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Abstract
In this paper, we study the existence of positive solutions for the nonlinear fractional
boundary value problem with a p-Laplacian operator

Dβ
0+(φp(D

α
0+u(t))) = f (t,u(t)), 0 < t < 1,

u(0) = u′(0) = u′(1) = 0, Dα
0+u(0) = Dα

0+u(1) = 0,

where 2 < α ≤ 3, 1 < β ≤ 2, Dα
0+, D

β
0+ are the standard Riemann-Liouville fractional

derivatives, φp(s) = |s|p–2s, p > 1, φ–1
p = φq, 1/p + 1/q = 1, and

f (t,u) ∈ C([0, 1]× [0, +∞), [0, +∞)). By the properties of Green’s function, the
Guo-Krasnosel’skii fixed-point theorem, the Leggett-Williams fixed-point theorem,
and the upper and lower solutions method, some new results on the existence of
positive solutions are obtained. As applications, examples are presented to illustrate
the main results.
MSC: 34A08; 34B18; 35J05

Keywords: fractional boundary value problem; positive solution; upper and lower
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1 Introduction
Recently, fractional differential equations have been of great interest. The motivation for
those works stems from both the intensive development of the theory of fractional cal-
culus itself and the applications such as economics, engineering and other fields [–].
Many people pay attention to the existence and multiplicity of solutions or positive solu-
tions for boundary value problems of nonlinear fractional differential equations by means
of some fixed-point theorems [–] (such as the Schauder fixed-point theorem, theGuo-
Krasnosel’skii fixed-point theorem, the Leggett-Williams fixed-point theorem) and the up-
per and lower solutions method [–].
To the best of our knowledge, there are few papers devoted to the study of fractional

differential equations with a p-Laplacian operator [–, –]. Its theories and appli-
cations seem to be just being initiated.
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Wang et al. [] considered the following p-Laplacian fractional differential equations
boundary value problems:

Dγ
+

(
φp

(
Dα

+u(t)
))

= f
(
t,u(t)

)
,  < t < ,

u() = , u() = au(ξ ), Dα
+u() = , Dα

+u() = bDα
+u(η),

where  < α,γ ≤ ,  ≤ a,b ≤ ,  < ξ ,η < , and Dα
+ is the standard Riemann-Liouville

fractional derivative. φp(s) = |s|p–s, p > , φ–
p = φq, /p + /q = . They obtained the exis-

tence of at least one positive solution by means of the upper and lower solutions method.
Wang et al. [] investigated the existence and multiplicity of concave positive solu-

tions of a boundary value problem of a fractional differential equation with a p-Laplacian
operator as follows:

Dγ
+

(
φp

(
Dα

+u(t)
))

+ f
(
t,u(t),Dρ

+u(t)
)
= ,  < t < ,

u() = u′() = , u′′() = , Dα
+u() = ,

where  < α < ,  < γ < ,  < ρ ≤ , Dα
+ is the Caputo derivative. By using a fixed-point

theorem, some results for multiplicity of concave positive solutions are obtained.
Chen et al. [] considered the boundary value problem for a fractional differential equa-

tion with a p-Laplacian operator at resonance

Dβ
+

(
φp

(
Dα

+x(t)
))

= f
(
t,x(t),Dα

+x(t)
)
, t ∈ [, ],

Dα
+x() =Dα

+x() = ,

where  < α,β ≤ ,  < α + β ≤ , and Dα
+ is the Caputo fractional derivative. By using the

coincidence degree theory, a new result on the existence of solutions is obtained.
Guoqing Chai [] investigated the existence and multiplicity of positive solutions for

a class of boundary value problems of fractional differential equations with a p-Laplacian
operator

Dβ
+

(
φp

(
Dα

+u(t)
))

+ f
(
t,u(t)

)
= ,  < t < ,

u() = , u() + σDγ
+u() = , Dα

+u() = ,

where  < α ≤ ,  < β ≤ ,  < γ ≤ ,  ≤ α – γ – , σ is a positive constant number, Dα
+,

Dβ
+,D

γ
+ are the standard Riemann-Liouville derivatives. By means of the fixed-point the-

orem on cones, some existence and multiplicity results of positive solutions are obtained.
Motivated by all the works above, in this paper, we deal with the following p-Laplacian

fractional differential equation boundary value problem:

Dβ
+

(
φp

(
Dα

+u(t)
))

= f
(
t,u(t)

