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Abstract
In this paper, a class of third-order quasi-linear differential equations with
continuously distributed delay is studied. Applying the generalized Riccati
transformation, integral averaging technique of Philos type and Young’s inequality,
a set of new criteria for oscillation or certain asymptotic behavior of nonoscillatory
solutions of this equations is given. Our results essentially improve and complement
some earlier publications.
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1 Introduction
Consider the following third-order quasi-linear differential equation:

[
a(t)

([
x(t) +

∫ b

a
p(t,μ)x

[
τ (t,μ)

]
dμ

]′′)γ ]′
+

∫ d

c
q(t, ξ )f

(
x
[
σ (t, ξ )

])
dξ = . ()

We build up the following hypotheses firstly:
(H) a(t) ∈ C([t,∞), (,∞)) and

∫ ∞
t

a(s)–

γ ds =∞;

(H) p(t,μ) ∈ C([t,∞)× [a,b], [,∞)) and  ≤ p(t) ≡ ∫ b
a p(t,μ)dμ ≤ p < ;

(H) τ (t,μ) ∈ C([t,∞)× [a,b],R) is not a decreasing function for μ and such that

τ (t,μ)≤ t and lim
t→∞ min

μ∈[a,b]
τ (t,μ) =∞; ()

(H) q(t, ξ ) ∈ C([t,∞), (,∞));
(H) σ (t, ξ ) ∈ C([t,∞)× [a,b],R) is not a decreasing function for ξ and such that

σ (t, ξ )≤ t and lim
t→∞ min

ξ∈[c,d]
σ (t, ξ ) =∞; ()

(H) f (x) ∈ C(R,R) and f (x)
xγ ≥ δ > ;

(H) γ is a quotient of odd positive integers.
Define the function by

z(t) = x(t) +
∫ b

a
p(t,μ)x

[
τ (t,μ)

]
dμ. ()
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A function x(t) is a solution of () means that x(t) ∈ C[Tx,∞), Tx ≥ t, a(t)(z′′(t))γ ∈
C[Tx,∞) and satisfies () on [Tx,∞). In this paper, we restrict our attention to those so-
lutions of Eq. () which satisfy sup{|x(t)| : t ≥ T} >  for all T ≥ Tx. We assume that Eq. ()
possesses such a solution. A solution of Eq. () is called oscillatory on [Tx,∞) if it is even-
tually positive or eventually negative; otherwise, it is called nonoscillatory.
In recent years, there has been much research activity concerning the oscillation theory

and applications of differential equations; see [–] and the reference contained therein.
Especially, the study content of oscillatory criteria of second-order differential equations is
very rich. In contrast, the study of oscillatory criteria of third-order differential equations
is relatively less, butmost ofworks are about delay equations. Some interesting results have
been obtained concerning the asymptotic behavior of solutions of Eq. () in the particular
case. For example, [] consider the third-order functional differential equations of the form

[
a(t)

(
x′′(t)

)γ ]′ + q(t)f
(
x
[
σ (t)

])
= . ()

Zhang et al. [] focus on the following the third-order neutral differential equations with
continuously distributed delay:

[
a(t)

[
x(t) +

∫ b

a
p(t,μ)x

[
τ (t,μ)

]
dμ

]′′]′
+

∫ d

c
q(t, ξ )f

(
x
[
σ (t, ξ )

])
dξ = . ()

Baculíková and Džurina [] are concerned with the couple of the third-order neutral dif-
ferential equations of the form

[
a(t)

([
x(t) + p(t)x

[
τ (t)

]]′′)γ ]′ + q(t)xγ
[
σ (t)

]
= . ()

However, aswe know, oscillatory behaviors of solutions of Eq. () have not been considered
up to now. In this paper, we try to discuss the problem of oscillatory criteria of Philos type
of Eq. (). Applying the generalized Riccati transformation, integral averaging technique of
Philos type, Young’s inequality, etc., we obtain some new criteria for oscillation or certain
asymptotic behavior of nonoscillatory solutions of this equations. We should point out
that γ is any quotient of odd positive integers in this paper, but it is required that γ = 
in [].

