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Abstract
In this paper, we study the following singular semipositone boundary value problem
on time scales:{

–x�∇ = p(t)f (t, x) + q(t), t ∈ (ρ(a),σ (b))T,

x(ρ(a)) = 0, x(σ (b)) = 0,

where p : (ρ(a),σ (b))T → [0,∞) and f : [ρ(a),σ (b)]T → [0,∞) are continuous; and
q : (ρ(a),σ (b))T → (–∞,∞) is Lebesgue ∇-integrable. By constructing a special cone
and using a fixed point theorem, we establish some sufficient conditions for the
existence of multiple positive solutions. Two examples are given at the end of the
paper to demonstrate our result.
MSC: 39A10; 39A13; 34B16; 34B18; 34N05
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1 Introduction
The theory of dynamic equations on time scales has been studied bymanymathematicians
since it not only provides a unifying structure of differential and difference equations, but
also it has led to many physical, chemical and biological applications such as insect pop-
ulation models, neural networks, heat transfer, epidemic models. In this paper we study
the existence of positive solutions of the following singular semipositone boundary value
problem (BVP):

⎧⎨⎩–x�∇ = p(t)f (t,x) + q(t), t ∈ (ρ(a),σ (b))T,

x(ρ(a)) = , x(σ (b)) = ,
()

where T is a time scale; p : (ρ(a),σ (b))T → [,∞) and f : [ρ(a),σ (b)]T × [,∞) → [,∞)
are continuous; and q : (ρ(a),σ (b))T → (–∞,∞) is Lebesgue ∇-integrable. Note that
(a,b)T denotes the time scale interval, (a,b)∩T. The study of analysis on time scales was
initiated by Stefan Hilger in , and the first paper appearing in this field by Hilger was
[]. An excellent introduction to time scales calculus can be found in Chapter  of []
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and in []. Chapters  and  of the text [] deal with finding positive solutions of several
boundary value problems on time scales by various contemporary authors. We also want
to guide the readers to take a look at early research papers on time scales [–]. Note that
in our problem, q may change its sign, so we call this type of problem semipositone. The
study of nonlinear, singular boundary value problems is not new but the consideration of
a semipositone case is relatively new even in differential equations. Semipositone prob-
lems arise in many physical and chemical processes such as in chemical reactor theory
[]. In applications one is interested in finding positive solutions. In recent years, sev-
eral authors studied semipositone BVPs on time scales, and we want to mention some
papers in literature [–], and the references therein. Among several other papers in dif-
ference equations, Bai and Xu [] recently studied semipositone problems in difference
equations. All the above mentioned papers are concerned with the existence of only one
positive solution. Anderson and Wong in [] and Bai and Xu in [] also require that the
nonlinear term of the equation has a finite lower bound. But we do not require that in
this paper and, in fact, the nonlinear term is allowed to decrease without bound. Thus
this paper fills the gap in literature on time scales calculus providing the existence of mul-
tiple positive solutions and allowing the nonlinear term decrease without bound at the
same time. To our best knowledge, this result is new in the time scales setting and it cov-
ers the results not only for ordinary differential equations but also difference equations,
q-difference equations, and other exotic time scales. The nabla derivative was introduced
in []. As a special case when T =R, this result includes those of []. Let a and b be such
that  ≤ ρ(a)≤ a < b ≤ σ (b) < ∞, and (ρ(a),σ (b))T has at least two points.

2 Preliminaries and lemmas
We first find the related Green’s function of our BVP. The Green’s function for the BVP

–x�∇ = , x
(
ρ(a)

)
=  = x

(
σ (b)

)
is given by []

G(t, s) =


σ (b) – ρ(a)

⎧⎨⎩(s – ρ(a))(σ (b) – t), for s≤ t;

(t – ρ(a))(σ (b) – s), for t ≤ s.
()

For convenience, we let

e(t) :=
(t – ρ(a))(σ (b) – t)
(σ (b) – ρ(a))

=
G(t, t)

σ (b) – ρ(a)
, ()

then it is easy to see

e(t)G(s, s)≤G(t, s)≤G(s, s) or G(t, t). ()

Define

c := inf

{
t ∈ T : t ≥ (σ (b) – ρ(a))



}
, d := sup

{
t ∈ T : t ≤ (σ (b) – ρ(a))



}
.
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Next we set

α := min
t∈[c,d]T

e(t). ()

Then we have

G(t, s)≥ αG(s, s) > , t ∈ [c,d]T. ()

Next we want to construct a cone in which we will look for positive solutions.
Let X := {x ∈ C([ρ(a),σ (b)]T,R)}, with ‖x‖ = supt∈[ρ(a),σ (b)]T |x(t)|, and define P := {x ∈ P :

x(t)≥ ‖x‖e(t), t ∈ [ρ(a),σ (b)]T}.
Then one can easily verify that X is a real Banach space, and P is a cone in X.
Now we state the well-known fixed point theorem that we will use later in this paper.