)
,  < t < , (.)

u() = u′() = u′() = , Dα
+u() =Dα

+u() = , (.)

where  < α ≤ ,  < β ≤ ,Dα
+,D

β
+ are the standard Riemann-Liouville fractional deriva-

tives and f (t,u) ∈ C([, ] × [, +∞), [, +∞)). By the properties of Green’s function, the
Guo-Krasnosel’skii fixed-point theorem, the Leggett-Williams fixed-point theorem, and
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the upper and lower solutions method, some new results on the existence of positive so-
lutions are obtained for the fractional differential equation boundary value problem (.)
and (.).
The rest of this paper is organized as follows. In Section , we introduce some defini-

tions and lemmas to prove our main results. In Section , we investigate the existence of a
single positive solution for boundary value problems (.) and (.) by the upper and lower
solutions method. In Section , we establish the existence of single and multiple positive
solutions for boundary value problems (.) and (.) by fixed-point theorems. As appli-
cations, examples are presented to illustrate our main results in Section  and Section ,
respectively.

2 Preliminaries and lemmas
For the convenience of the reader, we give some background material from fractional cal-
culus theory to facilitate the analysis of problem (.) and (.). These materials can be
found in the recent literature, see [, , , , –].

Definition . [] The fractional integral of order α >  of a function y : (, +∞) → R is
given by

Iα+y(t) =



(α)

∫ t


(t – s)α–y(s)ds

provided the right-hand side is pointwise defined on (,+∞).

Definition . [] The fractional derivative of order α >  of a continuous function y :
(, +∞)→ R is given by

Dα
+y(t) =



(n – α)

(
d
dt

)n ∫ t



y(s)
(t – s)α–n+

ds,

where n is the smallest integer greater than or equal to α, provided that the right-hand
side is pointwise defined on (,+∞).

Lemma . [] Let α > . If we assume u ∈Dα
+u ∈ L(, ), then the fractional differential

equation

Dα
+u(t) = 

has

u(t) = ctα– + ctα– + · · · + cntα–n, ci ∈ R, i = , , . . . ,n as a unique solution,

where n is the smallest integer greater than or equal to α.

Lemma . [] Assume that Dα
+u ∈ L(, ) with a fractional derivative of order α > .

Then

Iα+D
α
+u(t) = u(t) + ctα– + ctα– + · · · + cntα–n

for some ci ∈ R, i = , , . . . ,n, where n is the smallest integer greater than or equal to α.
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Lemma . [] Let y ∈ C[, ] and  < α ≤ . Then fractional differential equation
boundary value problem

Dα
+u(t) + y(t) = ,  < t < , (.)

u() = u′() = u′() =  (.)

has a unique solution

u(t) =
∫ 


G(t, s)y(s)ds,

where

G(t, s) =

⎧⎨
⎩

tα–(–s)α––(t–s)α–

(α) , s≤ t,

tα–(–s)α–

(α) , t ≤ s.

(.)

Lemma . Let y ∈ C[, ] and  < α ≤ ,  < β ≤ . Then the fractional differential equa-
tion boundary value problem

Dβ
+

(
φp

(
Dα

+u(t)
))

= y(t),  < t < , (.)

u() = u′() = u′() = , Dα
+u() =Dα

+u() =  (.)

has a unique solution

u(t) =
∫ 


G(t, s)φq

(∫ 


H(s, τ )y(τ )dτ

)
ds,

where

H(t, s) =

⎧⎨
⎩

[t(–s)]β––(t–s)β–

(β) , s ≤ t,

[t(–s)]β–

(β) , t ≤ s,

(.)

G(t, s) is defined as (.).

Proof From Lemma . and  < β ≤ , we have

Iβ+D
β
+

(
φp

(
Dα

+u(t)
))

= φp
(
Dα

+u(t)
)
+ ctβ– + ctβ– for some c, c ∈R.

In view of (.), we obtain

Iβ+D
β
+

(
φp

(
Dα

+u(t)
))

= Iβ+y(t).

Therefore,

φp
(
Dα

+u(t)
)
= Iβ+y(t) +Ctβ– +Ctβ– for some C,C ∈R,
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that is,

φp
(
Dα

+u(t)
)
=

∫ t



(t – τ )β–


(β)
y(τ )dτ +Ctβ– +Ctβ–.

By the boundary conditions Dα
+u() =Dα

+u() = , we have

C = , C = –
∫ 



( – τ )β–


(β)
y(τ )dτ .

