4 2
_‘1+tf+2 1+¢5+2

1 1
X |:Cb“+"° / (1 - w)* 1w dw + Arb**! / (1-w)* 1w dw
0 0

1
+ Brb“*2 / (1 — w)* Iy dw:|
0

1 1
+ Cb**70 / (1 - w)* w0 dw + Arb**! / (1-w)* tw dw
t;

1/t tl/ty

Cbcro +1 Ar,b(71+1 Br.baz+1i|

1
+ Brb“*2 / 1-w)* w2 dw+ |t — t]*" + +
a op+1 o+1 oy +1

[ty

— 0 uniformlyin ©; as t, — .

Moreover, we have

X — / S (s,v(s), Dy, v(s)) ds
0

Ar r
WF(60+1)+ 1 7T (o1+1) + mf‘(02+1).

0 1 2

<ol +

Thus,

X0 + bxy — /ocf(s, V(S),D€+ V(s)) ds
0

Cl'(og+1) Arl'(o1+1) Brl'(oy +1)

oo+l o1+l o2+l
kO kl k2

< |xo + bx1| +
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Hence

tZ—a 2-a
‘ 1 — 0 uniformly in ©; as &, — . (11)

ty
——— (Fv)(¢t Fiv)(t
I +ti”2( w)(t) - I +t‘2”2( )(t2)

On the other hand, we have

2+q—«a 2+q o

2
s ! 2 ———Dj. (Fv)(t1) —

——— D (Fv)(t2)

o+2
1+ t,

2+q o

/ ! (t1 = 8)* "7 (s, v(s), Dfy. v(s)) dis

Mo — q)‘1+t‘”2

2+q o
1+ 1572 / (t2 = )" f (5, v(s), Dy v(s)) s
|x1 fO 0+V(S)) dS| t _ t
(a q) 1+% 1+£57
o0 r 1 1 1
+ xo+bx1—f f(S,V(S),Dﬁ =D 2~ 2|
0 |Fa—q—1)| 1+ 1+7

Let
MO — max{aoz—quog’ba—q+ao’aa—q+ol, boz—qual’aa—qﬂrz, pe—a+o2 }

Note that g € (0 — 1, — 1/2) and |a" — b"| < |a - b|” for all a,b > 0 and v € (0,1). Note
o >max{g — a,p — B}. Then

t2+q o 151
1 1+ T / (tr = $)* "7 f (s, v(s), Dfy. v(s)) dis
1
2+q—a
1+t"+2/ (ty — )77V f (s, v(s), Dy v(s)) ds

o 2
1+ 1+45%

X [CB(a —q,00+1)+ArB(a —q,01 +1) + BrB(a — g, 0 + 1)]

1

1
+ My [C/ (1 - w)* w0 dw + Ar/ (1-w)* Ty dw
5]

/ty t/ty

1
+ Br/ (1 - w)* 21y dw]
t/ty

+ |57 =" [CB(a - q,00 + 1) + ArB(ar — g,01 +1) + BrB(a — g, 05 +1)]

1

1
+ M, [C/ (1—w)* w0 dw + Ar/ (1-w)* Ty dw
5]

Ity t1/ty

1
+ Br / (1 - w)¥ 1y dw:|
t

262

— 0 uniformlyin ©; as t, — .
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Similarly, it can be shown that both

ler = [~ f (s, v(s), Dy v(s)) ds|
NG

and

00 MNa-1
X0 + bxy —/0 (5 v(s), D5 v(s)) ds M

are uniformly bounded. Then
tf+q—a
1+

/tl (th - s)a_q‘lf(s, v(s),Df;+ v(s)) ds
0

2+q—a

2 /*tz (tp — S)a_q_lf(s, v(s), D v(s)) ds
0

t
1+5+

— 0 uniformlyin ©; as t, — . 12)

From (11) and (12), we infer that F; : Q; — Y is equicontinuous on a finite closed interval
of (0,00). Similarly, we can show that F, : Q; — X is equicontinuous on a finite closed
interval on (0, 00).

Step 4. Now we prove that both F; : Q; — Y and F, : Q3 — X are equiconvergent as
t — 0. By the assumption (H), we have

2o X0 + bx; — fooof(s,y(s),Dg+y(s))ds
14¢0+2 a
1 1

<
T I'(a) 1+ to+2

1
|:Ct2+"° / (1 - w)* w0 dw
0

1 1
+ Ao / (1 -w)* 1w’ dw + B£**? / (1-w)*tp dw]
0 0

E 2
M) e Pl

— 0 uniformlyin Q; as ¢ — 0.

Furthermore, for o; € (-1,0), we have

Dg+ (Flv)(t) -

£2+a-a X0 + bxy — fooof(s, v(s),D‘g+ v(s)ds T(x-1)
’1+t"+2 a Fa-g-1)

2+01

1 t2+00
< |:C Bl@a-q,00+1)+A

Fla—-qg)| 1+t°*2 Bl -g.01+1)

1+¢0+2

t2+(72

+BmB(a -q,00 + 1)]
. |x%1] + [CT (09 +1) + AT (07 +1) + BI' (05 +1)] ¢
INCE)) 1+¢0+2
N |xo + bx1| + [CT (09 +1) + AT (07 +1) + B[ (05 +1)] T(x-1) t°*2
a MNa-g-1)1+¢+?