2 Several lemmas
We start our work with the classification of possible nonoscillatory solutions of Eq. ().

Lemma . Let x(t) be a positive solution of (), and z(t) is defined as in (). Then z(t) has
only one of the following two properties eventually:

(I) z(t) > , z′(t) > , z′′(t) > ;
(II) z(t) > , z′(t) < , z′′(t) > .

Proof Let x(t) be a positive solution of (), eventually (if it is eventually negative, the proof
is similar). Then [a(t)(z′′(t))γ ]′ < . Thus, a(t)(z′′(t))γ is decreasing and of one sign and it
follows hypotheses (H)-(H) that there exists t ≥ t such that z′′(t) is of fixed sign for
t ≥ t. If we admit z′′(t) < , then there exists a constantM >  such that

z′′(t) ≤ –
M

a(t)

γ

, t ≥ t. ()
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Integrating from t to t, we get

z′(t)≤ z′(t) –M
∫ t

t
a(s)–


γ ds. ()

Let t → ∞ and using (H), we have z′(t) → –∞. Thus z′(t) <  eventually, which together
with z′′(t) <  implies z(t) < , which contradicts our assumption z(t) > . This contradic-
tion shows that z′′(t) > , eventually. Therefore z′(t) is increasing and thus (I) or (II) holds
for z(t), eventually. �

Lemma . Let x(t) be a positive solution of (), and correspondingly z(t) has the prop-
erty (II). Assume that

∫ ∞

t

∫ ∞

v

[


a(u)

∫ ∞

u

∫ d

c
q(s, ξ )dξ ds

]/γ

dudv =∞. ()

Then

lim
t→∞x(t) = . ()

Proof Let x(t) be a positive solution of Eq. (). Since z(t) satisfies the property (II), it is
obvious that there exists a finite limit

lim
t→∞ z(t) = l. ()

Next, we claim that l = . Assume that l > , then we have l < z(t) < l + ε for all ε >  and t
enough large. Choosing ε < l( – p)/p, we obtain

x(t) = z(t) –
∫ b

a
p(t,μ)x

[
τ (t,μ)

]
dμ ≥ l –

∫ b

a
p(t,μ)z

[
τ (t,μ)

]
dμ

≥ l – p(t)z
[
τ (t,a)

] ≥ l – p(l + ε)

= K (l + ε) > Kz(t), ()

where K = l–p(l+ε)
l+ε

> . �

Combining (H), () with (), one can get

(
a(t)

[
z′′(t)

]γ )′ ≤ –δKγ

∫ d

c
q(t, ξ )

(
z
[
σ (t, ξ )

])γ dξ

≤ –δKγ
(
z
[
σ (t,d)

])γ

∫ d

c
q(t, ξ )dξ

≤ –δKγ
(
z
[
σ(t)

])γ q(t), ()

where q(t) =
∫ d
c q(t, ξ )dξ and σ(t) = σ (t,d). Integrating inequality () from t to ∞, we

get immediately

a(t)
[
z′′(t)

]γ ≥ δKγ

∫ ∞

t
q(s)

(
z
[
σ(s)

])γ ds. ()
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Using z(σ(s)) > l, we have

z′′(t)≥ δ/γKl
(


a(t)

∫ ∞

t
q(s)ds

) 
γ

≥ δ/γKl
(


a(t)

∫ ∞

t

∫ d

c
q(s, ξ )dξ ds

) 
γ

;

–z′(t) ≥ δ/γKl
∫ ∞

t

(


a(u)

∫ ∞

u

∫ d

c
q(s, ξ )dξ ds

) 
γ

du;

z(t) ≥ δ/γKl
∫ ∞

t

∫ ∞

v

(


a(u)

∫ ∞

u

∫ d

c
q(s, ξ )dξ ds

) 
γ

dudv.