Therefore, the solution u(t) of fractional differential equation boundary value problem
(.) and (.) satisfies

φp
(
Dα

+u(t)
)
=

∫ t



(t – τ )β–


(β)
y(τ )dτ –

∫ 



[t( – τ )]β–


(β)
y(τ )dτ

= –
∫ 


H(t, τ )y(τ )dτ .

Consequently, Dα
+u(t) + φq(

∫ 
 H(t, τ )y(τ )dτ ) = . Thus, fractional differential equation

boundary value problem (.) and (.) is equivalent to the following problem:

Dα
+u(t) + φq

(∫ 


H(t, τ )y(τ )dτ

)
= ,  < t < ,

u() = u′() = u′() = .

Lemma . implies that fractional differential equation boundary value problem (.) and
(.) has a unique solution

u(t) =
∫ 


G(t, s)φq

(∫ 


H(s, τ )y(τ )dτ

)
ds.

The proof is complete. �

Lemma . Let  < α ≤ ,  < β ≤ . The functions G(t, s) and H(t, s) defined by (.) and
(.), respectively, are continuous on [, ]× [, ] and satisfy
() G(t, s) ≥ , H(t, s)≥  for t, s ∈ [, ];
() G(t, s) ≤ G(, s), H(t, s)≤ H(s, s) for t, s ∈ [, ];
() G(t, s) ≥ tα–G(, s) for t, s ∈ (, );
() there exist two positive functions δ, δ ∈ C[, ] such that

min
/≤t≤/

G(t, s)≥ δ(s) max
≤t≤

G(t, s) = δ(s)G(, s) for  < s < , (.)

min
/≤t≤/

H(t, s)≥ δ(s) max
≤t≤

H(t, s) = δ(s)H(s, s) for  < s < . (.)

Proof Observing the expression of G(t, s) and H(t, s), it is easy to see that G(t, s) ≥  and
H(t, s)≥  for s, t ∈ [, ].
From Lemma . in [] and Lemma . in [], we obtain () and ().
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In the following, we consider the existence of δ(s) and δ(s). Firstly, for given s ∈ (, ),
G(t, s) is increasing with respect to t for t ∈ (, ). Consequently, setting

g(t, s) =
tα–( – s)α– – (t – s)α–


(α)
, g(t, s) =

tα–( – s)α–


(α)
,

we have

min
/≤t≤/

G(t, s) =

⎧⎨
⎩
g(  , s), s ∈ (,  ],

g(  , s), s ∈ [  , ),

=

⎧⎨
⎩



(α) [(


 )

α–( – s)α– – (  – s)α–], s ∈ (,  ],



(α) (

 )

α–( – s)α–, s ∈ [  , ).

Secondly, with the use of the monotonicity of G(t, s), we have

max
≤t≤

G(t, s) =G(, s) =



(α)
[
( – s)α– – ( – s)α–

]
.

Thus, setting

δ(s) =

⎧⎨
⎩

(  )
α–(–s)α––(  –s)

α–

(–s)α––(–s)α– , s ∈ (,  ],
(  )

α–(–s)α–

(–s)α––(–s)α– , s ∈ [  , ),

then (.) holds.
Similar to Lemma . in [], we choose

δ(s) =

⎧⎨
⎩

[  (–s)]
β––(  –s)

β–

[s(–s)]β– , s ∈ (, r],

( 
s )

β–, s ∈ [r, ).

The proof is complete. �

Lemma . Let  < α ≤ . If y(t) ∈ C[, ] and y(t) ≥ , then fractional differential equa-
tion boundary value problem (.) and (.) has a unique solution u(t)≥ , t ∈ [, ].

Proof From Lemma ., the fractional differential equation boundary value problem (.)
and (.) has a unique solution

u(t) =
∫ 


G(t, s)y(s)ds.

In view of Lemma ., we know G(t, s) is continuous on [, ] × [, ] and G(t, s) ≥  for
t, s ∈ [, ]. If y(t) ∈ C[, ] and y(t) ≥ , we obtain u(t) ≥ . The proof is complete. �

Let E = {u : u ∈ C[, ],φp(Dα
+u) ∈ C[, ]}. Now, we introduce definitions about the

upper and lower solutions of fractional differential equation boundary value problem (.)
and (.).

http://www.advancesindifferenceequations.com/content/2013/1/30
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Definition . [] A function η(t) is called an upper solution of fractional differential
equation boundary value problem (.) and (.) if η(t) ∈ E and η(t) satisfies

Dβ
+

(
φp

(
Dα

+η(t)
)) ≥ f

(
t,η(t)

)
,  < t < ,  < α ≤ ,  < β ≤ ,

η()≥ , η′() ≥ , η′() ≥ ,

Dα
+η()≤ , Dα

+η() ≤ .