— 0 uniformlyin ©; as £ — 0.
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Hence F; : Q; — Y is equiconvergent as ¢ — 0. Similarly, we can prove that F, : Q; — Y
is equiconvergent as t — 0.
Step 5. Finally, we show that both F; : Q; — Y and F, : Q, — X are equiconvergent as

t — 00. By the assumption (H), we have

1
/ (1 - w)* w0 dw

1+t0+2 0

2400
<1xﬂ s [a

I'(a)

At2+01 1 t2+02
+ m/ A-w*wrdw+ —— T / (1 - w)* Iy dw]
+ 0

2-a
‘1 +10+2

o | t . o
Da)1+t%2  1+¢t0+2

— 0 uniformly in Q; as t — oo.

Furthermore, for o; € (-1,0), we have

2+q-a

Dg. (Fi)(®)

1+¢o+2

2+01

r t2+<70
< Fa 2 |:C1+tg+2B(a—q,ao +1)+AmB(a—q,m +1)

t2+(72

+B B(a—q,02+1)]

1+¢0+2
s |%1] + 7[CT (09 +1) + AT'(67 +1) + Bl (05 +1)] ¢
INCE)) 1+4¢0+2
s |xo + bxy| + r[CT (09 +1) + AT (07 +1) + B[ (05 +1)] T'(x —1) 1
a Ma-—g-1)1+t°+?

— 0 uniformly in ©; as £ — oco.

Hence F; : Q1 — Y is equiconvergent as £ — oo. Similarly, we can prove that F, : @, — Y
is equiconvergent as t — oo.
Thus, F) and F, are completely continuous. Hence F is completely continuous.
Similarly, we can show that the results hold if (G) holds. These complete the proofs.
O

3 Main results
In this section, we present the main results of the paper. For the sake of convenience, let

us set

M = A B( 1) B B( 1)
l_max{r() o,01 + +F(a) o,09 +

LN A Lo, B o+ 1)
+(@+2)<k;’1“ (01 + )+ oy + )

A g D+ —D2 g 1)
—B(e-gq,01+1)+ ——B(e —q,00 +
Tla—q = 7% Ta—q o 77

1 [(a-1) A B
+<F(oc—q) IF(a q- 1)|>< al+1r(51+1)+k2 F(<72+1)>}
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Mz=max{ B(B, 1 + )+—B(ﬂ p2 +1)

r(6) r(6)
1 1 A B,
+ (m + E) (li‘ﬁr(’ud + 1) + /;2*1 F(/,Lz + 1))
A1
F(ﬁ_p)B(ﬂ—P,M1+l) F(ﬁ )B(ﬂ —pps +1)

1 rE-1 \( A B,
+(1"(;3—p)Jrcll"(ﬁ—;?—l)l)(z{‘l+1 (o + )+ 1 F(Mz+1))}

Theorem 3.1 Suppose that (H) holds. Then (5) has at least one solution (x,y) € X if

max{Mj, M,} < 1. 13)

Proof Let X x Y be the Banach space equipped with the norm || - || (defined in Section 2).
We seek the solutions of (5) by obtaining the fixed point of F in X x Y. Note that F is well

defined and completely continuous by Lemma 2.3.

Let

~C [7s70e7k0s ds
W(t) = / (£ — )% 1570 e7F05 g 4 n 0
I'() ['(a)

_ 00 p—kos
+x0+bx1 Cf s%¢ dstw2

a-1

’

—los
—§)¥ g0 los g 4 N=Gifyste dst -1
lﬂ(ﬂ) I'(a)
Lot dy - Cy [y stoelosds F2
c

It is easy to show that (¥, ®) € X x Y. For r > 0, we define

M, ={xy) eX xY:|@xy) - (V)| =<r} (14)
For (x,y) € M,, we have ||(x,y) — (¥, ®)|| <r. Then

|G = [ = (@, @) + (¥, @) <7+ [[(w, @),

|Gey) | = max{llxlx, Iylly} <7+ | (¥, ®)].

Using the condition (H) together with the method employed in Step 1 of the proof of
Lemma 2.3, we find that

[f(t vu(2), 0+1/,4(t)) CS"Oe_k°s|

< [Atre™! + Bt e || (x,y)

and

g (£ un(t), DY (2)) - Clt“‘)e’l"t’ < [Alt“le’ht + Blt’”e’bt] [ e, 9)]|-
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Then

P
1+ t(r+2|(F1y)(t) \I’(t)’

A
< [r+ ||(\If,d>)||][r( )B(a ,o1+1) + Fﬁy)B(a,az +1)

1 1 A Moy +1) BF( D
(st e )]

Furthermore, we have

2+q—a
1+ t0+2 |D0+ (Fly)(t) D \'Ij(t)|
A B
= [7’+ H(qj’q))”][r(a_q)B(a_q!(Tl +1) + F(a_q)B(O[—q,o'z +1)

1 (a-1) A B
+<F(ot—q) IF(oz q- 1)|)( ol+1r(‘71+1)+k2 F(02+1))]

Thus, it follows that
1Fiy = Wix < [r+ [ (W, @) | ]
Similarly, one can obtain
IFox - @1y < [r+ (W, )] ]M,
Hence
|E @ y) = (W, @)| < [r+ | (W, ®)]||] max{M;, My}

We choose

> ||(l[l, CD)” maX{Ml’MZ}
- 1- max{Ml,Mz}

Then, for (x,y) € M,, we have
|E@,y) - (¥, @) <.

