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1 Introduction
This paper is concerned with oscillation of solutions to a second-order differential equa-
tion with damping

(
r(t)x′(t)

)′ + p(t)x′(t) + q(t)f
(
x
(
τ (t)

))
= , (.)

where t ≥ t > , r ∈ C([t, +∞), (, +∞)), p,q, τ ∈ C([t, +∞),R), q(t) ≥ , q does not
vanish eventually, f ∈ C(R,R), f (x)/x ≥ μ for some μ >  and for all x �= . Throughout, we
assume that solutions of (.) exist for any t ≥ t. A solution x of (.) is termed oscillatory
if it has arbitrarily large zeros; otherwise, we call it nonoscillatory. Equation (.) is said to
be oscillatory if all its solutions are oscillatory.
During the past decades, the questions regarding the study of oscillatory properties of

differential equations with damping or distributed deviating arguments have become an
important area of research due to the fact that such equations arise in many real life prob-
lems; see the research papers [–] and the references cited therein. In particular, second-
order damped differential equations are used in the study of NVH of vehicles. In what fol-
lows, we present the background details that motivate the contents of this paper. Yan []
established an important extension of the celebrated Kamenev oscillation criterion []
for a second-order damped equation

(
r(t)x′(t)

)′ + p(t)x′(t) + q(t)x(t) = .

Rogovchenko [] and Rogovchenko and Tuncay [] studied a nonlinear damped equa-
tion

(
r(t)x′(t)

)′ + p(t)x′(t) + q(t)f
(
x(t)

)
= .
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Rogovchenko and Tuncay [] extended the results of [] to a general nonlinear damped
equation

(
r(t)ψ

(
x(t)

)
x′(t)

)′ + p(t)x′(t) + q(t)f
(
x(t)

)
= .

In [, ], the authors investigated (.) under the assumptions that r,p,q ∈ C([t, +∞),
(, +∞)), τ (t) ≤ t, and τ ′(t) > . The natural question now is: Can one extend the results of
[] to functional equation (.)? The purpose of this paper is to give an affirmative answer
to this question.

2 Main results
In the sequel, all functional inequalities are supposed to be satisfied for all sufficiently
large t. We use the notation

D :=
{
(t, s) : t ≤ s ≤ t < +∞}

and D :=
{
(t, s) : t ≤ s < t < +∞}

.

We say that a continuous function H :D → [, +∞) belongs to the classW if:
(i) H(t, t) =  for t ≥ t and H(t, s) >  for (t, s) ∈D;
(ii) H has a nonpositive continuous partial derivative with respect to the second

variable satisfying, for some locally integrable continuous function h,

∂

∂s
H(t, s) = –h(t, s)

(
H(t, s)

) 
 .

Using ideas exploited by Rogovchenko andTuncay [], we study (.) in the cases where

τ (t) ≤ t (.)

and

τ (t) ≥ t (.)

for t ≥ t.

Theorem . Let (.) hold and limt→+∞ τ (t) = +∞. Suppose that there exist functions
H ∈W and ρ ∈ C([t, +∞),R) such that, for some β ≥ ,

lim sup
t→+∞


H(t,T)

∫ t

T

[
H(t, s)ψ∗(s) –

β


v∗(s)r(s)h(t, s)

]
ds = +∞ (.)

for all sufficiently large t ≥ t and for T > t, where

ψ∗(t) := v∗(t)
[
μq(t)

∫ τ (t)
t


r(s) exp(

∫ s
t

p(v)
r(v) dv)

ds
∫ t
t


r(s) exp(

∫ s
t

p(v)
r(v) dv)

ds

+ r(t)ρ
 (t) – p(t)ρ(t) –

(
r(t)ρ(t)

)′
]

(.)
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and

v∗(t) := exp

[
–

∫ t(
ρ(s) –

p(s)
r(s)

)
ds

]
. (.)

Then (.) is oscillatory.

Proof Let x be a nonoscillatory solution of (.).Without loss of generality, wemay assume
that there exists T ≥ t such that x(t) >  and x(τ (t)) >  for all t ≥ T. By virtue of (.),
we have

(
r(t)x′(t)

)′ + p(t)x′(t)≤ –μq(t)x
(
τ (t)

) ≤  for t ≥ T,

which yields

(
r(t)x′(t) exp

(∫ t

t

p(s)
r(s)

ds
))′

≤ . (.)

Hence we have

r(t) exp
(∫ t

t

p(s)
r(s)

ds
)
x′(t) >  (.)

or

r(t) exp
(∫ t

t

p(s)
r(s)

ds
)
x′(t) <  (.)

for t ≥ t ≥ T. Now define the generalized Riccati substitution

u(t) := v∗(t)r(t)
[
x′(t)
x(t)

+ ρ(t)
]
. (.)

