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1 Introduction
In this paper, we consider the following second-order linear difference equationwith com-
plex coefficients:

τ (x)(t) := –∇(p(t)�x(t)
)
+ q(t)x(t) = λw(t)x(t), t ∈ I, (.)

where I is the integer set {t}bt=a, a is a finite integer or –∞, and b is a finite integer or +∞
with b – a ≥ ; � and ∇ are the forward and backward difference operators, respectively,
i.e., �x(t) = x(t + ) – x(t) and ∇x(t) = x(t) – x(t – ); p(t) and q(t) are complex with p(t) �= 
for t ∈ I , p(a – ) �=  if a is finite and p(b + ) �=  if b is finite; w(t) >  for t ∈ I ; and λ is a
spectral parameter.
Equation (.) is formally symmetric if and only if both p(t) and q(t) are real numbers.

Therefore, if p(t) or q(t) are complex, then Eq. (.) is formally nonsymmetric. To study
nonsymmetric operators, Glazman introduced the concept of J-symmetric operators in
[] where J is a conjugation operator (see Definition .). The minimal operators gen-
erated by Sturm-Liouville and some higher-order differential and difference expressions
with complex coefficients are J-symmetric operators in the related Hilbert spaces (e.g.,
[–]). Here, we remark that a bounded J-symmetric operator is also called a complex
symmetric operator (cf. [, ]). The operators generated by singular differential and dif-
ference expressions are not bounded in general.
It is well known that the study of spectra of symmetric (J-symmetric) differential ex-

pressions is to consider the spectra of self-adjoint (J-self-adjoint) operators generated by
such expressions. In general, under a certain definiteness condition, a formally differen-
tial expression can generate a minimal operator in a related Hilbert space and its adjoint
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is the corresponding maximal operator (see, e.g., [, ]). Generally, the self-adjoint (J-
self-adjoint) operators are generated by extending the minimal operators. In addition, the
eigenvalues of every self-adjoint (J-self-adjoint) extension of the corresponding minimal
operator are different although the essential spectra of them are the same. Therefore, the
characterization of self-adjoint (J-self-adjoint) extensions of a differential expression is a
primary task in the study of its spectral problems; and the classical von Neumann self-
adjoint extension theory and the Glazman-Krein-Naimark (GKN) theory for symmetric
operators were established [, ]. The related J-self-adjoint extension theory was also
established (cf. [, ]). By using them, characterizations of self-adjoint (J-self-adjoint) ex-
tensions for differential expressions in terms of boundary conditions have been given (cf.
[, , , ]). For other results for formally symmetric (J-symmetric) differential expres-
sions, the reader is referred to [–] and the references therein.
It has been found out that the minimal operators generated by some differential ex-

pressions may be non-densely defined and the maximal operators may be multi-valued
(e.g., see [, Example .]). In particular, the maximal operator corresponding to Eq. (.)
is multi-valued, and the minimal operator is non-densely defined in the related Hilbert
space (cf. []). Therefore, the self-adjoint extension theory for symmetric operators is
not applicable in these cases. Coddington [] extended the von Neumann self-adjoint
extension theory for symmetric operators to Hermitian subspaces in . Recently, Shi
[] extended the GKN theory for symmetric operators to Hermitian subspaces. Using
GKN theory given in [], Shi [] first studied the self-adjoint extensions of (.) with
real coefficients in the framework of subspaces in a product space. For J-symmetric case,
in order to study the J-self-adjoint extensions of J-symmetric differential and difference
expressions for which the minimal operators are non-densely defined or the maximal op-
erators are multi-valued, the theory for a J-Hermitian subspace was given in [] which
includes the GKN theorem for a J-Hermitian subspace. For the results for difference ex-
pressions, the reader is referred to [–].
The limit types of (.) which are directly related to how many boundary conditions

should be added to get a J-self-adjoint extension have been investigated in [, ]. In
the present paper, the J-self-adjoint subspace extensions and J-self-adjoint operator ex-
tensions of the minimal subspace corresponding to Eq. (.) with complex coefficients are
studied. A complete characterization of them in terms of boundary conditions is given.
These characterizations are basic in the study of spectral theory for Eq. (.).
The rest of this present paper is organized as follows. In Section , some basic concepts

and fundamental results about subspaces and Eq. (.) are introduced. In Section , the
maximal, pre-minimal, andminimal subspaces in the whole interval and the left-hand and
right-hand half-intervals are introduced and their properties are studied. The relationship
among the defect indices of the minimal subspaces in the whole interval and the left-hand
and right-hand half-intervals is studied in Section . In Section , we pay our attention to
J-self-adjoint subspace extensions of the minimal subspace in the whole interval. Finally,
a complete characterization of J-self-adjoint operator extensions of the minimal operator
in the whole interval is given in Section . Three examples are given in Section .

2 Preliminaries
In this section,we introduce somebasic concepts and give some fundamental results about
subspaces in a product space and present two results about Eq. (.).

http://www.advancesindifferenceequations.com/content/2013/1/3
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By C denote the set of complex numbers, and by z̄ denote the complex conjugate of
z ∈ C. Let X be a complex Hilbert space with the inner product 〈·, ·〉. The norm ‖ · ‖ is
defined by ‖f ‖ = 〈f , f 〉/ for f ∈ X. Let X be the product space X × X with the following
induced inner product, denoted by 〈·, ·〉 without any confusion:

〈
(x, f ), (y, g)

〉
= 〈x, y〉 + 〈f , g〉 for all (x, f ), (y, g) ∈ X.

LetT be a linear subspace inX. For briefness, a linear subspace is only called a subspace.
For a subspace T in X, denote

D(T) =
{
x ∈ X : (x, f ) ∈ T for some f ∈ X

}
,

T(x) =
{
f ∈ X : (x, f ) ∈ T

}
,

T – λ =
{
(x, f – λx) : (x, f ) ∈ T

}
.

Clearly, T() = {} if and only if T can determine a unique linear operator from D(T) into
X whose graph is T . Therefore, T is said to be an operator if T() = {}.

Definition . [] Let T be a subspace in X.
() Its adjoint, T *, is defined by

T * =
{
(y, g) ∈ X : 〈f , y〉 = 〈x, g〉 for all (x, f ) ∈ T

}
.

() T is said to be a Hermitian subspace if T ⊂ T *.
() T is said to be a self-adjoint subspace if T = T *.

Lemma . [] Let T be a subspace in X. Then T * is a closed subspace in X, T * = (T̄)*,
and T ** = T̄ , where T̄ is the closure of T .

Definition. (see [, p.] or []) Anoperator J defined onX is said to be a conjugation
operator if for all x, y ∈ X,

〈Jx, Jy〉 = 〈y,x〉 and Jx = x. (.)

It can be verified that J is a conjugate linear, norm-preserving bijection onX and it holds
that (see [, p.])

〈Jx, y〉 = 〈Jy,x〉 for all x, y ∈ X. (.)

The complex conjugation x �→ x̄ in any l space is a conjugation operator on l.

Definition . [] Let T be a subspace in X and J be a conjugation operator.
() The J-adjoint of T , i.e., T *

J , is defined by

T *
J =
{
(y, g) ∈ X : 〈f , Jy〉 = 〈x, Jg〉 for all (x, f ) ∈ T

}
.