Then the Schauder fixed point theorem implies that F has a fixed point (x,y) € M,, which
is a bounded solution of (5). The proof is complete. d

Theorem 3.2 Suppose that (G) holds. Then (5) has at least one solution (x,y) € X x Y if

(¥, @) -1)°"
S5

> max{Mi, Ma}. (15)
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Proof With W and @ defined in the proof of Theorem 3.1, it is easy to show that (¥, ®) €
X x Y. For (x,y) € M, (defined in the proof of Theorem 3.1), using (G) and the method of
the proof for Theorem 3.1, we find that

|EGey) = (0, ®)|| < [r+ | (¥, ®)]]° max{a, My).
Letr=rg = ”“;'—;?”,8>1.Then

ro i, @)1 - 1!
(ro + 1(W, ®)[)° 8

> max{My, M,}.

Thus, for (x,y) € My,, we have
|F(x9) — (¥, )| <ro.

Hence, we obtain a bounded subset M,, € X x Y such that T'(M,,) € M,,.In consequence,
by the Schauder fixed point theorem, F has a fixed point (x,y) € M,,. Hence, (x,y) is a
bounded solution of (5). This completes the proof. d

4 An example

Consider the fractional boundary value problem given by

3 I £ t% 38
Dg.x(t)=Ct 2e" + A==5—y(t) + B 3 Dg.y(t), te(0,00),
+t

1+£2 1
7 3 z’; ot (T3t 2
Dg.y(t) = Ct 1e + AL=5—x(t) + B—=5-Dg. x(t), t < (0,00),
1+t2 1+£2
limg_.o £2~*x(¢) — lim,_, o D§ % (£) = xo, (16)

limy_, o £ y(t) — lim,_.o D ' x(t) = yo,

lim;_, oo D x(2) = %1,

lim;_, oo Dg:lx(t) =91,

where A, B, C > 0 and x, %1, Y0, %1 € R are constants, o = %, B = %,p: g, q= %, a=b=c=
d=1and
3 e (103t
flt,x,y)=Ctie’+ A x+B =
1+¢2 1+¢2
1 7
3 tze t10 e3¢
gltxy)=Ctie’+A x+B Ty
1+¢2 1+¢2

Note thatp e (B -1,8) and g € (¢ — 1, ).
Chooseo = —% >max{g—a,p—B}, 00 = o = —%,01 =u = —%,02 =y = —%,ko =ly=1,
k=L =2,k =1, =3. One sees that o;, u; € (-1,0), k; >0,1; >0 (i =0,1,2).

Thus,

3 3
1+¢t2 1+t2 3 3 1
f(t, —x, TJ’) =Ctie !l + At 5e ' x + Bt we %y,
£30

1
ta

3 3
1+2t2 1+¢2 3 3 1
g(t, 1 x, e y) =Ctie !t + At te2x + Bt we %y,
4
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It is easy to show that (H) holds. By direct computation, we get

{ B(3/2,1/4) B(3/2,9/20) 1+T(3/2) (F(1/4) I'(9/20) )
M; = max s

rGR) T TER) T TER) \2r 4T T
B(3/4,1/4) ,  B(3/4,9/20)
I'(3/4) (3/4)

1 r@2) \(raM, reso,
* (r(3/4) * |F(—1/4)|>< oia 4t T3om0 )}’
B(7/4,1/4) B(7/4,9/20) 1+I°(7/4) (T(1/4) F(9/20)B
r4) C T T T4 ( ava T T3om0 )

B(11/20,1/4) B(11/20,9/20)
I'(11/20) I'(11/20)

1 rG/4) \(Lw4 , Tre20),
’ (F(H/ZO) ’ IF(—9/20)|)< ova Yt T3omo )}

Thus, Theorem 3.1 applies and BVP (16) has at least one solution (x,y) € X x Y if
max{Mj, M} < 1. This solution satisfies that

M, = max{

1 1 5
t2 ti ti

[+ (@), —|Ddx(0)
+12

’

29
t20 g
) 3 |D0+y(t)|
1+¢2

3 3
1+1¢2 +t2

are bounded on (0, 00).

Remark 4.1 It is easy to see that max{M;, M} <1 holds for sufficiently small A > 0 and

B> 0. One notes that « = %, B= %,p = g, q= % in the mentioned example. It is easy to see

that« —¢ >1and 8 — p > 1 do not hold. Hence theorems in [34, 35] cannot be applied to
solve this example.
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