Definition . [] A function ξ (t) is called a lower solution of fractional differential
equation boundary value problem (.) and (.) if ξ (t) ∈ E and ξ (t) satisfies

Dβ
+

(
φp

(
Dα

+ξ (t)
)) ≤ f

(
t, ξ (t)

)
,  < t < ,  < α ≤ ,  < β ≤ ,

ξ ()≤ , ξ ′()≤ , ξ ′() ≤ ,

Dα
+ξ ()≥ , Dα

+ξ ()≥ .

Definition . [] The map θ is said to be a nonnegative continuous concave functional
on a cone P of a real Banach space E provided that θ : P → [, +∞) is continuous and

θ
(
tx + ( – t)y

) ≥ tθ (x) + ( – t)θ (y)

for all x, y ∈ P and  ≤ t ≤ .

Lemma . [] Let E be a Banach space, P ⊆ E be a cone, and �, � be two bounded
open balls of E centered at the origin with �̄ ⊂ �. Suppose that A : P ∩ (�̄ \ �) → P is
a completely continuous operator such that either

(i) ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂� and ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂� or
(ii) ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂� and ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂�

holds. Then A has a fixed point in P ∩ (�̄ \ �).

Let a,b, c >  be constants, Pc = {u ∈ P : ‖u‖ < c}, P(θ ,b,d) = {u ∈ P : b ≤ θ (u),‖u‖ ≤ d}.

Lemma . [] Let P be a cone in a real Banach space E, Pc = {x ∈ P | ‖x‖ ≤ c}, θ be a
nonnegative continuous concave functional on P such that θ (x) ≤ ‖x‖ for all x ∈ P̄c, and
P(θ ,b,d) = {x ∈ P | b ≤ θ (x),‖x‖ ≤ d}. Suppose B : P̄c → P̄c is completely continuous and
there exist constants  < a < b < d ≤ c such that
(C) {x ∈ P(θ ,b,d) | θ (x) > b} �= ∅ and θ (Bx) > b for x ∈ P(θ ,b,d);
(C) ‖Bx‖ < a for x ≤ a;
(C) θ (Bx) > b for x ∈ P(θ ,b, c) with ‖Bx‖ > d.

Then B has at least three fixed points x, x, and x with

‖x‖ < a, b < θ (x), a < ‖x‖ with θ (x) < b.

Let E = C[, ] be endowed with ‖u‖ =max≤t≤ |u(t)|. Define the cone P ⊂ E by

P =
{
u ∈ E | u(t) ≥ 

}
.

http://www.advancesindifferenceequations.com/content/2013/1/30
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Let the nonnegative continuous concave functional θ on the cone P be defined by

θ (u) = min
/≤t≤/

∣∣u(t)∣∣.

Lemma . Let T : P → E be the operator defined by

Tu(t) :=
∫ 


G(t, s)φq

(∫ 


H(s, τ )f

(
τ ,u(τ )

)
dτ

)
ds.

Then T : P → P is completely continuous.

Proof Let u ∈ P, in view of the nonnegativeness and continuity of G(t, s), H(t, s), and
f (t,u(t)), we have T : P → P is continuous.
Let � ⊂ P be bounded, i.e., there exists a positive constantM >  such that ‖u‖ ≤ M for

all u ∈ �. Let L =max≤t≤,≤u≤M |f (t,u)| + , then for u ∈ �, we have

∣∣Tu(t)∣∣ =
∣∣∣∣
∫ 


G(t, s)φq

(∫ 


H(s, τ )f

(
τ ,u(τ )

)
dτ

)
ds

∣∣∣∣
≤ Lq–

∫ 


G(t, s)φq

(∫ 


H(s, τ )dτ

)
ds

≤ Lq–
∫ 


G(, s)φq

(∫ 


H(τ , τ )dτ

)
ds

< +∞.