() T is said to be a J-Hermitian subspace if T ⊂ T *
J .

http://www.advancesindifferenceequations.com/content/2013/1/3
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() T is said to be a J-self-adjoint subspace if T = T *
J .

() Let T be a J-Hermitian subspace. Then S is a J-self-adjoint subspace extension
(briefly, J-SSE) of T if T ⊂ S and S is a J-self-adjoint subspace.

Remark .
(i) It can be easily verified that T *

J is a closed subspace. Consequently, a J-self-adjoint
subspace T is a closed subspace since T = T *

J . In addition, S*J ⊂ T *
J if T ⊂ S.

(ii) From the definition, we have that 〈f , Jy〉 = 〈x, Jg〉 holds for all (x, f ) ∈ T and
(y, g) ∈ T *

J , and that T is a J-Hermitian subspace if and only if

〈f , Jy〉 = 〈x, Jg〉 for all (x, f ), (y, g) ∈ T .

(iii) Assume that T is not only J-symmetric for some conjugation operator J but also
symmetric, and that S is a J-SSE of T . Then S is a self-adjoint subspace extension of
T if and only if S*J = S*.

Lemma . [] Let T be a subspace in X. Then
() T * = {(Jy, Jg) : (y, g) ∈ T *

J };
() T *

J = {(Jy, Jg) : (y, g) ∈ T *}.

Lemma . [] Let T be a J-Hermitian subspace. Then (y, g) ∈ T̄ if and only if (y, g) ∈ T *
J

and 〈f , Jy〉 = 〈x, Jg〉 for all (x, f ) ∈ T *
J .

Definition . [] Let T be a J-Hermitian subspace. Then d(T) = 
 dimT *

J /T̄ is called
to be the defect index of T .

Remark . By [, Remark .], d(T) is a nonnegative integer or else infinite. Further,
d(T) = d(T̄). Then T and T̄ have the same J-SSEs since every J-SSE is closed.

Define the form [:] as

[
(x, f ) : (y, g)

]
= 〈f , Jy〉 – 〈x, Jg〉, (x, f ), (y, g) ∈ T *

J .

Then, for all Yj = (xj, fj) ∈ T *
J (j = , , ) and μ ∈C, it holds that

[Y : Y + Y] = [Y : Y] + [Y : Y], [Y + Y : Y] = [Y : Y] + [Y : Y],

[μY : Y] = [Y : μY] = μ[Y : Y], [Y : Y] = –[Y : Y].
(.)

The following result which can be regarded as the GKN theorem for a J-Hermitian sub-
space was established in [].

Theorem . Let T be a closed J-Hermitian subspace. Assume that d(T) =: d < +∞. Then
a subspace S is a J-SSE of T if and only if T ⊂ S ⊂ T *

J and there exists {(xj, fj)}dj= ⊂ T *
J such

that
(i) (x, f), (x, f), . . . , (xd, fd) are linearly independent (modulo T );
(ii) [(xs, fs) : (xj, fj)] =  for s, j = , , . . . ,d;
(iii) S = {(y, g) ∈ T *

J : [(y, g) : (xj, fj)] = , j = , , . . . ,d}.

http://www.advancesindifferenceequations.com/content/2013/1/3


Sun and Ren Advances in Difference Equations 2013, 2013:3 Page 5 of 26
http://www.advancesindifferenceequations.com/content/2013/1/3

Finally, we present two results for τ or Eq. (.). For briefness, introduce the conventions:
for any given integer k, a + k = –∞ when a = –∞, and b + k = +∞ when b = +∞. Further,
denote

(x, y)(t) = p(t)
[(

�y(t)
)
x(t) – y(t)�x(t)

]
, t ∈ {t}bt=a–.

In the case of a = –∞, if limt→a(x, y)(t) exists and is finite, then denote the limit by
(x, y)(–∞); and in the other case of b = +∞, if limt→b(x, y)(t) exists and is finite, then denote
the limit by (x, y)(∞).
We remark that the notation (x, y)(t) is also used in [] where it is given by (x, y)(t) =

p(t)[(�ȳ(t))x(t) – ȳ(t)�x(t)]. So, the expression of (x, y)(t) in the present paper is different
from that in [].
It can be easily verified that the following result holds.

Lemma . For any x = {x(t)}b+t=a–, y = {y(t)}b+t=a– ⊂C, and for any m,n ∈ I with m ≤ n,

n∑
t=m

[
y(t)τ (x)(t) – τ (y)(t)x(t)

]
= (x, y)(t)|nt=m–.

The following result is a direct consequence of Lemma ..

Lemma . For each λ ∈C, let y and z be any solutions of (.). Then, for any given a– ≤
t ≤ b,

(y, z)(t) = (y, z)(t), t ∈ I.

3 Maximal andminimal subspaces
In this section, we introduce the corresponding maximal, pre-minimal, and minimal sub-
spaces to τ in the whole interval and the left-hand and right-hand half-intervals and study
their properties.
First, introduce the following space:

lw(I) :=

{
x =

{
x(t)

}b+
t=a– ⊂C :

b∑
t=a

w(t)
∣∣x(t)∣∣ < +∞

}
.

Then lw(I) is a Hilbert space with the inner product

〈x, y〉 :=
b∑
t=a

ȳ(t)w(t)x(t).

Clearly, x = y in lw(I) if and only if x(t) = y(t), t ∈ I , i.e., ‖x – y‖ = , where ‖x‖ = 〈x,x〉/.
The formally adjoint operator of τ is

τ+(x)(t) := –∇(p̄(t)�x(t)
)
+ q̄(t)x(t), t ∈ I.
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Now, introduce the maximal subspace H(τ ) and the pre-minimal subspace H(τ ) in
lw(I)× lw(I) corresponding to τ as follows.

H(τ ) =
{
(x, f ) ∈ lw(I)× lw(I) : τ (x)(t) = w(t)f (t), t ∈ I

}
,

H(τ ) =
{
(x, f ) ∈H(τ ): there exist two integers t̃, t ∈ I with t̃ < t

such that x(t) =  for t ≤ t̃ and t ≥ t
}
.

(.)

The subspace H(τ ) := H̄(τ ) is called the minimal subspace corresponding to τ .
The endpoints a and b may be finite or infinite. In order to characterize the J-SSEs of

H(τ ) in a unified form, we introduce the left and right maximal and minimal subspaces.
Fix any integer a +  < c < b. Denote

I := {t}t=c–t=a , I := {t}bt=c ,

and by 〈·, ·〉, 〈·, ·〉a, 〈·, ·〉b, ‖ · ‖, ‖ · ‖a, and ‖ · ‖b denote the inner products and the norms of
lw(I), lw(I), and lw(I), respectively. For briefness, we still denote the inner products and
norms of their product spaces lw(I) × lw(I), lw(I) × lw(I), and lw(I) × lw(I) by the same
notations as those for lw(I), lw(I), and lw(I), respectively.
LetHa(τ ) andHa,(τ ) be the left maximal and pre-minimal subspaces defined as in (.)

with I replaced by I, respectively, and letHb(τ ) andHb,(τ ) be the rightmaximal and pre-
minimal subspaces defined as in (.) with I replaced by I, respectively. The subspaces
Ha,(τ ) := H̄a,(τ ) and Hb,(τ ) := H̄b,(τ ) are called the left and right minimal subspaces
corresponding to τ , respectively. By Lemma ., one has

H*
(τ ) =H*

(τ ), H*
a,(τ ) =H*

a,(τ ), H*
b,(τ ) =H*

b,(τ ). (.)