()

We have a contradiction with () and so it follows that limt→∞ z(t) = , which implies that

lim
t→∞x(t) = . ()

Lemma . [] Assume that u(t) > , u′(t) > , u′′(t) <  on [t,∞). Then, for each α ∈
(, ), there exists Tα ≥ t such that

u(σ (t))
σ (t)

≥ α
u(t)
t

for all t ≥ Tα . ()

Lemma . [] Let z(t) > , z′(t) > , z′′(t) > , z′′′(t) <  on [Tα ,∞). Then there exist β ∈
(, ) and Tβ ≥ Tα such that

z(t) ≥ βtz′(t) for all t ≥ Tβ . ()

3 Main results
For simplicity, we introduce the following notations:

D =
{
(t, s) : t ≥ s ≥ t

}
; D =

{
(t, s) : t > s ≥ t

}
. ()

A function H ∈ C(D,R) is said to belong to X class (H ∈ X) if it satisfies
(i) H(t, t) = , t ≥ t; H(t, s) > , (t, s) ∈D;
(ii) ∂H(t,s)

∂s < , there exist ρ ∈ C([t,∞), (,∞)) and h ∈ C(D,R) such that

∂H(t, s)
∂s

+
ρ ′(t)
ρ(t)

H(t, s) = –h(t, s)
(
H(t, s)

) γ
+γ . ()

Theorem . Assume that () holds, there exist ρ ∈ C([t,∞), (,∞)) and H ∈ X such
that

lim sup
t→∞


H(t, t)

∫ t

t

[
H(t, s)Q(s) –

a(s)ρ(s)hγ+(t, s)
(γ + )γ+

]
ds =∞, ()

Q(s) = δ( – p)γ ρ(s)
(

αβσ (s, c)
s

)γ ∫ d

c
q(t, ξ )dξ . ()

Suppose, further, that a′(t) > . Then every solution x(t) of Eq. () is either oscillatory or
converges to zero.
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Proof Assume that Eq. () has a nonoscillatory solution x(t). Without loss of generality,
we may assume that x(t) > , t ≥ t, x(τ (t,μ)) > , (t,μ) ∈ [t,∞) × [a,b], x(σ (t, ξ )) > ,
(t, ξ ) ∈ [t,∞) × [c,d], z(t) is defined as in (). By Lemma ., we have that z(t) has the
property (I) or the property (II). If z(t) has the property (II). Since () holds, then the
conditions in Lemma . are satisfied. Hence limt→∞ x(t) = .
When z(t) has the property (I), we obtain

x(t) = z(t) –
∫ b

a
p(t,μ)x

[
τ (t,μ)

]
dμ ≥ z(t) –

∫ b

a
p(t,μ)z

[
τ (t,μ)

]
dμ

≥ z(t) – z
[
τ (t,b)

]∫ b

a
p(t,μ)dμ ≥ ( – p)z(t). ()

Using (H) and (H), we have

(
a(t)

[
z′′(t)

]γ )′ ≤ –δ( – p)γ
(
z
[
σ(t)

])γ q(t), ()

where q(t) =
∫ d
c q(t, ξ )dξ and σ(t) = σ (t, c). Let

w(t) = ρ(t)a(t)
(
z′′(t)
z′(t)

)γ

, t ≥ t. ()

Then

w′(t) –
ρ ′(t)
ρ(t)

w(t)

≤ –δ( – p)γ q(t)
(
z[σ(t)]
z′(t)

)γ

– γ

(


a(t)ρ(t)

)/γ

w
γ+
γ (t). ()

Choosing u(t) = z′(t) in Lemma ., we obtain


z′(t)

≥ ασ(t)
tz′(σ(t))

, t ≥ Tα ≥ t. ()

Using Lemma ., we get

z
(
σ(t)

) ≥ βσ(t)z′(σ(t)
)
t ≥ Tβ ≥ Tα . ()

Combining with ()-(), we have

w′(t)≤ –Q(t) +
ρ ′(t)
ρ(t)

w(t) – γ

(


a(t)ρ(t)

)/γ

w
γ+
γ (t), ()

where Q(t) is defined by (). Let

A(t) =
ρ ′(t)
ρ(t)

, B(t) = γ

(


a(t)ρ(t)

)/γ

.
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For t ≥ t ≥ Tβ , we have

∫ t

t
H(t, s)Q(s)ds≤

∫ t

t
H(t, s)

[
–w′(s) +A(s)w(s) – B(s)w

γ+
γ (s)

]
ds

=H(t, t)w(t) –
∫ t

t

[
h(t, s)F(t, s) + B(s)