Hence, T(�) is uniformly bounded.
On the other hand, sinceG(t, s) is continuous on [, ]× [, ], it is uniformly continuous

on [, ] × [, ]. Thus, for fixed s ∈ [, ] and for any ε > , there exists a constant δ > 
such that any t, t ∈ [, ] and |t – t| < δ,

∣∣G(t, s) –G(t, s)
∣∣ < ε

Lq–φq(
∫ 
 H(τ , τ )dτ )

.

Then, for all u ∈ �,

∣∣Tu(t) – Tu(t)
∣∣

≤
∫ 



∣∣G(t, s) –G(t, s)
∣∣φq

(∫ 


H(s, τ )f

(
τ ,u(τ )

)
dτ

)
ds

≤ Lq–
∫ 



∣∣G(t, s) –G(t, s)
∣∣φq

(∫ 


H(τ , τ )dτ

)
ds

= Lq–φq

(∫ 


H(τ , τ )dτ

)∫ 



∣∣G(t, s) –G(t, s)
∣∣ds

< ε,

that is to say, T(�) is equicontinuous. By the Arzela-Ascoli theorem, we have T : P → P is
completely continuous. The proof is complete. �

http://www.advancesindifferenceequations.com/content/2013/1/30
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3 Existence of a single positive solution
In this section, for the sake of simplicity, we assume that

(H) f (t,u) is nonincreasing to u;
(H) There exists a continuous function p(t)≥ , t ∈ [, ] such that

∫ 


G(t, s)φq

(∫ 


H(s, τ )f

(
τ ,p(τ )

)
dτ

)
ds = q(t) ≥ p(t), (.)

∫ 


G(t, s)φq

(∫ 


H(s, τ )f

(
τ ,q(τ )

)
dτ

)
ds≥ p(t). (.)

Theorem . Assume that (H) and (H) hold. Then the fractional differential equation
boundary value problem (.) and (.) has at least one positive solution γ (t).

Proof From Lemma ., we obtain T(P) ⊆ P. By direct computations, we have

Dβ
+

(
φp

(
Dα

+(Tu)(t)
))

= f
(
t,u(t)

)
,  < t < ,  < α ≤ ,  < β ≤ , (.)

(Tu)() = (Tu)′() = (Tu)′() = , Dα
+(Tu)() =Dα

+(Tu)() = . (.)

Now, we prove that the functions η(t) = Tp(t), ξ (t) = Tq(t) are upper and lower solutions
of fractional differential equation boundary value problem (.) and (.), respectively.
From (H) and (H), we have

p(t) ≤ q(t) = Tp(t), Tq(t) ≤ q(t) = Tp(t), t ∈ [, ]. (.)

Hence, ξ (t)≤ η(t). By T(P) ⊆ P, we know ξ (t),η(t) ∈ P. From (.)-(.) we have

Dβ
+

(
φp

(
Dα

+(η)(t)
))
– f

(
t,η(t)

) ≥ Dβ
+

(
φp

(
Dα

+(Tp)(t)
))
– f

(
t,p(t)

)
= ,

η() = η′() = η′() = , Dα
+η() =Dα

+η() = ,
(.)

Dβ
+

(
φp

(
Dα

+(ξ )(t)
))
– f

(
t, ξ (t)

) ≤ Dβ
+

(
φp

(
Dα

+(Tq)(t)
))
– f

(
t,q(t)

)
= ,

ξ () = ξ ′() = ξ ′() = , Dα
+ξ () =Dα

+ξ () = ,
(.)

that is, η(t) and ξ (t) are upper and lower solutions of fractional differential equation
boundary value problem (.) and (.), respectively.
Next, we show that the fractional differential equation boundary value problem

Dβ
+

(
φp

(
Dα

+u(t)
))

= g
(
t,u(t)

)
,  < t < ,  < α ≤ ,  < β ≤ , (.)

u() = u′() = u′() = , Dα
+u() =Dα

+u() =  (.)

has a positive solution, where

g
(
t,u(t)

)
=

⎧⎪⎪⎨
⎪⎪⎩
f (t, ξ (t)), if u(t)≤ ξ (t),

f (t,u(t)), if ξ (t)≤ u(t) ≤ η(t),

f (t,η(t)), if η(t)≤ u(t).