In the rest of the present paper, let J be the complex conjugate x �→ x̄, i.e., Jx = x̄. Then J is
a conjugation operator on lw(I) (or lw(I) or lw(I)). By Lemma . and (.), one has that

(
H(τ )

)*
J =
(
H(τ )

)*
J ,

(
Ha,(τ )

)*
J =
(
Ha,(τ )

)*
J ,(

Hb,(τ )
)*
J =
(
Hb,(τ )

)*
J .

(.)

The rest of this section is divided into three parts.

3.1 Properties of minimal subspaces and their adjoint and J-adjoint subspaces
In this subsection, we study the properties of minimal subspaces H(τ ), Ha,(τ ), Hb,(τ )
and their adjoint and J-adjoint subspaces.
First, we have the following result.

Lemma. (see [, Lemma.]) For each a+≤ t ≤ b– (or a+ ≤ t ≤ c– or c+ ≤
t ≤ b–) and for each ξ ∈C, there exists x ∈ D(H(τ )) (or D(Ha,(τ )) or D(Hb,(τ ))) such
that x(t) = ξ and x(t) =  for all t �= t.

http://www.advancesindifferenceequations.com/content/2013/1/3
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Theorem . H(τ+)⊂H*
(τ ), Ha(τ+) ⊂H*

a,(τ ), Hb(τ+)⊂H*
b,(τ ), and

H*
(τ ) =

{
(x, f ) ∈ lw(I)× lw(I) : τ

+(x)(t) = w(t)f (t),a +  ≤ t ≤ b – 
}
,

H*
a,(τ ) =

{
(x, f ) ∈ lw(I)× lw(I) : τ

+(x)(t) = w(t)f (t),a +  ≤ t ≤ c – 
}
,

H*
b,(τ ) =

{
(x, f ) ∈ lw(I)× lw(I) : τ

+(x)(t) = w(t)f (t), c +  ≤ t ≤ b – 
}
.

(.)

Proof SinceHa,(τ ) andHb,(τ ) are two special cases ofH(τ ), we only prove the results
corresponding to H(τ ).
For any given (x, f ) ∈H*

(τ ), we have

〈f , y〉 = 〈x, g〉, ∀(y, g) ∈H(τ ), (.)

which implies that

b∑
t=a

[
ȳ(t)w(t)f (t) – τ+(ȳ)(t)x(t)

]
= . (.)

On the other hand, by using y ∈D(H(τ )), it can be verified that

b∑
t=a

[
ȳ(t)τ+(x)(t) – τ+(ȳ)(t)x(t)

]
= ,

which, together with (.) and y(a) = y(b) =  when a and b are finite, implies that

b–∑
t=a+

ȳ(t)
[
w(t)f (t) – τ+(x)(t)

]
= , ∀y ∈ D

(
H(τ )

)
.

So, by Lemma . we get

τ+(x)(t) = w(t)f (t), a +  ≤ t ≤ b – . (.)

Conversely, suppose that (x, f ) ∈ lw(I)× lw(I) satisfies (.). Then (.) holds for all (y, g) ∈
H(τ ). Consequently, (x, f ) ∈ H*

(τ ). So, the first relation of (.) holds. In addition, the
first relation of (.) directly yields that H(τ+)⊂H*

(τ ). This completes the proof. �

Theorem . The subspaces H(τ ), Ha,(τ ), and Hb,(τ ) are J-Hermitian subspaces
in lw(I) × lw(I), lw(I) × lw(I), and lw(I) × lw(I), respectively. Further, H(τ ) ⊂ (H(τ ))*J ,
Ha(τ ) ⊂ (Ha,(τ ))*J , and Hb(τ ) ⊂ (Hb,(τ ))*J , and(

H(τ )
)*
J =
{
(x, f ) ∈ lw(I)× lw(I) : τ (x)(t) = w(t)f (t),a +  ≤ t ≤ b – 

}
,(

Ha,(τ )
)*
J =
{
(x, f ) ∈ lw(I)× lw(I) : τ (x)(t) = w(t)f (t),a +  ≤ t ≤ c – 

}
,(

Hb,(τ )
)*
J =
{
(x, f ) ∈ lw(I)× lw(I) : τ (x)(t) = w(t)f (t), c +  ≤ t ≤ b – 

}
.

(.)

Proof It can be easily verified thatH(τ ),Ha,(τ ), andHb,(τ ) are J-Hermitian subspaces
in the corresponding Hilbert spaces by (ii) of Remark . and Lemma .. Further, (.)
can be concluded from Theorem . and Lemma .. This completes the proof. �

http://www.advancesindifferenceequations.com/content/2013/1/3
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Using Theorem . and with a similar argument to [, Corollary .], we can get the
following results.

Corollary . H(τ ) = (H(τ ))*J = (H(τ ))*J , Ha(τ ) = (Ha,(τ ))*J = (Ha,(τ ))*J , and Hb(τ ) =
(Hb,(τ ))*J = (Hb,(τ ))*J in the sense of the norms ‖ · ‖, ‖ · ‖a, and ‖ · ‖b, respectively. Con-
sequently, H(τ ), Ha(τ ), and Hb(τ ) are closed subspaces in lw(I)× lw(I), lw(I)× lw(I), and
lw(I)× lw(I), respectively.

Remark . H(τ ) = (H(τ ))*J = (H(τ ))*J follows from (.) and the first relation of (.) in
the special case that a = –∞ and b = +∞.

Now, we introduce the boundary forms on lw(I)× lw(I), lw(I)× lw(I), and lw(I)× lw(I)
as follows.

[:] : lw(I)× lw(I)× lw(I)× lw(I) →C,
(
(x, f ), (y, g)

) �→ 〈f , Jy〉 – 〈x, Jg〉;
[:]a : lw(I)× lw(I)× lw(I)× lw(I) →C,

(
(x, f ), (y, g)

) �→ 〈f , Jy〉a – 〈x, Jg〉a;
[:]b : lw(I)× lw(I)× lw(I)× lw((I) →C,

(
(x, f ), (y, g)

) �→ 〈f , Jy〉b – 〈x, Jg〉b.

It can be easily shown that (.) holds for [:], [:]a, and [:]b, respectively.
Note that H(τ ), Ha,(τ ), and Hb,(τ ) are closed. Then, by Lemma . and (.), H(τ ),

Ha,(τ ), and Hb,(τ ) can be expressed in terms of the boundary forms as follows.

H(τ ) =
{
(x, f ) ∈ (H(τ )

)*
J :
[
(x, f ) :

(
H(τ )

)*
J

]
= 
}
,

Ha,(τ ) =
{
(x, f ) ∈ (Ha,(τ )

)*
J :
[
(x, f ) :

(
Ha,(τ )

)*
J

]
a = 

}
,

Hb,(τ ) =
{
(x, f ) ∈ (Hb,(τ )

)*
J :
[
(x, f ) :

(
Hb,(τ )

)*
J

]
b = 

}
.

