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Abstract
In this paper, we define a fractional singular Sturm-Liouville operator having Coulomb
potential of type A

x . Our main issue is to investigate the spectral properties for the
operator. Furthermore, we prove new results according to the fractional singular
Sturm-Liouville problem.
MSC: 26A33; 34A08

Keywords: fractional; Sturm-Liouville; Caputo; Coulomb; singular; spectral

1 Introduction
The idea of generalizing differential operators to a non-integer order, especially to the or-
der 

 , appeared in the correspondence of L’ Hospital and Leibniz in . Later Fourier,
Euler and Laplace were among the many that studied fractional calculus and mathemat-
ical consequences. They found, using their own notation and methodology, definitions
that were suitable for the concept of non-integer order integral or derivative. The most
famous of these definitions that have been popularized in the world of fractional calculus
are the Riemann-Liouville, Grunwald-Letnikov and Caputo definitions. Fractional differ-
ential equations have been of increasing importance for the last years due to their diverse
applications in the fields of physics, chemistry, biology, economics, control theory, optical
systems, etc. [–]. But why is fractional calculus important? Until recent times, fractional
calculus was considered as a rather esoteric mathematical theory without applications,
but in the last decade there was an explosion of research activity on the application of
fractional calculus to very diverse scientific fields ranging from the physics of diffusion
and advection phenomena, to control systems and to finance and economics. Indeed, at
present, applications and/or activities related to fractional calculus have appeared in at
least the following fields []:
- Fractional control of engineering systems;
- Advancement of calculus of variations and optimal control to fractional dynamic
systems;

- Analytical and numerical tools and techniques;
- Fundamental explorations of the mechanical, electrical, and thermal constitutive
relations and other properties of various engineering materials such as viscoelastic
polymers, foams, gels, and animal tissues;

- Fundamental understanding of wave and diffusion phenomenon, their measurements
and verifications, including applications to plasma physics (such as diffusion in
Tokamak);
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- Bioengineering and biomedical applications;
- Thermal modeling of engineering systems such as brakes and machine tools;
- Image and signal processing.
Many important results of the existence of solutions of various classes of fractional dif-

ferential equations were given by Oldham, Spainer, Kilbas, Marichev, Gorenflo, Miller,
Podlubny, Baleanu, Agarwal, Ross, Srivastava etc.Most of the mathematical theory appli-
cable to the study of fractional calculus was developed prior to the turn of the twentieth
century [–]. For last centuries, the theory of fractional derivatives developed mainly as
a pure theoretical field of mathematics useful only for mathematicians.
Furthermore, Sturm-Liouville problems have been known since . The importance

of mathematics arises from the study of problems in the real world. The spectral char-
acteristics are spectra, spectral functions, scattering data, norming constants for using
Sturm-Liouville problems. The concept of Sturm-Liouville problems plays an important
role in mathematics and physics. The progress in applied mathematics was obtained by
the extension and development of many important analytical approaches and methods.
There have been numerous studies that focus on this problem since then [–]. Nowa-
days, new approaches to fractional Sturm-Liouville problem are produced [–].
In this paper, we deal with the fractional Sturm-Liouville operator with Coulomb po-

tential. Before giving the main results for the singular fractional operator, we give some
fundamental physical properties of the Sturm-Liouville operator with Coulomb potential.
Learning about the motion of electrons moving under the Coulomb potential is of signifi-
cance in quantum theory. Solving these types of problems provides us with finding energy
levels of not only hydrogen atom but also of single valance electron atoms such as sodium.
For the Coulomb potential is given by U = –e

r , where r is the radius of the nucleus, e is
electronic charge. According to this, we use time-dependent Schrödinger equation

i�
∂�

∂t
= –

�


m
∂�

∂x
+U(x, y, z)� ,

∫
R

|�| dxdydz = ,

where � is the wave function, � is Planck’s constant andm is the mass of electron. In this
equation, if the Fourier transform is applied

�̃ =
√
π

∫ ∞

–∞
e–iλt� dt,

it will convert to energy equation dependent on the situation as follows:

�


m
� �̃ + Ũ�̃ = E�̃.

Therefore, energy equation in the field with Coulomb potential becomes

–
�


m
� �̃ +

(
E +

e

r

)
�̃ = .