(.)

http://www.advancesindifferenceequations.com/content/2013/1/30
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Thus, we consider the operator B : P → E defined as follows:

Bu(t) :=
∫ 


G(t, s)φq

(∫ 


H(s, τ )g

(
τ ,u(τ )

)
dτ

)
ds,

whereG(t, s) andH(t, s) are defined as (.) and (.), respectively. It is clear that Bu(t) ≥ 
for all u ∈ P and a fixed point of the operator B is a solution of the fractional differential
equation boundary value problem (.) and (.).
Similar to Lemma ., we know that B is a compact operator. By the Schauder fixed-

point theorem, the operator B has a fixed point, that is, the fractional differential equation
boundary value problem (.) and (.) has a positive solution.
Finally, we will prove that fractional differential equation boundary value problem (.)

and (.) has at least one positive solution.
Suppose that γ (t) is a solution of (.) and (.). Now, to complete the proof, it suffices

to show that ξ (t)≤ γ (t) ≤ η(t), t ∈ [, ].
Let γ (t) be a solution of (.) and (.). We have

γ () = γ ′() = γ ′() = , Dα
+γ () =Dα

+γ () = . (.)

From (H), we have

f
(
t,η(t)

) ≤ g
(
t,γ (t)

) ≤ f
(
t, ξ (t)

)
, t ∈ [, ]. (.)

By (H) and (.), we obtain

f
(
t,q(t)

) ≤ g
(
t,γ (t)

) ≤ f
(
t,p(t)

)
, t ∈ [, ]. (.)

By p(t) ∈ P and (.), we can get

Dβ
+

(
φp

(
Dα

+η(t)
))

=Dβ
+

(
φp

(
Dα

+(Tp)(t)
))

= f
(
t,p(t)

)
, t ∈ [, ]. (.)

Combining (.), (.)-(.), we have

Dβ
+

(
φp

(
Dα

+η(t)
))
–Dβ

+
(
φp

(
Dα

+γ (t)
))

= f
(
t,p(t)

)
– g

(
t,γ (t)

) ≥ , t ∈ [, ], (.)

(η – γ )() = (η – γ )′() = (η – γ )′() = ,

Dα
+(η – γ )() =Dα

+(η – γ )() = .
(.)

Let x(t) = φp(Dα
+η(t)) – φp(Dα

+γ (t)). By (.), we obtain x() = x() = .
By Lemma ., we know x(t)≤ , t ∈ [, ], which implies that

φp
(
Dα

+η(t)
) ≤ φp

(
Dα

+γ (t)
)
, t ∈ [, ].

Since φp is monotone increasing, we obtain Dα
+η(t) ≤ Dα

+γ (t), that is, Dα
+(η – γ )(t) ≤ .

By Lemma ., (.) and (.), we have (η – γ )(t) ≥ . Therefore, η(t)≥ γ (t), t ∈ [, ].
In a similar way, we can prove that ξ (t)≤ γ (t), t ∈ [, ]. Consequently, γ (t) is a positive

solution of fractional differential equation boundary value problem (.) and (.). This
completes the proof. �
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Example . We consider the following fractional differential equation boundary value
problem:

D/
+

(
φp

(
D/

+ u(t)
))

= t +
√
u
,  < t < , (.)

u() = u′() = u′() = , D/
+ u() =D/

+ u() = . (.)

Clearly, f (t,u) = t + √
u is nonincreasing relative to u. This shows that (H) holds.

Let m(t) = t/. From Lemma ., we have

n(t) := Tm(t) =
∫ 


G(t, s)φq

(∫ 


H(s, τ )f

(
τ ,m(τ )

)
dτ

)
ds

=
∫ 



G(t, s)
G(, s)

G(, s)φq

(∫ 


H(s, τ )f

(
τ ,m(τ )

)
dτ

)
ds

≥ tα–
∫ 


G(, s)φq

(∫ 


H(s, τ )f

(
τ ,m(τ )

)
dτ

)
ds

and Tn(t) = Tm(t) ∈ P, there exist positive numbers d and d such that Tm(t) ≥ dm(t)
and Tm(t) ≥ dm(t).
Choosing a positive number d ≤ {,d} and combining the monotonicity of T , we have

T
(
dm(t)

) ≥ Tm(t) ≥ dm(t)≥ dm(t), T(dm(t)
) ≥ T

(
dm(t)

) ≥ dm(t).

Taking p(t) = dt/, then we have

q(t) = Tp(t) =
∫ 


G(t, s)φq

(∫ 


H(s, τ )f

(
τ ,dτ /)dτ

)
ds

≥ dt/ = p(t),

Tq(t) = Tp(t) =
∫ 


G(t, s)φq

(∫ 


H(s, τ )f

(
τ ,T

(
dτ /))dτ

)
ds

≥ dt/ = p(t).