Theorem  [] Let X be a real Banach space, and let P ⊂ X be a cone. Let �, � be two
bounded open subsets of X with  ⊂ �, � ⊂ �. Assume that A : P ∩ (� \ �) → P is a
completely continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖ for all u ∈ P ∩ ∂� and ‖Au‖ ≥ ‖u‖ for all u ∈ P ∩ ∂�, or
(ii) ‖Au‖ ≥ ‖u‖ for all u ∈ P ∩ ∂� and ‖Au‖ ≤ ‖u‖ for all u ∈ P ∩ ∂�.

Then A has a fixed point in P ∩ (� \ �).

As usual with a semipositone problem, we want to consider the following singular aux-
iliary problem:

–w�∇ = q–(t), w
(
ρ(a)

)
= , w

(
σ (b)

)
= , ()

where q±(t) :=max{±q(t), }. Its unique solution is given by (see [] for proof )

w(t) =
∫ b

ρ(a)
G(t, s)q–(s)∇s. ()

Consider the following singular positone BVP:⎧⎨⎩z�∇ (t) + p(t)f (t, [z –w]+(t)) + q+(t) = , t ∈ (ρ(a),σ (b))T,

z(ρ(a)) = , z(σ (b)) = .
()

Next define an integral operator T : P → X by

(Tz)(t) =
∫ b

ρ(a)
G(t, s)

[
p(s)f

(
s, [z –w]+(s)

)
+ q+(s)

]∇s. ()

It is easy to see that finding solutions of BVP () is equivalent to finding fixed points of the
operator T on P.
Now we state and prove a lemma that connects singular positone BVP () to main

BVP ().

Lemma If z(t) is the unique positive solution of singular positone BVP () such that z(t) ≥
w(t) then BVP () has a positive solution x(t) := z(t) –w(t).
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Proof Let z(t) = x(t) + w(t), t ∈ [ρ(a),σ (b)]T. Then, by the first equation of (), it follows
that

x�∇ (t) +w�∇ (t) + p(t)f
(
t, [z –w](t)

)
+ q+(t) = 

�⇒ x�∇ (t) – q–(t) + p(t)f
(
t,x(t)

)
+ q+(t) = 

�⇒ x�∇ (t) + p(t)f
(
t,x(t)

)
+ q(t) = .

Also,

x
(
ρ(a)

)
= z

(
ρ(a)

)
–w

(
ρ(a)

)
= ,

x
(
σ (b)

)
= z

(
σ (b)

)
–w

(
σ (b)

)
= . �

Now we impose the following conditions for the rest of the paper:
(H) p : (ρ(a),σ (b))T × [,∞)→ [,∞) and f : [ρ(a),σ (b)]T × [,∞)→ [,∞) are

continuous.
(H) q : (ρ(a),σ (b))T → (–∞,∞) is Lebesgue ∇-integrable such that

 <
∫ b

ρ(a)
G(s, s)

[
p(s) + q+(s)

]∇s =: L < r,

where
∫ b
ρ(a)(σ (b) – ρ(a))q–(s)∇s =: r > .

(H) There exists R > r such that for (t,x) ∈ [ρ(a),σ (b)]T × [ α
R,R],

f (t,x)≥ R
αl

, where l :=
∫ d

c
G(s, s)p(s)∇s, and α is as defined in ().

(H) There exists R >max{R, ( R
αl + )L} such that for (t,x) ∈ [ρ(a),σ (b)]T × [,R],

f (t,x)≤ R

L
.

(H) limx→∞ f (t,x)
x = +∞ uniformly for t in any closed subinterval of (ρ(a),σ (b))T.

To apply Theorem , we first prove the following lemmas.

Lemma  Assume that (H) and (H) hold. Then T : P → P is completely continuous.