If this hydrogen atom is substituted to other potential area, then energy equation becomes

–
�


m
� �̃ +

(
E +

e

r
+ q(x, y, z)

)
�̃ = .
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If we make the necessary transformation, then we can get the Sturm-Liouville equation
with Coulomb potential

–y′′ +
[
A
x
+ q(x)

]
y = λy,

where λ is a parameter which corresponds to the energy and C is a constant [].
We should note that Klimek andAgrawal [] defined a fractional Sturm-Liouville oper-

ator, introduced a regular fractional Sturm-Liouville problem and investigated the proper-
ties of eigenfunctions and eigenvalues of the operator. In this paper, our aim is to introduce
a singular fractional Sturm-Liouville problem with Coulomb potential and prove spec-
tral properties of spectral data for the operator. We also show that the fractional Sturm-
Liouville operator with Coulomb potential is self adjoint, in addition to [].
Let us give some important necessary data that will be used in the main results.

2 Preliminaries
Definition  [] Let  < α ≤ . The left-sided and respectively right-sided Riemann-
Liouville integrals of order α are given by the formulas

(
Iαa,+f

)
(x) =


�(α)

∫ x

a
(x – s)α–f (s)ds, x > a, ()

(
Iαb,–f

)
(x) =


�(α)

∫ b

x
(s – x)α–f (s)ds, x < b, ()

where � denotes the gamma function.

Definition  [] Let  < α ≤ . The left-sided and respectively right-sided Riemann-
Liouville derivatives of order α are defined as

(
Dα

a,+f
)
(x) =D

(
I–α
a,+ f

)
(x), x > a, ()(

Dα
b,–f

)
(x) = –D

(
I–α
b,– f

)
(x), x < b. ()

Analogous formulas yield the left- and right-sided Caputo derivatives of order α:

(CDα
a,+f

)
(x) =

(
I–α
a,+ Df

)
(x), x > a,  < α ≤ , ()(CDα

b,–f
)
(x) =

(
I–α
b,– (–D)f

)
(x), x < b,  < α ≤ . ()

Definition  [] The general function p�q(z) is defined for z ∈ C, al,bj ∈ C, αl,βj ∈ R

(l = , . . . ,p; j = , . . . ,q) by the series

p�q(z) = p�q

[
(a,α),p
(b,β),q

∣∣∣∣∣ z
]

=
∞∑
k=

∏p
l= �(al + αlk)∏q
j= �(bj + βjk)

zk

k!
. ()
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This general Wright function was investigated by Fox who presented its asymptotic ex-
pansion for large values of the argument z under the condition

q∑
j=

βj –
p∑
l=

αl > .

If these conditions are satisfied, the series in () is convergent for any z ∈C.

Theorem  [] Let al,bj ∈C, and αl,βj ∈ R (l = , . . . ,p; j = , . . . ,q), and let

	 =
q∑
j=

βj –
p∑
l=

αl,

δ =
p∏
l=

|αl|–αl

q∏
j=

|βj|βj ,

μ =
q∑
j=

bj –
p∑
l=

al +
p – q


.

(I) If 	 > –, then the series in () is absolutely convergent for all z ∈C.
(II) If 	 = –, then the series in () is absolutely convergent for |z| < δ and for |z| = δ and

�(μ) > /.

Theorem  [] Let (X,d) be a non-empty complete metric space. Let T : X → X be a
contraction mapping on X, i.e., there is a nonnegative real number q <  such that

d
(
T(x),T(y)

) ≤ qd(x, y)

for all x, y in X. Then the map T admits one and only one fixed-point x∗ in x (this means
T(x∗) = x∗). Furthermore, this fixed point can be found as follows starting with an arbi-
trary element x in X and defining an iterative sequence by xn = T(xn–) for n = , , , . . . .
This sequence converges, and its limit is x∗. The following inequality describes the speed of
convergence:

d
(
x∗,xn

) ≤ qn
 – q

d(x,x).

Equivalently,

d
(
x∗,xn+

) ≤ q
 – q

d(xn+,xn)

and

d
(
x∗,xn+

) ≤ qd
(
x∗,xn

)
.