That is, the condition (H) holds. By Theorem ., the fractional differential equation
boundary value problem (.) and (.) has at least one positive solution.

4 Existence of single andmultiple positive solutions
In this section, for convenience, we denote

M =
(∫ 


G(, s)φq

(∫ 


H(τ , τ )dτ

)
ds

)–

,

N =
(∫ /

/
δ(s)G(, s)φq

(∫ /

/
δ(τ )H(τ , τ )dτ

)
ds

)–

.

Theorem . Let f (t,u) be continuous on [, ] × [, +∞). Assume that there exist two
positive constants a > a >  such that

http://www.advancesindifferenceequations.com/content/2013/1/30
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(A) f (t,u) ≥ φp(Na) for (t,u) ∈ [, ]× [,a];
(A) f (t,u) ≤ φp(Ma) for (t,u) ∈ [, ]× [,a].

Then the fractional differential equation boundary value problem (.) and (.) has at
least one positive solution u such that a ≤ ‖u‖ ≤ a.

Proof From Lemmas ., ., and ., we get that T : P → P is completely continuous
and fractional differential equation boundary value problem (.) and (.) has a solution
u = u(t) if and only if u solves the operator equation u = Tu(t). In order to apply Lemma .,
we divide our proof into two steps.
Step . Let � := {u ∈ P | ‖u‖ < a}. For u ∈ ∂�, we have ≤ u(t) ≤ a for all t ∈ [, ]. It

follows from (A) that for t ∈ [/, /],

Tu(t) =
∫ 


G(t, s)φq

(∫ 


H(s, τ )f

(
τ ,u(τ )

)
dτ

)
ds

≥
∫ 


δ(s)G(, s)φq

(∫ 


δ(τ )H(τ , τ )f

(
τ ,u(τ )

)
dτ

)
ds

≥ Na
∫ /

/
δ(s)G(, s)φq

(∫ /

/
δ(τ )H(τ , τ )dτ

)
ds

= a = ‖u‖.

So,

‖Tu‖ ≥ ‖u‖ for u ∈ ∂�.

Step . Let � := {u ∈ P | ‖u‖ < a}. For u ∈ ∂�, we have  ≤ u(t) ≤ a for all t ∈ [, ].
It follows from (A) that for t ∈ [, ],

∥∥Tu(t)∥∥ = max
≤t≤

∫ 


G(t, s)φq

(∫ 


H(s, τ )f

(
τ ,u(τ )

)
dτ

)
ds

≤ Ma
∫ 


G(, s)φq

(∫ 


H(τ , τ )dτ

)
ds

= a = ‖u‖.

Therefore,

‖Tu‖ ≤ ‖u‖ for u ∈ ∂�.

Then, by (ii) of Lemma ., we complete the proof. �

Example . We consider the following fractional differential equation boundary value
problem:

D/
+

(
φp

(
D/

+ u(t)
))

=


+

√
u


+
t


,  < t < , (.)

u() = u′() = u′() = , D/
+ u() =D/

+ u() = . (.)

http://www.advancesindifferenceequations.com/content/2013/1/30
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Let p = . By a simple computation, we obtain M = ., N ≈ .. Choosing a =
., a = ., therefore

f (t,u) =


+

√
u


+
t


≥ . > φp(Na) ≈ . for (t,u) ∈ [, ]× [, .],

f (t,u) =


+

√
u


+
t


≤ . < φp(Ma) = . for (t,u) ∈ [, ]× [, .].

With the use of Theorem ., the fractional differential equation boundary value problem
(.) and (.) has at least one solution u such that . ≤ ‖u‖ ≤ ..

Theorem . Let f (t,u) be continuous on [, ] × [, +∞). Assume that there exist con-
stants  < a < b < c such that the following assumptions hold:
(B) f (t,u) < φp(Ma) for (t,u) ∈ [, ]× [,a];
(B) f (t,u) ≥ φp(Nb) for (t,u) ∈ [/, /]× [b, c];
(B) f (t,u) ≤ φp(Mc) for (t,u) ∈ [, ]× [, c].

Then the fractional differential equation boundary value problem (.) and (.) has at
least three positive solutions u, u, and u with

max
≤t≤

∣∣u(t)∣∣ < a, b < min
/≤t≤/

∣∣u(t)∣∣ < max
≤t≤

∣∣u(t)∣∣ ≤ c,

a < max
≤t≤

∣∣u(t)∣∣ ≤ c, min
/≤t≤/

∣∣u(t)∣∣ < b.