(.)

Theorem . The subspaces H(τ ),Ha,(τ ), and Hb,(τ ) are closed J-Hermitian operators
in lw(I), lw(I), and lw(I), respectively.

Proof We only prove the result forH(τ ) sinceHa,(τ ) andHb,(τ ) can be regarded as two
special cases of H(τ ).
Since H(τ ) is a J-Hermitian subspace by Theorem . and H(τ ) = H̄(τ ), one has

that H(τ ) is a closed J-Hermitian subspace. So, it suffices to show that (H(τ ))() = {}.
Suppose that (, f ) ∈ H(τ ). Then, for all (y, g) ∈ H(τ ) ⊂ (H(τ ))*J , [(, f ) : (y, g)] = 〈f , Jy〉 =
, that is,

b∑
t=a

y(t)w(t)f (t) = . (.)

In order to show f = , the discussion is divided into three cases.
Case . The endpoints a and b are finite. For all (x, f ) ∈ (H(τ ))*J with x(t) =  for all

t ∈ I , we get by Theorem . and (.) that

y(a)w(a)f (a) + y(b)w(b)f (b) = , ∀(y, g) ∈H(τ ). (.)

http://www.advancesindifferenceequations.com/content/2013/1/3
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It can be easily shown that there exists (y, g) ∈ H(τ ) such that y(a) = f (a) and y(t) =  for
all t �= a. Inserting it into (.) yields f (a) = . Similarly, f (b) = . Hence, f = .
Case . One of a and b is finite.With a similar argument to that for Case , one can show

f (a) = . Hence, f = .
Case . a = –∞ and b = +∞. By Remark ., H(τ ) = (H(τ ))*J . So, by the first relation of

(.), x(t) =  for t ∈ I implies that f (t) =  for t ∈ I . This completes the proof. �

Lemma . For every (x, f ) ∈H(τ ), x(a) =  in the case that a is finite and x(b) =  in the
case that b is finite.

Proof Fix any (x, f ) ∈H(τ ). Then we have

 =
[
(x, f ) : (y, g)

]
=

b∑
t=a

y(t)w(t)f (t) –
b∑
t=a

g(t)w(t)x(t), ∀(y, g) ∈H(τ ). (.)

If a is finite, then there exists (y, g) ∈ H(τ ) such that y(a – ) �=  and y(t) =  for all
t ∈ I . Inserting (y, g) into (.), we have that p(a – )y(a – )x(a) = . So, x(a) = . One
can get that x(b) =  when b is finite similarly. This completes the proof. �

Theorem . The subspace H(τ ) is a densely defined J-Hermitian operator in lw(I) in the
case that a = –∞ and b = +∞ and a non-densely defined J-Hermitian operator in lw(I) in
the case that at least one of a and b is finite. Consequently, Ha,(τ ) and Hb,(τ ) are non-
densely defined J-Hermitian operators in lw(I) and lw(I), respectively.

Proof By Theorem ., Lemma ., and a similar method to [, Theorem .], this theo-
rem can be proved. �

3.2 Characterizations of the three subspaceŝH0(τ ),̂Ha,0(τ ), and̂Hb,0(τ )
In this section, we introduce three subspaces Ĥ(τ ), Ĥa,(τ ), and Ĥb,(τ ), and discuss their
characterizations, which will play an important role in the study of J-SSEs of H(τ ).
First, define Ĥ(τ ), Ĥa,(τ ), and Ĥb,(τ ) in lw(I)× lw(I), lw(I)× lw(I), and lw(I)× lw(I)

as follows:

Ĥ(τ ) :=
{
(x, f ) ∈H(τ ) :

[
(x, f ) :H(τ )

]
= 
}
,

Ĥa,(τ ) :=
{
(x, f ) ∈Ha(τ ) :

[
(x, f ) :Ha(τ )

]
a = 

}
,

Ĥb,(τ ) :=
{
(x, f ) ∈Hb(τ ) :

[
(x, f ) :Hb(τ )

]
b = 

}
.

Since [:], [:]a, and [:]b are defined in terms of the norms ‖ · ‖, ‖ · ‖a, and ‖ · ‖b, respectively,
by Corollary . we get that Ĥ(τ ) = H(τ ), Ĥa,(τ ) = Ha,(τ ), and Ĥb,(τ ) = Hb,(τ ) in the
sense of the norms ‖ · ‖, ‖ · ‖a, and ‖ · ‖b, respectively. So, Ĥ(τ ), Ĥa,(τ ), and Ĥb,(τ ) are
closed J-Hermitian operators in the corresponding spaces by Theorem ..
In [], the patching lemma [, Lemma .] was used in the study of the self-adjoint

subspace extensions for (.) with real coefficients. It also holds for (.) with complex
coefficients here.

http://www.advancesindifferenceequations.com/content/2013/1/3
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Lemma . [, Lemma .] For any given αj,βj ∈C, j = , , and any given a,b ∈ I with
b ≥ a + , there exists f = {f (t)}bt=a ⊂C such that the boundary value problem

τ (x)(t) = w(t)f (t), a ≤ t ≤ b,

x(a – ) = α, x(a) = α, x(b) = β, x(b + ) = β

has a solution x = {x(t)}b+t=a–. Further, for any given (x, f), (x, f) ∈ H(τ ), there exists
(y, g) ∈ H(τ ) such that

y(t) =

{
x(t), a –  ≤ t ≤ a,
x(t), b ≤ t ≤ b + ,

g(t) =

{
f(t), a≤ t ≤ a – ,
f(t), b +  ≤ t ≤ b.

Remark . (see [, Remark .]) Any two elements of Ha(τ ) (or Hb(τ )) can be patched
together by some element of Ha(τ ) (or Hb(τ )) in a similar way as in Lemma .. Further,
any element of Ha(τ ) and any element of Hb(τ ) can be patched together by some element
of H(τ ) in a similar way as in Lemma ..

The following result can be easily verified by Lemma ., Theorem ., and (.).

Lemma . For all x, y ∈ D((H(τ ))*J ) or D((Ha,(τ ))*J ), limt→a–(x, y)(t) exists and is finite
in the case of a = –∞, and for all x, y ∈ D((H(τ ))*J ) or D((Hb,(τ ))*J ), limt→b(x, y)(t) exists
and is finite in the case of b = +∞.Moreover,

[
(x, f ) : (y, g)

]
= (x, y)(b) – (x, y)(a – ), ∀(x, f ), (y, g) ∈H(τ ),[

(x, f ) : (y, g)
]
a = (x, y)(c – ) – (x, y)(a – ), ∀(x, f ), (y, g) ∈Ha(τ ),[

(x, f ) : (y, g)
]
b = (x, y)(b) – (x, y)(c – ), ∀(x, f ), (y, g) ∈Hb(τ ).

Using Lemma . and with a similar argument to [, Theorem .], we have the other
characterizations of three subspaces Ĥ(τ ), Ĥa,(τ ), and Ĥb,(τ ).

Theorem .

Ĥ(τ ) =
{
(x, f ) ∈H(τ ) : (x, y)(a – ) = (x, y)(b) = ,∀y ∈D

(
H(τ )

)}
.