Any such value of q is called a Lipschitz constant for T , and the smallest one is sometimes
called ‘the best Lipschitz constant’ of T .
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Property  The fractional differential operators defined in ()-() satisfy the following
identities:

∫ b

a
f (x)Dα

b,–g(x)dx =
∫ b

a
g(x)CDα

a,+f (x)dx – f (x)I–α
b,– g(x)|ba;

on the other hand,

∫ b

a
f (x)Dα

b,–g(x)
CDα

a,+k(x)dx

=
∫ b

a
g(x)CDα

a,+f (x)
CDα

a,+k(x)dx – f (x)I–α
b,– g(x)CDα

a,+k(x)|ba, ()∫ b

a
f (x)Dα

a,+g(x)dx =
∫ b

a
g(x)CDα

b,–f (x)dx + f (x)I–α
a,+ g(x)|ba. ()

Property  Assume α ∈ (, ], β > α and f ∈ C[a,b]. Then the following relations

Dα
a,+I

α
a,+f (x) = f (x),

Dα
b,–I

α
b,–f (x) = f (x),

Dα
a,+I

β
a,+f (x) = Iβ–α

a,+ f (x),

Dα
b,–I

β

b,–f (x) = Iβ–α

b,– f (x),

CDα
a,+I

α
a,+f (x) = f (x),

CDα
b,–I

α
b,–f (x) = f (x) ()

hold for any x ∈ [a,b]. Furthermore, the integral operators defined in (), () satisfy the
following semi-group properties:

Iαa,+I
β
a,+ = Iα+β

a,+ , Iαb,–I
β

b,– = Iα+β

b,– .

Now, let us take up a fractional singular Sturm-Liouville problem for Coulomb potential.

3 Main results
Let us denote a fractional Sturm-Liouville problem for Coulomb potential with the dif-
ferential part containing the left- and right-sided derivatives. Let us use the form of the
integration by parts formulas (), () for this new approximation.Main properties of eigen-
functions and eigenvalues in the theory of classical Sturm-Liouville problems are related
to the integration by parts formula for the first-order derivatives. In the corresponding
fractional version, we note that both left and right derivatives appear and the essential
pairs are the left Riemann-Liouville derivative with the right Caputo derivative and the
right Riemann-Liouville derivative with the left Caputo one.
Let α ∈ (, ). A fractional Sturm-Liouville operator for Coulomb potential is written as

Lα[C] =Dα
π ,–p(x)

CDα
,+ +

(
A
x
+ q(x)

)
. ()
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Consider the fractional Sturm-Liouville equation for Coulomb potential

Lα[C]yλ(x) + λwα(x)yλ(x) = , ()

where p(x) �= , wα(x) >  ∀x ∈ (,π ], wα(x) is a weight function and p, q are real-valued
continuous functions in the interval (,π ] and yλ(x)

x ∈ C[,π ]. The boundary conditions
for the operator L are the following:

yλ() = , ()

cyλ(π ) – cI–α
π ,– p(π )

CDα
,+yλ(π ) = , ()

where c + c �= . Fractional boundary value problem ()-() is a fractional Sturm-
Liouville problem for Coulomb potential.

Theorem  Fractional Sturm-Liouville operator for Coulomb potential is self-adjoint
(,π ].

Proof Let us consider the following equation:

〈Lα[C]ϕ,φ〉 =
∫ π


Lα[C]ϕ(x)φ(x)dx

=
∫ π


φ(x)

[
Dα

π ,–p(x)
CDα

,+ϕ(x) +
(
A
x
+ q(x)

)
ϕ(x)

]
dx

=
∫ π


φ(x)Dα

π ,–p(x)
CDα

,+ϕ(x)dx

+
∫ π



(
A
x
+ q(x)

)
ϕ(x)φ(x)dx.

By means of property () and boundary conditions ()-(), we obtain the identity

〈Lα[C]ϕ,φ〉 =
∫ π


p(x)CDα

,+φ(x)
CDα

,+ϕ(x)dx – φ(x)I–α
π ,– p(x)

CDα
,+ϕ(x)|π

+
∫ π



(
A
x
+ q(x)

)
ϕ(x)φ(x)dx

=
∫ π


p(x)CDα

,+φ(x)
CDα

,+ϕ(x)dx –
c
c

ϕ(π )φ(π )

+
∫ π



(
A
x
+ q(x)

)
ϕ(x)φ(x)dx. ()

On the other hand, by performing similar necessary operations, we obtain

〈ϕ,Lα[C]φ〉 =
∫ π


p(x)CDα

,+ϕ(x)
CDα

,+φ(x)dx –
c
c

ϕ(π )φ(π )

+
∫ π



(
A
x
+ q(x)

)
φ(x)ϕ(x)dx. ()
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The right-hand sides of equations () and () are equal, hence we may see that the left-
hand sides are equal, that is,

〈Lα[C]ϕ,φ〉 = 〈ϕ,Lα[C]φ〉.