We consider each of two cases separately.
Case I. Assume (.) holds. Then we have

x(t) = x(t) +
∫ t

t

r(s) exp(
∫ s
t

p(v)
r(v) dv)x

′(s)

r(s) exp(
∫ s
t

p(v)
r(v) dv)

ds

≥ x′(t)r(t) exp
(∫ t

t

p(s)
r(s)

ds
)∫ t

t


r(s) exp(

∫ s
t

p(v)
r(v) dv)

ds,

which implies that

(
x(t)∫ t

t


r(s) exp(
∫ s
t

p(v)
r(v) dv)

ds

)′
≤ . (.)
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Differentiating (.) yields

u′(t) =
v′∗(t)
v∗(t)

u(t) + v∗(t)
(r(t)x′(t))′

x(t)

– v∗(t)r(t)
[

u(t)
v∗(t)r(t)

– ρ(t)
]

+ v∗(t)
(
r(t)ρ(t)

)′. (.)

It follows from (.), (.), (.), and (.) that

u′(t)≤ –ψ∗(t) –
u(t)

v∗(t)r(t)
, (.)

where ψ∗ is defined as in (.). Multiplying both sides of (.), with t replaced by s, by
H(t, s), integratingwith respect to s fromT to t, we find, for all β ≥  and for all t ≥ T ≥ t,

∫ t

T
H(t, s)ψ∗(s) ds +

∫ t

T
h(t, s)

(
H(t, s)

) 
 u(s) ds +


β

∫ t

T
H(t, s)

u(s)
v∗(s)r(s)

ds

≤H(t,T)u(T) –
β – 

β

∫ t

T
H(t, s)

u(s)
v∗(s)r(s)

ds. (.)

Define now

C :=
u(s)√

β

(H(t, s)) 

(v∗(s)r(s))



and D := –
√

β


h(t, s)

(
v∗(s)r(s)

) 
 .

Applying the inequality

C – CD≥ –D, (.)

we have

h(t, s)
(
H(t, s)

) 
 u(s) +


β
H(t, s)

u(s)
v∗(s)r(s)

≥ –
β


v∗(s)r(s)h(t, s).

Hence, by the latter inequality and (.), we obtain

∫ t

T

[
H(t, s)ψ∗(s) –

β


v∗(s)r(s)h(t, s)

]
ds

≤H(t,T)u(T) –
β – 

β

∫ t

T
H(t, s)

u(s)
v∗(s)r(s)

ds, (.)

which contradicts (.).
Case II. Assume (.) holds. Recalling that x′ <  and τ (t) ≤ t, we have x(τ (t)) ≥ x(t).

Using similar proof of the case where (.) holds and the fact that

∫ τ (t)
t


r(s) exp(

∫ s
t

p(v)
r(v) dv)

ds
∫ t
t


r(s) exp(

∫ s
t

p(v)
r(v) dv)

ds
≤ ,

one has (.), which contradicts (.). This completes the proof. �
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Theorem . Let (.) hold and limt→+∞ τ (t) = +∞. Suppose that there exist functions
H ∈ W , ρ ∈ C([t, +∞),R), and φ∗ ∈ C([t, +∞),R) such that, for all sufficiently large
T > t and for some β > ,

 < inf
s≥t

[
lim inf
t→+∞

H(t, s)
H(t, t)

]
≤ +∞ (.)

and

lim sup
t→+∞


H(t,T)

∫ t

T

[
H(t, s)ψ∗(s) –

β


v∗(s)r(s)h(t, s)

]
ds ≥ φ∗(T), (.)

where ψ∗ and v∗ are as in Theorem .. If

∫ +∞

t

(φ∗+(s))

v∗(s)r(s)
ds = +∞, (.)

where φ∗+(t) :=max{φ∗(t), }, then (.) is oscillatory.

Proof Without loss of generality, assume again that (.) possesses a solution x such that
x(t) >  and x(τ (t)) >  on [T, +∞) for some T ≥ t. Proceeding as in the proof of Theo-
rem ., we arrive at inequality (.), which yields, for all t > T and for any β ≥ ,

φ∗(T) ≤ lim sup
t→+∞


H(t,T)

∫ t

T

[
H(t, s)ψ∗(s) –

β


v∗(s)r(s)h(t, s)

]
ds

≤ u(T) –
β – 

β
lim inf
t→+∞


H(t,T)

∫ t

T
H(t, s)

u(s)
v∗(s)r(s)

ds.