Ĥa,(τ ) =
{
(x, f ) ∈Ha(τ ) : x(c – ) = x(c) = 

and (x, y)(a – ) = ,∀y ∈D
(
Ha(τ )

)}
.

Ĥb,(τ ) =
{
(x, f ) ∈Hb(τ ) : x(c – ) = x(c) = 

and (x, y)(b) = ,∀y ∈D
(
Hb(τ )

)}
.

3.3 Characterizations of the left and right maximal subspaces
In this section, we characterize Ha(τ ) and Hb(τ ).
First, let d, da, and db be the defect indices of H(τ ), Ha,(τ ), and Hb,(τ ), respectively.

Then we have

http://www.advancesindifferenceequations.com/content/2013/1/3


Sun and Ren Advances in Difference Equations 2013, 2013:3 Page 11 of 26
http://www.advancesindifferenceequations.com/content/2013/1/3

Lemma . d = 
 dimD, db = 

 dimDb, and da = 
 dimDa, where

D :=
{
(y, g) ∈ H(τ ) : τ+

(

w

τ (y)
)
(t) = –w(t)y(t),∀a +  ≤ t ≤ b – 

}
,

Db :=
{
(y, g) ∈Hb(τ ) : τ+

(

w

τ (y)
)
(t) = –w(t)y(t),∀c +  ≤ t ≤ b – 

}
,

Da :=
{
(y, g) ∈Ha(τ ) : τ+

(

w

τ (y)
)
(t) = –w(t)y(t),∀a +  ≤ t ≤ c – 

}
.

Proof Since the proofs are similar, we only prove d = 
 dimD.

First, it can be verified that

dim
(
H(τ )

)*
J/H(τ ) = dimH(τ )/Ĥ(τ ). (.)

Next, we prove that

H(τ ) = Ĥ(τ )⊕D (orthogonal sum). (.)

Let (y, g) ∈H(τ )� Ĥ(τ ), where � denotes the orthogonal complement of Ĥ(τ ) in H(τ ).
Then

 =
〈
(y, g), (x, f )

〉
= 〈y,x〉 + 〈g, f 〉, ∀(x, f ) ∈ Ĥ(τ ), (.)

which yields that (g, –y) ∈ Ĥ*
(τ ). It can be easily verified that Ĥ*

(τ ) =H*
(τ ). So, (g, –y) ∈

H*
(τ ), and by Theorem ., one has that

τ+(g)(t) = –w(t)y(t), ∀a +  ≤ t ≤ b – . (.)

Since (y, g) ∈H(τ ) and w �= , we get g = 
wτ (y) on I . Inserting it into (.), we have

τ+
(

w

τ (y)
)
(t) = –w(t)y(t), ∀a +  ≤ t ≤ b – . (.)

So, (y, g) ∈ D. Conversely, suppose that (y, g) ∈ D. Then (y, g) ∈ H(τ ) and (.) holds,
and then (.) holds. Then (g, –y) ∈H*

(τ ) and hence (g, –y) ∈ Ĥ*
(τ ). So, (.) holds and

hence (y, g) ∈ H(τ ) � Ĥ(τ ). So, (.) holds, which together with (.) implies that d =

 dimD. This completes the proof. �

Lemma . db =  or  and da =  or .

Proof By Lemma ., dimDb is equal to the number of linearly independent solutions of

τ+
(

w

τ (y)
)
(t) = –w(t)y(t), c +  ≤ t ≤ b – , (.)

for which both y and 
wτy are in lw(I). Then db = 

 dimDb ≤  since (.) has at most
four linearly independent solutions. In addition, there exists (zj,hj) ∈ Hb(τ ), j = , , such

http://www.advancesindifferenceequations.com/content/2013/1/3
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that

z(c – ) = , z(c) = , z(t) = , ∀c +  ≤ t ≤ b + ,

z(c – ) = , z(c) = , z(t) = , ∀c +  ≤ t ≤ b + .
(.)

Note that (z,h) and (z,h) are linearly independent (modulo Ĥb,(τ )) and

db =


dimHb(τ )/Ĥb,(τ ).

Then db ≥  and hence  ≤ db ≤ . Then db =  or  since db is an integer.
The assertion da =  or  can be proved similarly. This completes the proof. �

Lemma .
() If all the solutions of (.) restricted on I are in lw(I) for some λ ∈ C, then the same

is true for all λ ∈C.
() If all the solutions of the equation

τ+
(

w

τ (y)
)
(t) = λw(t)y(t), c +  ≤ t < b – , (.)

are in lw(I) for some λ ∈C, then the same is true for all λ ∈C.

Proof The first result is [, Lemma .]. Now, we prove the assertion (). Clearly, this
result holds if b is finite. So, we prove the case where b = +∞. By setting

x(t) = y(t), x(t) = –


w(t)
τ (y)(t),

x(t) = –p̄(t)�
(


w(t)

τ (y)(t)
)
, x(t) = p(t)�y(t),

(.)

Eq. (.) can be rewritten as the following discrete Hamiltonian system:

J̃�Y (t) =
(
P(t) – λW (t)

)
R(Y )(t), c ≤ t <∞, (.)

where

Y (t) =

⎛⎜⎜⎜⎝
x(t)
x(t)
x(t)
x(t)

⎞⎟⎟⎟⎠ , R(Y )(t) =

⎛⎜⎜⎜⎝
x(t + )
x(t + )
x(t)
x(t)

⎞⎟⎟⎟⎠ , P(t) =

(
–C(t) 
 B(t)

)
,

C(t) =

(
 q̄(t + )

q(t + ) w(t + )

)
, B(t) =

(
 /p(t)

/p̄(t) 

)
, J̃ =

(
 –I×

I× 

)
,

I× is the × unit matrix, andW (t) = diag(w(t+), , , ). It is evident that the assump-
tions (A) and (A) of [, Section ] hold for (.). Let

lW :=

{
Y =

{
Y (t)

}∞
t=c

⊂C :
∞∑
t=c

R(Y )*(t)W (t)R(Y )(t) < +∞
}

http://www.advancesindifferenceequations.com/content/2013/1/3
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with the inner product 〈Y ,Z〉W =
∑∞

t=c R(Z)
*(t)W (t)R(Y )(t), where Y *(t) denotes the

complex conjugate transpose of Y (t). We have from [, Theorem .] that if there ex-
ists λ ∈C such that all the solutions of (.) are in lW , then the same is true for all λ ∈C.
Hence, the assertion () of this lemma follows. This completes the proof. �

Theorem . Let (zj,hj) ∈ Hb(τ ) (j = , ) be defined by (.). Then the following results
hold:
() In the case of db = , for any given (x, f ) ∈Hb(τ ), there exist uniquely (y, f) ∈ Ĥb,(τ )

and c, c ∈C such that

x(t) = y(t) + cz(t) + cz(t), c –  ≤ t ≤ b + . (.)

() In the case of db = , let φ and φ be two linearly independent solutions of (.)
restricted on I. Then φ and φ are in lw(I), and for any given (x, f ) ∈Hb(τ ), there
exist uniquely (y, f) ∈ Ĥb,(τ ) and cj,dj ∈C (j = , ) such that

x(t) = y(t) + cz(t) + cz(t) + dφ(t) + dφ(t), c –  ≤ t ≤ b + . (.)