Proof First we show T : P → P. Let z ∈ P and t ∈ [ρ(a),σ (b)]T. Then

(Tz)(t) =
∫ b

ρ(a)
G(t, s)

[
p(s)f

(
s, [z –w]+(s)

)
+ q+(s)

]∇s,

(Tz)(t) ≤
∫ b

ρ(a)
G(s, s)

[
p(s)f

(
s, [z –w]+(s)

)
+ q+(s)

]∇s

�⇒
∫ b

ρ(a)
G(s, s)

[
p(s)f

(
s, [z –w]+(s)

)
+ q+(s)

]∇ ≥ ‖Tz‖.
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Then, using (), we get

(Tz)(t) =
∫ b

ρ(a)
G(t, s)

[
p(s)f

(
s, [z –w]+(s)

)
+ q+(s)

]∇s,

(Tz)(t) ≥ e(t)
∫ b

ρ(a)
G(s, s)

[
p(s)f

(
s, [z –w]+(s)

)
+ q+(s)

]∇s

�⇒ (Tz)(t) ≥ e(t)‖Tz‖.

Next let B ⊂ P be any bounded set, then for any z ∈ B, there exists a constant M >  such
that ‖z‖ ≤M. Now, for any z ∈ B and s ∈ [ρ(a),σ (b)]T, we have

[z –w]+(s) ≤ z(s)≤ ‖z‖ ≤M,

and

∥∥(Tz)(t)∥∥ = max
t∈[ρ(a),σ (b)]T

∫ b

ρ(a)
G(t, s)

[
p(s)f

(
s, [z –w]+(s)

)
+ q+(s)

]∇s

≤
∫ b

ρ(a)
G(s, s)(M + )

[
p(s) + q+(s)

]∇s

≤ (M + )
∫ b

ρ(a)
G(s, s)

[
p(s) + q+(s)

]∇s < ∞, by (H),

where

M := max
[ρ(a),σ (b)]T×[,M]

f (t,x).

Therefore T(B) is uniformly bounded.
By standard arguments (see []) using the Arzela-Ascoli theorem and the Lebesgue

dominated convergence theorem, we can easily see that T is a completely continuous op-
erator. �

Lemma  Assume that (H)-(H) hold, and set �R = {z ∈ P : ‖z‖ < R} and ∂�R = {z ∈ P :
‖z‖ = R}. Then ‖Tz‖ ≥ ‖z‖ for all z ∈ P ∩ ∂�R, where R > r is as given in (H).

Proof For any z ∈ ∂�R, t ∈ [c,d]T, we have

z(t) –w(t) = z(t) –
∫ b

ρ(a)
G(t, s)q–(s)∇s

≥ z(t) –
G(t, t)

(σ (b) – ρ(a))

∫ b

ρ(a)

(
σ (b) – ρ(a)

)
q–(s)∇s

= z(t) – e(t)r ≥ z(t) –
z(t)
‖z‖ r = z(t) –

r
R
z(t) ≥ 


z(t)

≥ 

e(t)‖z‖ ≥ 


min

t∈[c,d]T
e(t)R =

α


R > .
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So, for any z ∈ ∂�R and t ∈ [c,d]T, we have

α


R ≤ z(t) –w(t) ≤ R.

Then, using (H), we get

‖Tz‖ ≥ (Tz)(t) =
∫ b

ρ(a)
G(t, s)

[
p(s)f

(
s, [z –w]+(s)

)
+ q+(s)

]∇s

≥
∫ d

c
G(t, s)p(s)f

(
s, z(s) –w(s)

)∇s

≥ R
αl

∫ d

c
G(t, s)p(s)∇s

≥ R
αl

∫ d

c
αG(s, s)p(s)∇s =

R
l
l = ‖z‖.

Thus we have ‖Tz‖ ≥ ‖z‖ for all z ∈ P ∩ ∂�R. �

Lemma  Assume that (H)-(H) hold, and set �R = {z ∈ P : ‖z‖ < R}. Then ‖Tz‖ ≤ ‖z‖
for all z ∈ P ∩ ∂�R , where R is as given in (H).

Proof From (H) we have that R > R > r > . Note that for any z ∈ ∂�R and s ∈
[ρ(a),σ (b)]T,

 ≤ [z –w]+(s)≤ z(s) ≤ ‖z‖ = R.