The latter inequality implies that, for all t > T and for all β ≥ ,

φ∗(T) +
β – 

β
lim inf
t→+∞


H(t,T)

∫ t

T
H(t, s)

u(s)
v∗(s)r(s)

ds ≤ u(T).

Consequently,

φ∗(T) ≤ u(T) (.)

and

lim inf
t→+∞


H(t,T)

∫ t

T
H(t, s)

u(s)
v∗(s)r(s)

ds ≤ β

β – 
(
u(T) – φ∗(T)

)
< +∞. (.)

Assume now that

∫ +∞

T

u(s)
v∗(s)r(s)

ds = +∞. (.)

Condition (.) implies the existence of ϑ >  such that

inf
s≥t

[
lim inf
t→+∞

H(t, s)
H(t, t)

]
> ϑ . (.)
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It follows from (.) that, for any positive constant η, there exists T > T such that, for
all t ≥ T,

∫ t

T

u(s)
v∗(s)r(s)

ds ≥ η

ϑ
. (.)

Using integration by parts and (.), we have, for all t ≥ T,


H(t,T)

∫ t

T
H(t, s)

u(s)
v∗(s)r(s)

ds

=


H(t,T)

∫ t

T
H(t, s) d

[∫ s

T

u(ξ )
v∗(ξ )r(ξ )

dξ
]

=


H(t,T)

∫ t

T

[∫ s

T

u(ξ )
v∗(ξ )r(ξ )

dξ
][

–
∂H(t, s)

∂s

]
ds

≥ η

ϑ


H(t,T)

∫ t

T

[
–

∂H(t, s)
∂s

]
ds =

η

ϑ

H(t,T)
H(t,T)

≥ η

ϑ

H(t,T)
H(t, t)

.

By virtue of (.), there exists T ≥ T such that, for all t ≥ T,

H(t,T)
H(t, t)

≥ ϑ ,

which yields


H(t,T)

∫ t

T
H(t, s)

u(s)
v∗(s)r(s)

ds ≥ η, t ≥ T.

Since η is an arbitrary positive constant,

lim inf
t→+∞


H(t,T)

∫ t

T
H(t, s)

u(s)
v∗(s)r(s)

ds = +∞,

and the latter contradicts (.). Consequently,

∫ +∞

T

u(s)
v∗(s)r(s)

ds < +∞,

and, by virtue of (.),

∫ +∞

T

(φ∗+(s))

v∗(s)r(s)
ds ≤

∫ +∞

T

u(s)
v∗(s)r(s)

ds < +∞,

which contradicts (.). This completes the proof. �

Theorem . Let (.) hold and

∫ +∞ 
r(s)

exp

(
–

∫ s

t

p(t)
r(t)

dt
)
ds < +∞. (.)
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Suppose that there exist functions H ∈ W and ρ ∈ C([t, +∞),R) such that, for some
β ≥ ,

lim sup
t→+∞


H(t, t)

∫ t

t

[
H(t, s)ϕ∗(s) –

β


υ(s)r(s)h(t, s)

]
ds = +∞, (.)

where

ϕ∗(t) := υ(t)
[
μq(t)

∫ +∞
τ (t)


r(s) exp(

∫ s
t

p(z)
r(z) dz)

ds
∫ +∞
t


r(s) exp(

∫ s
t

p(z)
r(z) dz)

ds
+ r(t)ρ

 (t) – p(t)ρ(t) –
(
r(t)ρ(t)

)′
]

(.)

and

υ(t) := exp

[
–

∫ t(
ρ(s) –

p(s)
r(s)

)
ds

]
. (.)

Then (.) is oscillatory.

Proof Let x be a nonoscillatory solution of (.).Without loss of generality, wemay assume
that there exists T ≥ t such that x(t) >  for all t ≥ T. From the proof of Theorem .,
we have (.) and either (.) or (.) for t ≥ t ≥ T. We define the generalized Riccati
substitution

u(t) := υ(t)r(t)
[
x′(t)
x(t)

+ ρ(t)
]
. (.)

Case I. Assume (.) holds. Differentiating (.), we have

u′(t) =
υ ′(t)
υ(t)

u(t)+υ(t)
(r(t)x′(t))′

x(t)
–υ(t)r(t)

[
u(t)

υ(t)r(t)
–ρ(t)

]

+υ(t)
(
r(t)ρ(t)

)′. (.)

It follows from (.), (.), and (.) that

u′(t)≤ –ϕ(t) –
u(t)

υ(t)r(t)
, (.)

where

ϕ(t) := υ(t)
[
μq(t) + r(t)ρ

 (t) – p(t)ρ(t) –
(
r(t)ρ(t)

)′].