Proof Since dimHb(τ )/Ĥb,(τ ) =  in the case of db = , one has that (z,h) and (z,h)
defined by (.) form a basis of Hb(τ )/Ĥb,(τ ). So, the first result holds.
In the case of db = , one has that dimHb(τ )/Ĥb,(τ ) = . By Lemmas . and ., all

the solutions of (.) with λ =  are in lw(I) and hence all the solutions of τ (y)(t) = 
restricted on I are in lw(I). So, all the solutions of (.) restricted on I are in lw(I) by
Lemma .. Let φ and φ be two linearly independent solutions of (.). Then (φ,λφ),
(φ,λφ) ∈Hb(τ ). Set

	 :=
(
(φj,φk)(c – )

)
×. (.)

Then it can be concluded that rank	 = . On the other hand, (z,h), (z,h), (φ,λφ), and
(φ,λφ) are linearly independent (modulo Ĥb,(τ )). In fact, if

( ∑
j=

cjzj +
∑
j=

cj+φj,
∑
j=

cjhj + λ

∑
j=

cj+φj

)
∈ Ĥb,(τ ),

then by Theorem . and φ,φ ∈ D(Hb(τ )),⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
j= cjzj(c – ) +

∑
j= cj+φj(c – ) = ,∑

j= cjzj(c) +
∑

j= cj+φj(c) = ,
c(φ,φ)(b) + c(φ,φ)(b) = ,
c(φ,φ)(b) + c(φ,φ)(b) = .

This, together with Lemma . and rank	 = , implies that cj =  (≤ j ≤ ). Then (z,h),
(z,h), (φ,λφ), and (φ,λφ) form a basis of Hb(τ )/Ĥb,(τ ). So, (.) holds. This com-
pletes the proof. �

Using a similar argument to Theorem ., we can get the following result.

http://www.advancesindifferenceequations.com/content/2013/1/3
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Theorem . Let (z̃j, h̃j) ∈Ha(τ ) (j = , ) be defined by

z̃(c – ) = , z̃(c) = , z̃(t) = , ∀a –  ≤ t ≤ c – ,

z̃(c – ) = , z̃(c) = , z̃(t) = , ∀a –  ≤ t ≤ c – .
(.)

Then the following results hold:
() In the case of da = , for any given (x, f ) ∈Ha(τ ), there exist uniquely (ỹ, f̃) ∈ Ĥa,(τ )

and c̃, c̃ ∈C such that

x(t) = ỹ(t) + c̃z̃(t) + c̃z̃(t), a –  ≤ t ≤ c. (.)

() In the case of da = , let φ̃ and φ̃ be two linearly independent solutions of equation
(.) restricted on I. Then φ̃ and φ̃ are in lw(I), and for any given (x, f ) ∈ Ha(τ ),
there exist uniquely (ỹ, f̃) ∈ Ĥa,(τ ) and c̃j, d̃j ∈C (j = , ) such that

x(t) = ỹ(t) + c̃z̃(t) + c̃z̃(t) + d̃φ̃(t) + d̃φ̃(t), a –  ≤ t ≤ c. (.)

4 Defect indices of H0(τ )
The following is the main result of this section.

Theorem . Let d, da, and db be the defect indices of H(τ ), Ha,(τ ), and Hb,(τ ), respec-
tively. Then d = da + db – .

It is evident that Theorem . holds in the case that at least one of a and b is finite. So, it
is only needed to consider the case that a = –∞ and b = +∞. Before proving Theorem .,
we prove three lemmas in this case.

Lemma . d = 
 dim D̃, db = 

 dim D̃b, and da = 
 dim D̃a, where

D̃ :=
{
(y, g) ∈ (H(τ )

)*
J : (g, –y) ∈H*

(τ )
}
,

D̃b :=
{
(y, g) ∈ (Hb,(τ )

)*
J : (g, –y) ∈H*

b,(τ )
}
,

D̃a :=
{
(y, g) ∈ (Ha,(τ )

)*
J : (g, –y) ∈H*

a,(τ )
}
.

Proof It can be easily verified that (H(τ ))*J =H(τ )⊕ D̃. This gives that d = 
 dim D̃. The

other two relations are proved similarly. This completes the proof. �

For any given (x, f ) ∈ lw(I)× lw(I), denote

x– :=
{
x(t)

}c
t=–∞, x+ :=

{
x(t)

}∞
t=c–

, f – :=
{
f (t)
}c
t=–∞, f + :=

{
f (t)
}∞
t=c–

.

Then we have the following result.

Lemma . Let H̃(τ ) be the restriction of Ĥ(τ ) defined by

H̃(τ ) =
{
(x, f ) ∈ Ĥ(τ ) : x(c – ) = x(c) = 

}
.

http://www.advancesindifferenceequations.com/content/2013/1/3
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Then

(
H̃(τ )

)*
J =
{
(y, g) ∈ lw(I)× lw(I) :

(
y–, g–

) ∈ (Ha,(τ )
)*
J and(

y+, g+
) ∈ (Hb,(τ )

)*
J

}
. (.)

Proof It can be easily verified by Theorem . that

Ĥa,(τ ) =
{(
x–, f –

)
: (x, f ) ∈ H̃(τ ) with x+(t) ≡ 

}
,

Ĥb,(τ ) =
{(
x+, f +

)
: (x, f ) ∈ H̃(τ ) with x–(t) ≡ 

}
.

(.)

Then it can be verified that

H̃*
(τ ) =

{
(y, g) ∈ lw(I)× lw(I) :

(
y–, g–

) ∈H*
a,(τ ) and(

y+, g+
) ∈H*

b,(τ )
}
.

(.)

Relation (.) follows from (.) and Lemma .. This completes the proof. �

Lemma . Let d̃ be the defect index of H̃(τ ). Then d̃ = da + db.

Proof It can be easily verified that H̃(τ ) is a closed J-Hermitian operator in lw(I) by the
fact that Ĥ(τ ) is a closed J-Hermitian operator in lw(I). Set

Da,b =
{
(y, g) ∈ lw(I)× lw(I) :

(
y–, g–

) ∈ D̃a and
(
y+, g+

) ∈ D̃b
}
,

in which D̃a and D̃b are given in Lemma .. Now, we prove that Da,b = (H̃(τ ))*J � H̃(τ ).
Let (y, g) ∈ (H̃(τ ))*J � H̃(τ ). Then, for all (x, f ) ∈ H̃(τ ), (.) holds, which together with
(.) implies that

(
g–,–y–

) ∈ Ĥ*
a,(τ ),

(
g+, –y+

) ∈ Ĥ*
b,(τ ).

Since H*
a,(τ ) = Ĥ*

a,(τ ) and H*
b,(τ ) = Ĥ*

b,(τ ), one has (y, g) ∈ Da,b. Conversely, sup-
pose that (y, g) ∈ Da,b. It can be verified that (y, g) ∈ (H̃(τ ))*J � H̃(τ ) by (.). Hence,
Da,b = (H̃(τ ))*J � H̃(τ ). Therefore, d̃ = 

 dimDa,b. It can be easily verified that dimDa,b =
dimDa + dimDb. So, d̃ = da + db by Lemma .. This completes the proof. �

Proof of Theorem . Set

H̃(τ ) =
{
(x, f ) ∈H(τ ) : x(c – ) = x(c) = 

}
.