Proof From Lemmas ., ., and ., we have T : P → P is completely continuous and
fractional differential equation boundary value problem (.) and (.) has a solution u =
u(t) if and only if u satisfies the operator equation u = Tu(t).
We show that all the conditions of Lemma . are satisfied. If u ∈ P̄c, then ‖u‖ ≤ c. By

(B), we have

∥∥Tu(t)∥∥ = max
≤t≤

∣∣∣∣
∫ 


G(t, s)φq

(∫ 


H(s, τ )f

(
τ ,u(τ )

)
dτ

)
ds

∣∣∣∣
≤ Mc

∫ 


G(, s)φq

(∫ 


H(τ , τ )dτ

)
ds

≤ c.

Hence, T : P̄c → P̄c. In the same way, if u ∈ P̄a, then assumption (B) yields ‖Tu‖ < a.
Therefore, condition (C) of Lemma . is satisfied.
To check condition (C) of Lemma ., we choose u(t) = (b + c)/,  ≤ t ≤ . It is easy

to see that u(t) = (b + c)/ ∈ P(θ ,b, c), θ (u) = θ ((b + c)/) > b; consequently, {u ∈ P(θ ,b, c) |
θ (u) > b} �= ∅. Hence, if u ∈ P(θ ,b, c), then b ≤ u(t) ≤ c for / ≤ t ≤ /. From assumption
(B), we have f (t,u(t)) ≥ φp(Nb) for /≤ t ≤ /. So,

θ (Tu) = min
/≤t≤/

∣∣(Tu)(t)∣∣ ≥ min
/≤t≤/

∫ 


G(t, s)φq

(∫ 


H(s, τ )f

(
τ ,u(τ )

)
dτ

)
ds

>
∫ /

/
min

/≤t≤/
G(t, s)φq

(∫ /

/
min

/≤t≤/
H(s, τ )f

(
τ ,u(τ )

)
dτ

)
ds

http://www.advancesindifferenceequations.com/content/2013/1/30
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≥ Nb
∫ /

/
δ(s)G(, s)φq

(∫ /

/
δ(τ )H(τ , τ )dτ

)
ds

= b,

i.e., θ (Tu) > b for all u ∈ P(θ ,b, c). Choosing d = c, this shows that condition (C) of
Lemma . is also satisfied.
In the same way, if u ∈ P(θ ,b, c) and ‖Tu‖ > c = d, we also obtain θ (Tu) > b. Then condi-

tion (C) of Lemma . is also satisfied.
By Lemma ., the fractional differential equation boundary value problem (.) and

(.) has at least three positive solutions u, u, and u, satisfying

max
≤t≤

∣∣u(t)∣∣ < a, b < min
/≤t≤/

∣∣u(t)∣∣,
a < max

≤t≤

∣∣u(t)∣∣, min
/≤t≤/

∣∣u(t)∣∣ < b.

The proof is complete. �

Example . We consider the following fractional differential equation boundary value
problem:

D/
+

(
φp

(
D/

+ u(t)
))

= f (t,u),  < t < , (.)

u() = u′() = u′() = , D/
+ u() =D/

+ u() = , (.)

where

f (t,u) =

⎧⎨
⎩

t
 + u for u ≤ ,
t

 + u +  for u > .

Let p = . We obtainM = ., N ≈ .. Choosing a = ., b = , c = , therefore

f (t,u) =
t


+ u ≤ . < φ(Ma) = . for (t,u) ∈ [, ]× [, .],

f (t,u) =
t


+ u +  ≥ . > φ(Nb)

≈ . for (t,u) ∈ [/, /]× [, ],

f (t,u) =
t


+ u +  ≤ . < φ(Mc) =  for (t,u) ∈ [, ]× [, ].

With the use of Theorem ., the fractional differential equation boundary value problem
(.) and (.) has at least three positive solutions u, u, and u with

max
≤t≤

∣∣u(t)∣∣ < .,  < min
/≤t≤/

∣∣u(t)∣∣ < max
≤t≤

∣∣u(t)∣∣ ≤ ,

. < max
≤t≤

∣∣u(t)∣∣ ≤ , min
/≤t≤/

∣∣u(t)∣∣ < .
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