Multiplying both sides of (.), with t replaced by s, by H(t, s), integrating with respect
to s from T to t, we find, for all β ≥  and for all t ≥ T ≥ t,

∫ t

T
H(t, s)ϕ(s) ds +

∫ t

T
h(t, s)

(
H(t, s)

) 
 u(s) ds +


β

∫ t

T
H(t, s)

u(s)
υ(s)r(s)

ds

≤H(t,T)u(T) –
β – 

β

∫ t

T
H(t, s)

u(s)
υ(s)r(s)

ds. (.)
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Now define

C∗ :=
u(s)√

β

(H(t, s)) 

(υ(s)r(s)) 
and D∗ := –

√
β


h(t, s)

(
υ(s)r(s)

) 
 .

Applying inequality (.) (replace C and D with C∗ and D∗), we have

h(t, s)
(
H(t, s)

) 
 u(s) +


β
H(t, s)

u(s)
υ(s)r(s)

≥ –
β


υ(s)r(s)h(t, s).

Hence, by the latter inequality and (.), we have

∫ t

T

[
H(t, s)ϕ(s) –

β


υ(s)r(s)h(t, s)

]
ds

≤H(t,T)u(T) –
β – 

β

∫ t

T
H(t, s)

u(s)
υ(s)r(s)

ds. (.)

Using monotonicity of H , we conclude that, for all t ≥ T,

∫ t

T

[
H(t, s)ϕ(s) –

β


υ(s)r(s)h(t, s)

]
ds ≤H(t,T)

∣∣u(T)
∣∣ ≤H(t, t)

∣∣u(T)
∣∣.

Thus

∫ t

t

[
H(t, s)ϕ(s) –

β


υ(s)r(s)h(t, s)

]
ds ≤H(t, t)

[∣∣u(T)
∣∣ +

∫ T

t

∣∣ϕ(s)∣∣ds
]
.

Hence we have

lim sup
t→+∞


H(t, t)

∫ t

t

[
H(t, s)ϕ(s) –

β


υ(s)r(s)h(t, s)

]
ds ≤ ∣∣u(T)

∣∣ +
∫ T

t

∣∣ϕ(s)∣∣ds < +∞,

which contradicts (.) due to the fact that ϕ∗(t) ≤ ϕ(t), where ϕ∗ is defined as in (.).
Case II. Assume (.) holds. From (.), we have

x′(s)≤ r(t) exp(
∫ t
t

p(z)
r(z) dz)

r(s) exp(
∫ s
t

p(z)
r(z) dz)

x′(t), s ≥ t.

Hence we get

x(l) – x(t)≤ x′(t)r(t) exp
(∫ t

t

p(z)
r(z)

dz
)∫ l

t


r(s) exp(

∫ s
t

p(z)
r(z) dz)

ds.

Letting l → +∞, we obtain

x(t)≥ –x′(t)r(t) exp
(∫ t

t

p(z)
r(z)

dz
)∫ +∞

t


r(s) exp(

∫ s
t

p(z)
r(z) dz)

ds.
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This inequality yields
(

x(t)∫ +∞
t


r(s) exp(

∫ s
t

p(z)
r(z) dz)

ds

)′
≥ ,

and so

x(τ (t))
x(t)

≥
∫ +∞
τ (t)


r(s) exp(

∫ s
t

p(z)
r(z) dz)

ds
∫ +∞
t


r(s) exp(

∫ s
t

p(z)
r(z) dz)

ds
.

The rest of the proof is similar to that of the case where (.) holds. Then one can get a
contradiction to (.). This completes the proof. �

On the basis of Theorem ., similar as in the proof of Theorem ., we have the follow-
ing result immediately.

Theorem . Let (.) and (.) hold. Suppose that there exist functions H ∈ W , ρ ∈
C([t, +∞),R), and φ ∈ C([t, +∞),R) such that, for all T ≥ t and for some β > , one has
(.) and

lim sup
t→+∞


H(t,T)

∫ t

T

[
H(t, s)ϕ∗(s) –

β


υ(s)r(s)h(t, s)

]
ds ≥ φ(T), (.)

where ϕ∗ and υ are as in Theorem .. If
∫ +∞

t

(φ+(s))

υ(s)r(s)
ds = +∞, (.)

where φ+(t) :=max{φ(t), }, then (.) is oscillatory.

Remark . Efficient oscillation tests can be derived from Theorems .-. with differ-
ent choices of the functions H , ρ, and ρ. For example, for (t, s) ∈ D, Kamenev’s weight
function H defined by H(t, s) = (t – s)m, where m ≥ , belongs to the class W . The details
are left to the reader.