Now, for any z ∈ ∂�R , t[ρ(a),σ (b)]T,

‖Tz‖ = max
t∈[ρ(a),σ (b)]T

∫ b

ρ(a)
G(t, s)

[
p(s)f

(
s, [z –w]+(s)

)
+ q+(s)

]∇s

≤
∫ b

ρ(a)
G(s, s)

[
p(s)f

(
s, z(s) –w(s)

)
+ q+(s)

]∇s

≤ R

L

∫ b

ρ(a)
G(s, s)

[
p(s) + q+(s)

]∇s

= R = ‖z‖.

Thus we have ‖Tz‖ ≤ ‖z‖, z ∈ P ∩ ∂�R . �

Now choose constants δ, β and a real number K >  such that

[δ,β]T ∈ (
ρ(a),σ (b)

)
T
,

and

≤ 

(δ – ρ(a))(σ (b) – β)

(σ (b) – ρ(a))
K

∫ β

α

G(s, s)p(s)∇s. ()
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Note that using (H), we find R̃ > R such that for any t ∈ [δ,β]T and x ≥ R̃,

f (t,x)≥ Kx. ()

Take R =max{ (σ (b)–ρ(a))R̃
(δ–ρ(a))(σ (b)–β) , R̃}. Then we have R > R̃ > R > R > r.

Lemma  Assume that (H)-(H) hold, and set �R = {z ∈ P : ‖z‖ < R}. Then ‖Tz‖ ≥ ‖z‖,
z ∈ P ∩ ∂�R .

Proof For any z ∈ ∂�R , t ∈ [δ,β]T, we have

z(t) –w(t) ≥ z(t) –
∫ b

ρ(a)
G(t, t)q–(s)∇s

= z(t) –
G(t, t)

(σ (b) – ρ(a))

∫ b

ρ(a)

(
σ (b) – ρ(a)

)
q–(s)∇s

= z(t) – e(t)r ≥ z(t) –
z(t)
‖z‖ r = z(t) –

r
R

z(t) ≥ 

z(t)

≥ 

e(t)‖z‖ ≥ 


(δ – ρ(a))(σ (b) – β)

(σ (b) – ρ(a))
R ≥ R̃ > .

Then, for any z ∈ P ∩ ∂�R and t ∈ [δ,β]T, we have

(Tz)(t) =
∫ b

ρ(a)
G(t, s)

[
p(s)f

(
s, [z –w]+(s)

)
+ q+(s)

]∇s

≥
∫ b

ρ(a)
G(t, s)p(s)f

(
s, [z –w]+(s)

)∇s

≥
∫ β

δ

G(t, s)p(s)f
(
s, z(s) –w(s)

)∇s

≥
∫ β

δ

G(t, s)p(s)K
[
z(s) –w(s)

]∇s, using (),

≥ 

(δ – ρ(a))(σ (b) – β)

(σ (b) – ρ(a))
KR

∫ β

δ

G(t, s)p(s)∇s

≥ 

(δ – ρ(a))(σ (b) – β)

(σ (b) – ρ(a))
KRe(t)

∫ β

δ

G(s, s)p(s)∇s

≥ 

(δ – ρ(a))(σ (b) – β)

(σ (b) – ρ(a))
KR

∫ β

δ

G(t, s)p(s)∇s≥ R, using ().

Thus ‖Tz‖ ≥ ‖z‖ for all z ∈ P ∩ ∂�R . �

3 Main result
Theorem  Suppose that (H)-(H) hold. Then T has two fixed points z(t) ∈ P ∩ (�R \
�R) and z(t) ∈ P ∩ (�R \ �R ) such that R ≤ ‖z‖ ≤ R ≤ ‖z‖ ≤ R, where R > r, from
(H), and r =

∫ b
ρ(a)(σ (b) – ρ(a))q–(s)∇s, as defined in (H).

http://www.advancesindifferenceequations.com/content/2013/1/335
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Proof By the previous three lemmas (Lemmas , , ) and the cone compression/expan-
sion theorem (Theorem ), we get that

r < R ≤ ‖z‖ ≤ R ≤ ‖z‖ ≤ R.