There exist (y, g), (y, g) ∈H(τ ) such that

y(c – ) = , y(t) = , ∀t �= c – ,

y(c) = , y(t) = , ∀t �= c.

http://www.advancesindifferenceequations.com/content/2013/1/3
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Then (yj, gj) ∈ Ĥ(τ ) by Theorem ., (yj, gj) /∈ H̃(τ ), and (yj, gj) /∈ H̃(τ ), j = , . We claim
that

Ĥ(τ ) = H̃(τ ) +̇ span
{
(y, g), (y, g)

}
, (.)

H(τ ) = H̃(τ ) +̇ span
{
(y, g), (y, g)

}
. (.)

In fact, for each given (x, f ) ∈ Ĥ(τ ), the algebraic system

cy(c – ) + cy(c – ) = x(c – ),

cy(c) + cy(c) = x(c)

has a unique solution (c̃, c̃)T . Let x̃ = x – (c̃y + c̃y) and f̃ = f – (c̃g + c̃g). Then
(x̃, f̃ ) ∈ H̃(τ ). So, every (x, f ) ∈ Ĥ(τ ) can be uniquely expressed as a linear combination
of some element of H̃(τ ), (y, g), and (y, g). Therefore, (.) holds. Similarly, (.) can
be proved.
Furthermore, there exists (xj, fj) ∈ (H̃(τ ))*J such that

xj(t) =

{
, t = c – ,
, t �= c – ,

j = , , xk(t) =

{
, t = c,
, t �= c,

k = ,,

f(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
– p(c–)

w(c–)
, t = c – ,

r(c–)
w(c–)

, t = c – ,

– p(c–)
w(c)

, t = c,
, t �= c – , c – , c,

f(t) =

⎧⎪⎪⎨⎪⎪⎩
– p(c–)

w(c–)
, t = c – ,

r(c–)
w(c–)

, t = c – ,
, t �= c – , c – ,

f(t) =

{
– p(c)

w(c+)
, t = c + ,

, t �= c + ,
f(t) =

⎧⎪⎪⎨⎪⎪⎩
– p(c–)

w(c–)
, t = c – ,

– p(c)
w(c+)

, t = c + ,
, t �= c – , c + ,

where r(t) := p(t) + p(t – ) + q(t). Suppose that there exists cj ∈C such that
∑

j= cj(xj, fj) ∈
H̃(τ ). Then we get from w(t) �=  for t ∈ I that

∑
j=

cjxj(c – ) =
∑
j=

cjxj(c) = , (.)

which implies that
∑

j= cjxj(t) = , a –  ≤ t ≤ b + . Therefore,

∑
j=

cjfj(c – ) =
∑
j=

cjfj(c) = . (.)

It can be obtained from (.) and (.) that cj = . So, (x, f), . . . , (x, f) are linearly inde-
pendent (modulo H̃(τ )). Further, we claim that

(
H̃(τ )

)*
J = H̃(τ ) +̇U , (.)

http://www.advancesindifferenceequations.com/content/2013/1/3
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where U = span{(x, f), (x, f), (x, f), (x, f)}. In fact, it is evident that H̃(τ ) +̇ U ⊂
(H̃(τ ))*J . Now, we show (H̃(τ ))*J ⊂ H̃(τ ) +̇ U . For each given (x, f ) ∈ (H̃(τ ))*J , the alge-
braic system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
j= cjxj(c – ) = x(c – ),∑
j= cjxj(c) = x(c),

τ (
∑

j= cjxj)(c – ) –w(c – )
∑

j= cjfj(c – ) = τ (x)(c – ) –w(c – )f (c – ),
τ (
∑

j= cjxj)(c) –w(c)
∑

j= cjfj(c) = τ (x)(c) –w(c)f (c)

has a unique solution (c̃, c̃, c̃, c̃)T . Let x̃ = x–
∑

j= c̃jxj and f̃ = f –
∑

j= c̃jfj. Then (x̃, f̃ ) ∈
H̃(τ ). So, every (x, f ) ∈ (H̃(τ ))*J can be uniquely expressed as a linear combination of some
element of H̃(τ ), (x, f), . . . , (x, f). Therefore, (H̃(τ ))*J ⊂ H̃(τ ) +̇U and hence (.) holds.
Since (y, g) and (y, g) are linearly independent (modulo H̃(τ )), it follows from (.)

that dimH(τ )/H̃(τ ) = . Further, from (.),

dim
(
H̃(τ )

)*
J/H̃(τ ) = .

Then H̃(τ ) ⊂H(τ ) ⊂ (H̃(τ ))*J implies

dim
(
H̃(τ )

)*
J/H(τ ) = . (.)

Since

H̃(τ )⊂ Ĥ(τ )⊂H(τ ) ⊂ (H̃(τ )
)*
J ,

we get from (.), (.), and (.) that

d̃ =


dim

(
H̃(τ )

)*
J/H̃(τ )

=


{
dim

(
H̃(τ )

)*
J/H(τ ) + dimH(τ )/Ĥ(τ ) + dim Ĥ(τ )/H̃(τ )

}
=  + d,

which together with Lemma . implies that d = da + db – . So, Theorem . holds. This
completes the proof. �

5 J-self-adjoint subspace extensions of H0(τ )
By [, Theorem .], H(τ ) must have J-SSEs since it is J-Hermitian. In this section, we
give a complete characterization of all the J-SSEs ofH(τ ) in terms of boundary conditions.
This section consists of two subsections.

5.1 The general case
The discussion is divided into three cases: d = , d = , and d = , which are equivalent to
da = db = , da = , db =  or da = , db = , and da = db = , respectively, by Theorem ..
The following result can be directly derived from Theorem . and Theorem ..

Theorem . In the case of d = , i.e., da = db = , H(τ ) is a J-self-adjoint operator.
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Theorem . In the case of d =  with da =  and db = , let φ and φ be any two linearly
independent solutions of (.). Then H is a J-SSE of H(τ ) (i.e., H(τ )) if and only if there
exists a matrix M ∈C× such that M �=  and

H =

{
(x, f ) ∈H(τ ) :M

(
(x,φ)(a – )
(x,φ)(a – )

)
= 

}
. (.)

Proof Note that φ–
 ,φ–

 ∈ lw(I) by Theorem . and b = +∞ in this case.
First, consider the sufficiency. Suppose that M = (m,m) �= . Let u = mφ +mφ. It

is evident that u– ∈ D(Ha(τ )). Fix any integers a and b with a < a +  < c < b – . By
Remark ., there exists β = (y, g) ∈H(τ ) such that

y(t) =

{
u(t), a –  ≤ t ≤ a,
, t ≥ b.

We claim that β /∈H(τ ). Suppose on the contrary that β ∈H(τ ). Then β ∈ Ĥ(τ ). Again
by Remark ., there exists (yj, gj) ∈H(τ ), j = , , such that

yj(t) =

{
φj(t), a –  ≤ t ≤ a,
, t ≥ b.