The proof is completed. �

Theorem  The eigenvalues of a fractional singular Sturm-Liouville operator with
Coulomb potential ()-() are real.

Proof Let us observe that the following relation results from property ()∫ π


f (x)Lα[C]g(x)dx =

∫ π


p(x)CDα

,+f (x)
CDα

,+g(x)dx – f (x)I–α
π ,– p(x)

CDα
,+g(x)|π

+
∫ π



(
A
x
+ q(x)

)
g(x)f (x)dx. ()

Suppose that λ is the eigenvalue for ()-() corresponding to the eigenfunction complex
conjugate ȳ, then the following equalities are satisfied:

Lα[C]ȳ(x) + λ̄wα(x)ȳ(x) = , ()

ȳ() = , ()

cȳ(π ) – cI–α
π ,– p(π )

CDα
,+ȳ(π ) = , ()

where c + c �= . We multiply equation () by function ȳ and () by function y, respec-
tively, and subtract:

(λ – λ̄)wα(x)y(x)ȳ(x) = y(x)Lα[C]ȳ(x) – ȳ(x)Lα[C]y(x).

Now, we integrate over interval (,π ] and applying relation (), we note that the right-
hand side of the integrated equality contains only boundary terms:

(λ – λ̄)
∫ π


wα(x)y(x)ȳ(x)dx

=
∫ π


y(x)Lα[C]ȳ(x)dx –

∫ π


ȳ(x)Lα[C]y(x)dx

=
∫ π


p(x)CDα

,+y(x)
CDα

,+ȳ(x)dx – y(x)I–α
π ,– p(x)

CDα
,+ȳ(x)|π

–
∫ π


p(x)CDα

,+ȳ(x)
CDα

,+y(x)dx + ȳ(x)I–α
π ,– p(x)

CDα
,+y(x)|π ,

(λ – λ̄)
∫ π


wα(x)

∣∣y(x)∣∣ dx = –y(x)I–α
π ,– p(x)

CDα
,+ȳ(x)|π + y(x)I–α

π ,– p(x)
CDα

,+ȳ(x)|

+ ȳ(x)I–α
π ,– p(x)

CDα
,+y(x)|π – ȳ(x)I–α

π ,– p(x)
CDα

,+y(x)|.

By virtue of boundary conditions (), (), (), (), we find

(λ – λ̄)
∫ π


wα(x)

∣∣y(x)∣∣ dx = ,
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and because y is a non-trivial solution and wα(x) > , it easily seen that λ = λ̄. This proves
the theorem. �

Theorem  The eigenfunctions corresponding to distinct eigenvalues of the fractional
Sturm-Liouville problem with Coulomb potential ()-() are orthogonal weight function
wα on (,π ], that is,∫ π


wα(x)yλ (x)yλ (x)dx = , λ �= λ.

Proof We have by assumptions the fractional singular Sturm-Liouville problem with
Coulomb potential fulfilled by two different eigenvalues (λ,λ) and the respective eigen-
functions (yλ , yλ ):

Lα[C]yλ (x) + λwα(x)yλ (x) = , ()

yλ (x) = , ()

cyλ (π ) – cI–α
π ,– p(π )

CDα
,+yλ (π ) = , ()

Lα[C]yλ (x) + λwα(x)yλ (x) = , ()

yλ (x) = , ()

cyλ (π ) – cI–α
π ,– p(π )

CDα
,+yλ (π ) = . ()

We multiply equation () by function yλ and () by function yλ , respectively, and sub-
tract:

(λ – λ)wα(x)yλyλ = yλLα[C]yλ – yλLα[C]yλ .