Now we have

z(t) –w(t) ≥ e(t)‖z‖ –
∫ b

ρ(a)
G(t, s)q–(s)∇s

≥ e(t)‖z‖ –
∫ b

ρ(a)
G(t, t)q–(s)∇s

= e(t)‖z‖ – e(t)r = e(t)
(‖z‖ – r‖) > ,

and

z(t) –w(t) ≥ z –
∫ b

ρ(a)
G(t, s)q–(s)∇s

≥ z –
∫ b

ρ(a)
G(t, t)q–(s)∇s

= z – e(t)r ≥ z –
z

‖z‖ r ≥ z –
r
R

z ≥ 

z(t)

≥ 

e(t)‖z‖ ≥ 


e(t)R > .

Let x(t) = z(t) –w(t), x(t) = z(t) –w(t), then by Lemma , we have that

x(t) = z(t) –w(t) > , x(t) = z(t) –w(t) > , t ∈ (
ρ(a),σ (b)

)
T

are two positive solutions of BVP (). �

4 Examples
In this section we give two examples as applications of Theorem .

Example  Let T= the Cantor set. (See pages - of [] for more information regarding
this time scale.) Consider the following BVP:⎧⎨⎩–x�∇ = f (x)

(–t) –
√

t+
√

ρ(t)
, t ∈ (, )T,

x() = , x() = ,
()

where f (x) is defined as

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x,  ≤ x ≤ ,

x – ,  ≤ x ≤ ,

,, ≤ x ≤ ,

x + ,., ≤ x ≤ ,

x – ,, x ≥ .
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This BVP has at least two positive solutions as it satisfies all the hypotheses of this paper.
Note that we have

p(t) =


( – t)
, q+(t) ≡ , q–(t) =

√
t +

√
ρ(t)

.

Now

r =
∫ b

ρ(a)

(
σ (b) – ρ(a)

)
q–(s)∇s

=
∫ 



√
s +

√
ρ(s)

∇s =
∫ 


(
√
s)∇∇s = .

In [] the authors show that
∫ 
 �t = 

 , where t ∈ T, the Cantor set. Using similar argu-
ments, we get that

∫ 
 ∇t = 

 , which we use below. We have

L =
∫ 


s( – s)

[


( – s)
+ 

]
∇s

=



∫ 


s∇s =




· 

=




< r = .

Similarly,

l =
∫ /

/
s( – s)


( – s)

∇s =



.

Note that α =mint∈[/,/]T e(t) =

 . Let R =  > r = , then for any x ∈ [, ], we have

f (t,x) = ,≥ 
/ · / = ,.

On the other hand, let

R :=  >
(


/ · / + 

)
· 


=
,


,

then for any x ∈ [, ], we have f (t,x)≤ , ≤ R
L = ,.

It is clear that limx→∞ f (t,x)
x =∞.

Example  Let T = { 
n }∞n= ∪ {} ∪ {  }. Consider the following BVP:⎧⎨⎩–x�∇ = f (x)

–t –
√
t , t ∈ (, )T,

x() = , x() = ,
()

where f (x) is defined as

f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x, ≤ x≤ ,

, ≤ x≤ ,

x + ,  ≤ x≤ ,

x – ,, x≥ .
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This BVP has at least two positive solutions as it satisfies all the hypotheses of this paper.
Note that we have

p(t) =


 – t
, q+(t) ≡ , q–(t) =

√
t
.

Now

r =
∫ b

ρ(a)

(
σ (b) – ρ(a)

)
q–(s)∇s =

∫ /



√
s
∇s

=
∫ /



√
s
∇s +

∫ /

/

√
s
∇s

=
(√

 · 

+  · 


+ 

√
 · 


+ · · ·

)
+

√


· 


=
√
/

 – (/
√
)

+



√


≈ .,

and we have

L =
∫ /


s( – s)

[


 – s
+ 

]
∇s =

∫ /


s∇s

=



· 

+

(



· 

+



· 

+ · · ·

)
=




< r = .,

similarly,

l =
∫ /

/
s( – s)


( – s)

∇s =
∫ /

/
s∇s =




.

Note that α =mint∈[/,/]T e(t) =

 . Let R =  > r = ., then for any x ∈ [, ], we have

f (t,x) =  ≥ 
/ · / ≈ ..

On the other hand, let

R :=  >
(


/ · / + 

)
· 


≈ .,

then for any x ∈ [, ], we have f (t,x)≤  ≤ R
L ≈ ..

Note it is clear that limx→∞ f (t,x)
x =∞.
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