3 Applications and discussion
The following three examples illustrate applications of theoretical results in the previous
section.

Example . For t ≥ , consider a second-order ordinary damped differential equation

x′′(t) +

t
x′(t) +


t
x(t) = , (.)

where r(t) = , p(t) = /t, q(t) = /t, f (x) = x, and τ (t) = t. Letting μ = , ρ(t) = , and
H(t, s) = (t – s), then v∗(t) = t, h(t, s) = , and so ψ∗(t) = /t and

lim sup
t→+∞


H(t,T)

∫ t

T

[
H(t, s)ψ∗(s) –

β


v∗(s)r(s)h(t, s)

]
ds

= lim sup
t→+∞


t

∫ t

T

[
(t – s)

s
– βs

]
ds = +∞.

http://www.advancesindifferenceequations.com/content/2013/1/326
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Hence, by Theorem ., equation (.) is oscillatory. As a matter of fact, one such solution
is x(t) = sin(ln t).

Example . For t ≥ , consider a second-order delay damped differential equation

x′′(t) – x′(t) +
√
x

(
t –

π


)
= , (.)

where r(t) = , p(t) = –, q(t) =
√
, f (x) = x, and τ (t) = t–π/. Lettingμ = , ρ(t) = –/,

and H(t, s) = (t – s), then v∗(t) = , h(t, s) = , and so ψ∗(t) > / and

lim sup
t→+∞


H(t,T)

∫ t

T

[
H(t, s)ψ∗(s) –

β


v∗(s)r(s)h(t, s)

]
ds

≥ lim sup
t→+∞


t

∫ t

T

[
(t – s)


– β

]
ds = +∞.

Hence, by Theorem ., equation (.) is oscillatory. As a matter of fact, one such solution
is x(t) = sin t.

Example . For t ≥ , consider a second-order advanced damped differential equation

x′′(t) + x′(t) + x(t + ) = , (.)

where r(t) = , p(t) = , q(t) = , f (x) = x, and τ (t) = t + . Letting μ = , ρ(t) = /, and
H(t, s) = (t – s), then υ(t) = , h(t, s) = , and so ϕ∗(t) = e– – / and

lim sup
t→+∞


H(t,T)

∫ t

T

[
H(t, s)ϕ∗(s) –

β


υ(s)r(s)h(t, s)

]
ds

= lim sup
t→+∞


t

∫ t

T

[(
e– –




)
(t – s) – β

]
ds = +∞.

Hence, by Theorem ., equation (.) is oscillatory.

Remark . In this paper, we present some new oscillation criteria for the differential
equationwith a linear damping term (.). Our theorems can be applied to the cases where
p≥ , p≤ , or p is an oscillatory function. Furthermore, the main results can be applied
to the cases where the deviating argument τ is delayed or advanced. On the other hand, we
do not need to require the assumption that τ ′(t) >  for t ≥ t. Hence, the results obtained
supplement and improve those reported in [, ].

Remark . Note that when τ (t)≡ t, Theorems . and . include [, Theorem ] and
[, Theorem ], respectively. On the basis of assumption (.), Theorems . and .
include [, Theorem ] and [, Theorem ], respectively.

Competing interests
The authors declare that they have no competing interests.

http://www.advancesindifferenceequations.com/content/2013/1/326


Fu et al. Advances in Difference Equations 2013, 2013:326 Page 11 of 11
http://www.advancesindifferenceequations.com/content/2013/1/326

Authors’ contributions
All authors read and approved the final manuscript.

Author details
1School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, P.R. China. 2Department of
Physics, Changji University, Changji, Xinjiang 831100, P.R. China.

Acknowledgements
The authors would like to thank the editors and referees for their thoughtful review of this manuscript and their insightful
comments used to improve the quality of this paper. This research is supported by the National Key Basic Research
Program of P.R. China (2013CB035604), NNSF of P.R. China (Grant Nos. 61034007, 51277116, 51107069, 61304029), and NSF
of Xinjiang (Grant No. 201318101-16).

Received: 8 May 2013 Accepted: 30 September 2013 Published: 19 Nov 2013

References
1. Agarwal, RP, Bohner, M, Li, WT: Nonoscillation and Oscillation: Theory for Functional Differential Equations.

Monographs and Textbooks in Pure and Applied Mathematics, vol. 267. Dekker, New York (2004)
2. Agarwal, RP, Grace, SR, O’Regan, D: Oscillation Theory for Difference and Functional Differential Equations. Kluwer

Academic, Dordrecht (2000)
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