(
F(t, s)

) γ+
γ

]
ds, ()

where F(t, s) = w(s)H
γ

γ+ (t, s). By Young’s inequality

(B
γ

γ+ (s)F(t, s))
γ+
γ

γ+
γ

+
(γB– γ

γ+ (s) h(t,s)
γ+ )

γ+

γ + 
≥ γ

γ + 
∣∣h(t, s)∣∣F(t, s), ()

we obtain

B(s)F
γ+
γ (t, s)≥ ∣∣h(t, s)∣∣F(t, s) – a(s)ρ(s)hγ+(t, s)

(γ + )γ+
. ()

Applying () to inequality (), we obtain

∫ t

t
H(t, s)Q(s)ds≤H(t, t)w(t) +

∫ t

t

a(s)ρ(s)hγ+(t, s)
(γ + )γ+

ds

–
∫ t

t

[
h(t, s) +

∣∣h(t, s)∣∣]F(t, s)ds. ()

Therefore, we have

w(t) ≥ 
H(t, t)

∫ t

t

[
H(t, s)Q(s)ds –

a(s)ρ(s)hγ+(t, s)
(γ + )γ+

]
ds. ()

The last inequality contradicts (). �

Theorem . Assume that other conditions of Theorem . are satisfied except condition
(). Further, for every T , the following inequalities hold:

 < inf
s≥T

lim inf
t→∞

H(t, s)
H(t,T)

≤ ∞ ()

and

lim sup
t→∞

∫ t

T

a(s)ρ(s)hγ+(t, s)
H(t,T)

ds < ∞. ()

If there exists ψ ∈ C([t,∞),R) such that

lim sup
t→∞

∫ t

T

[
ψ

γ+
+ (s)

ρ(s)a(s)

]/γ

ds = ∞, ()

lim sup
t→∞


H(t,T)

∫ t

T

[
H(t, s)Q(s) –

a(s)ρ(s)hγ+(t, s)
(γ + )γ+

]
ds≥ ψ(T), ()
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where ψ+(s) = max{ψ(s), }, then every solution x(t) of Eq. () is either oscillatory or con-
verges to zero.

Proof As the proof of Theorem ., we can see that () holds. It follows that

lim sup
t→∞


H(t, t)

∫ t

t

(
H(t, s)Q(s) –G(t, s)

)
ds

≤ w(t) – lim inf
t→∞


H(t, t)

∫ t

t

[
h(t, s)F(t, s) + B(s)

(
F(t, s)

) γ+
γ +G(t, s)

]
ds, ()

where G(t, s) = a(s)ρ(s)hγ+(t,s)
(γ+)γ+ .

By (), we get

ψ(t) ≤ w(t) – lim inf
t→∞


H(t, t)

∫ t

t

[
h(t, s)F(t, s) + B(s)

(
F(t, s)

) γ+
γ +G(t, s)

]
ds, ()

and hence

 ≤ lim inf
t→∞


H(t, t)

∫ t

t

[
h(t, s)F(t, s) + B(s)

(
F(t, s)

) γ+
γ +G(t, s)

]
ds

≤ w(t) –ψ(t) < ∞. ()

Define the functions α(t) and β(t) as follows:

α(t) =


H(t, t)

∫ t

t
h(t, s)F(t, s)ds,

β(t) =


H(t, t)

∫ t

t
B(s)

(
F(t, s)

) γ+
γ ds.

()

From () and (), we obtain

lim inf
t→∞

[
α(t) + β(t)

]
< ∞. ()

The remainder of the proof is similar to the theorem given in [–] and hence is omitted.
If z(t) has the property (II), since () holds, by Lemma ., we have limt→∞ x(t) = . �

Theorem . If we replace () by

lim sup
t→∞


H(t, t)

∫ t

t
H(t, s)Q(s)ds <∞, ()

and assume that the other assumptions of Theorem . hold, then every solution of Eq. ()
is either oscillatory or converges to zero.

Proof The proof is similar to Theorem . and hence is omitted. �

Remark . When γ = , Theorems .-. with condition () reduce to Theorems .-
. of Zhang [], respectively.
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