Integrating over the interval (,π ] and applying relation (), we note that the right-hand
side of the integrated equality contains only boundary terms:

(λ – λ)
∫ π


wα(x)yλ (x)yλ (x)dx

=
∫ π


yλ (x)Lα[C]yλ (x)dx –

∫ π


yλ (x)Lα[C]yλ (x)dx

=
∫ π


yλ (x)

[
Dα

π ,–p(x)
CDα

,+yλ (x) +
(
A
x
+ q(x)

)
yλ (x)

]
dx

–
∫ π


yλ (x)

[
Dα

π ,–p(x)
CDα

,+yλ (x) +
(
A
x
+ q(x)

)
yλ (x)

]
dx

=
∫ π


p(x)CDα

,+yλ (x)
CDα

,+yλ (x)dx – yλ (x)I
–α
π ,– p(x)

CDα
,+yλ (x)|π

–
∫ π


p(x)CDα

,+yλ (x)
CDα

,+yλ (x)dx + yλ (x)I
–α
π ,– p(x)

CDα
,+yλ (x)|π ,

(λ – λ)
∫ π


wα(x)yλ (x)yλ (x)dx

= –yλ (x)I
–α
π ,– p(x)

CDα
,+yλ (x)|π + yλ (x)I

–α
π ,– p(x)

CDα
,+yλ (x)|π .
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Using the boundary conditions (), (), (), (), we find that

(λ – λ)
∫ π


wα(x)yλ (x)yλ (x)dx = ,

where λ �= λ. �

Remark Let us now give certain auxiliary functions. Because we use the functions, the
first of them is as follows:

Iα,+
(π – x)α–

�(α)
= (π – )α–(x – )α�

[
(, )
(α, –) (α + , )

∣∣∣∣∣ – x – 
π – 

]
,

where � is the Fox-Wright function [].

�

[
(a,α)
(b,β) (b,β)

∣∣∣∣∣ z
]
=

∞∑
k=

�(a + αk)
�(b + βk)�(b + βk)

zk

k!
,

the properties of the function are determined by the parameters

	 = β + β – α = –,

δ = |α|–α |β|β |β|β = ,

μ = b + b – α +
 – 


= α –


. ()

Considering Theorem , we note that this function is continuous in (,π ] when order α >
/, i.e., μ > /. For  < α ≤ /, it is discontinuous at end x = π . The explicitly calculated
function allows us to estimate the second component of the stationary function φ of the
differential part of the Sturm-Liouville operator

Dα
π ,–p(x)

CDα
,+φ(x) = ,

which looks as follows:

φ(x) = ξ + ξIα,+
(π – x)α–

�(α)p(x)
= ξ + ξψ(α, ,x). ()

The next function is the following integral:

ϕ(x) = Iα,+I
α
π ,– = Iα,+

(π – x)α

�(α + )

= (π – )α(x – )α × �

[
(, )

(α + ,–) (α + , )

∣∣∣∣∣ – x – 
π – 

]
. ()

Again, using Theorem  and calculating parameters according to (), we get

	 = –, δ = , μ = α +


.
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We conclude

α >  �⇒ μ >


,

and the obtained Fox-Wright function () is continuous in the interval (,π ] for any
positive order α.

Lemma  Let α > / and denote

Yλ(y) =
(
A
x
+ q(x)

)
yλ(x) + λwαyλ(x),

	̃ = –c + cψ(α, ,π ).

Assume 	̃ �= . Then, on the C[,π ]-space, ()-() is equivalent to the integral equation

yλ(x) = –Iα,+


p(x)
Iαπ ,–Yλ(y) +A(x)

(
Iα,+


p(x)

Iαπ ,–Yλ(y)
)∣∣∣∣

x=π

, ()

where the coefficient A(x) is

A(x) =
c
	̃

ψ(α, ,x)

and the function ψ is defined in ().

Proof By aid of composition rules, equation () can be rewritten as follows:

Dα
π ,–p(x)

CDα
,+

[
yλ(x) + Iα,+


p(x)

Iαπ ,–Yλ(y)
]
= .

The last equality implies that on the C[,π ]-space the function in brackets is a stationary
function of the fractional Sturm-Liouville problem for Coulomb potential. Dα

π ,–p(x)CDα
,+,

which according to () can be found as

φ = ξ + ξIα,+
(π – x)α–

�(α)p(x)

= ξ + ξψ(α, ,x)

equation () in the form of

yλ(x) + Iα,+


p(x)
Iαπ ,–Yλ(y) = ξ + ξψ(α, ,x). ()

To end the proof, we should connect coefficients ξj, cj, values j = ,  determining the
boundary conditions (), (). Let us note that the following formula results from com-
position rules () and equation ():

I–α
π ,– p(x)

CDα
,+yλ(x) = –Iπ ,–Yλ(y) + ξ.

http://www.advancesindifferenceequations.com/content/2013/1/300
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For a continuous function yλ, we obtain the following values at the ends:

I–α
π ,– p(x)

CDα
,+yλ(x)|x= = –

∫ π


Yλ(y)dx + ξ, ()

I–α
π ,– p(x)

CDα
,+yλ(x)|x=π = ξ. ()

Respectively, for yλ, using () we find

yλ() = φ() = ξ, ()

yλ(π ) = φ(π ) – Iα,+


p(x)
Iαπ ,–Yλ(y)

∣∣∣∣
x=π

= ξ + ξψ(α, ,π ) – Iα,+


p(x)
Iαπ ,–Yλ(y)

∣∣∣∣
x=π

. ()

The following set of linear equations for coefficients ξj results from ()-():

ξ = , ()

cξ + ξ
(
–c + cψ(α, ,π )

)
= cF ,

where F = Iα,+


p(x) I
α
π ,–Yλ(y)|x=π .

Since 	̃ �= , the solution for coefficients ξj (j = , ) is unique:

ξ = ,

ξ = cF/	̃.

Substituting the above solution into (), we recover equivalent integral equation ().
Furthermore, we give notation such as

mp = min
x∈[,π ]

∣∣p(x)∣∣,
A =

∥∥A(x)∥∥, Mϕ =
∥∥ϕ(x)

∥∥,
where ‖ · ‖ denotes the supremum norm on the space C[,π ]. �

Theorem Let α > /. Suppose that 	̃ �= , x ∈ (,π ].Then the unique continuous eigen-
function yλ for singular fractional Sturm-Liouville problem with Coulomb potential ()-
() corresponding to each eigenvalue obeying∥∥∥∥(

A
x
+ q(x)

)
+ λwα

∥∥∥∥ <
mp

Mϕ +Aϕ(π )
()

exists and such an eigenvalue is simple.

Proof We have to say that equation () can be interpreted as a fixed point condition on
the function space C[,π ],

yλ = Tyλ,

http://www.advancesindifferenceequations.com/content/2013/1/300
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where the mapping on the right-hand side for any continuous function g ∈ C[,π ] is de-
fined as

Tg = –Iα,+


p(x)
Iαπ ,–Yλ(g) +A(x)

(
Iα,+


p(x)

Iαπ ,–Yλ(g)
)∣∣∣∣

x=π

.

The following inequality will be useful in further estimations:

∥∥Yλ(g) – Yλ(r)
∥∥ =

∥∥∥∥((
A
x
+ q(x)

)
g + λwαg

)
–

((
A
x
+ q(x)

)
r + λwαr

)∥∥∥∥
≤ ‖g – r‖

∥∥∥∥(
A
x
+ q(x)

)
+ λwα

∥∥∥∥.
By performing necessary operations for the distance between images Tg and Tr for a pair
of arbitrary continuous functions g, r ∈ C[,π ],

‖Tg – Tr‖ =
∥∥∥∥–Iα,+ 

p(x)
Iαπ ,–

(
Yλ(g) – Yλ(r)

)
+A(x)

(
Iα,+


p(x)

Iαπ ,–
(
Yλ(g) – Yλ(r)

))
x=π

∥∥∥∥
≤ ‖g – r‖ ·

∥∥∥∥(
A
x
+ q(x)

)
+ λwα

∥∥∥∥(
Mϕ

mp
+
Aϕ(π )
mp

)
≤ ‖g – r‖L,

where constant L = ‖(Ax +q(x))+λwα‖(Mϕ

mp
+ Aϕ(π )

mp
). Bymeans of (), we state thatmapping

T is a contraction on the space 〈C[,π ],‖ · ‖〉

‖Tg – Tr‖ ≤ ‖g – r‖L, L ∈ (,π ).

Hence, a unique fixed point enounced as yλ ∈ C[,π ] exists that solves equation (), ()
and satisfies boundary conditions (), () provided () is applied. In that case, such
eigenvalues are simple. The proof is completed. �

Conclusion
In the study, we focus on the spectral properties of the singular fractional Sturm-Liouville
problem via Coulomb potential. We pointed that its eigenvalues related to the Coulomb
potential with the certain boundary conditions are real and its eigenfunctions correspond-
ing to distinct eigenvalues are orthogonal. We also prove that the fractional Sturm Liou-
ville operator having Coulomb potential is self-adjoint.We give that some results of Sturm
Liouville theory for fractional theory.
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