So, we get from Lemma . and β ∈ Ĥ(τ ) that

 =
([

β : (y, g)
]
,
[
β : (y, g)

])
= –M

(
(φj,φk)(a – )

)
×, (.)

which implies thatM =  since rank ((φj,φk)(a– ))× =  from Lemma . and the proof
of Theorem .. This contradictsM �= . Hence, β /∈H(τ ). Note that [β : β] =  and d = .
Then, by Theorem . and Corollary ., the set

H =
{
F ∈H(τ ) : [F : β] = 

}
(.)

is a J-SSE of H(τ ). On the other hand, for any F = (x, f ) ∈H(τ ), by Lemma . one has

[
(x, f ) : β

]
= –(x, y)(a – ) = –M

(
(x,φ)(a – )
(x,φ)(a – )

)
,

which implies that H =H. The sufficiency is shown.
Next, consider the necessity. Suppose that H is a J-SSE of H(τ ). By Theorem .,

Corollary ., and d = , there exists some element β = (y, g) ∈ H(τ ) such that β /∈ H(τ ),
[β : β] = , and (.) holds. By () in Theorem . and () in Theorem ., there exist
uniquely yb, ∈D(Ĥb,(τ )) and uniquely ya, ∈ D(Ĥa,(τ )) such that

y(t) = yb,(t) + cz(t) + cz(t), c –  ≤ t ≤ +∞,

y(t) = ya,(t) +
∑
j=

c̃jz̃j(t) +
∑
j=

d̃jφj(t), a –  ≤ t ≤ c,
(.)
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where c̃k , ck , d̃k ∈C and zk , z̃k , k = , , are defined by (.) and (.). If d̃ = d̃ = , then
it can be obtained from (.), (.), (.), Corollary ., Lemma ., and Theorem .
that for all (x, f ) ∈ (H(τ ))*J there exists (x̂, f̂ ) ∈H(τ ) such that

[
(x, f ) : β

]
=
[
(x̂, f̂ ) : β

]
= (x̂, y)(+∞) – (x̂, y)(a – ) = .

So, β ∈H(τ ), which contradicts β /∈ H(τ ). Therefore, |d̃| + |d̃| > . Set

M := (d̃, d̃). (.)

ThenM �= . Furthermore, for any (x, f ) ∈H(τ ), by Lemma . one has

[
(x, f ) : β

]
= (x, y)(+∞) – (x, y)(a – ).

It follows from (.), (.), (.), and Theorem . that

(x, y)(+∞) = , (x, y)(a – ) =M

(
(x,φ)(a – )
(x,φ)(a – )

)
.

So, H determined by (.) can be expressed as (.). The necessity is proved. The entire
proof is complete. �

With a similar argument to Theorem ., one can show the following result.

Theorem . In the case of d =  with da =  and db = , let φ and φ be any two linearly
independent solutions of (.). Then H is a J-SSE of H(τ ) (i.e., H(τ )) if and only if there
exists a matrix N ∈C× such that N �=  and

H =

{
(x, f ) ∈H(τ ) :N

(
(x,φ)(b)
(x,φ)(b)

)
= 

}
.

Theorem . In the case of d = , let φ and φ be any two linearly independent solutions
of (.). Then H is a J-SSE of H(τ ) (i.e., H(τ )) if and only if there exist two matrices
M,N ∈C× such that

rank(M,N) = , M	MT =N	NT , (.)

H =

{
(x, f ) ∈H(τ ) :M

(
(x,φ)(a – )
(x,φ)(a – )

)
–N

(
(x,φ)(b)
(x,φ)(b)

)
= 

}
, (.)

where 	 is defined by (.).

Proof Because d =  is equivalent to da = db = , it follows that φ–
 and φ–

 are in lw(I), and
φ+
 and φ+

 are in lw(I) and hence φ and φ are in lw(I).
Step . Consider the sufficiency. LetM = (mjk), N = (njk), and

ũj =
∑

k=

mjkφk , uj =
∑

k=

njkφk , j = , .
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It is evident that ũj,uj ∈ H(τ ), j = , . Choose any integers a and b with a < a +  < c <
b –  < b. By Lemma . there exists βj = (yj, gj) ∈ H(τ ) (j = , ) such that

yi(t) =

{
ũj(t), a –  ≤ t ≤ a,
uj(t), b ≤ t ≤ b + .

(.)

ByTheorem., rank	 = , and rank(M,N) = , it can be verified that β andβ are linearly
independent (modulo H(τ )). Furthermore, by Lemmas . and ., (.), and (.), we
have

(
[βj : βk]

)
≤j,k≤ =N	NT –M	MT = .

Therefore, by Theorem . and Corollary ., it can be concluded that

H =
{
F ∈H(τ ) : [F : βj] = , j = , 

}
(.)

is a J-SSE of H(τ ). For any F = (x, f ) ∈H(τ ),(
(x, y)(a – )
(x, y)(a – )

)
=M

(
(x,φ)(a – )
(x,φ)(a – )

)
,

(
(x, y)(b)
(x, y)(b)

)
=N

(
(x,φ)(b)
(x,φ)(b)

)
. (.)

Lemma . and (.) yield that H =H. The sufficiency is proved.
Step . Consider the necessity. Suppose that H is a J-SSE of H(τ ). By Theorem . and

Corollary ., there exist two linearly independent (modulo H(τ )) elements β and β in
H(τ ) such that [βj : βk] = , j,k = , , and (.) holds. Note that βj = (yj, gj) ∈ H(τ ) and
hence (yj–, g–j ) ∈ Ha(τ ) and (yj+, g+j ) ∈Hb(τ ). By Theorems . and ., there exist uniquely
ỹj ∈D(Ĥa,(τ )), yj ∈ D(Ĥb,(τ )), c̃jk , ñjk , cjk ,njk ∈C (j = , ) such that

yj(t) = ỹj(t) +
∑

k=

c̃jk z̃k(t) +
∑

k=

ñjkφk(t), a –  ≤ t ≤ c,

yj(t) = yj(t) +
∑

k=

cjkzk(t) +
∑

k=

njkφk(t), c –  ≤ t ≤ b + ,

(.)

where z̃k and zk are defined by (.) and (.). Set

M = (ñjk), N = (njk). (.)

We will show that rank(M,N) = . Otherwise, rank(M,N) < . Then there exist c, c ∈C
with |c| + |c| >  such that (c, c)(M,N) = , i.e.,

(c, c)M = (c, c)N = . (.)

Set β = (y′, g ′) = cβ + cβ. Then β ∈H(τ ) and from (.) and Theorem .,

((
y′,φ

)
(a – ),

(
y′,φ

)
(a – )

)
= (c, c)M

(
(φj,φk)(a – )

)
× = ,((

y′,φ
)
(b),

(
y′,φ

)
(b)
)
= (c, c)N

(
(φj,φk)(b)

)
× = .

(.)
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By Theorems . and ., for y ∈ D(H(τ )), y+ can be uniquely expressed as (.) and
y– can be uniquely expressed as (.). So, it follows from (.) and Theorem .
that (y′, y)(a – ) = (y′, y)(b) =  for all y ∈ D(H(τ )). This, together with Corollary .
and Lemma ., implies that [β : (H(τ ))*J ] = [β : H(τ )] = . Hence, β ∈ H(τ ). Conse-
quently, β and β are linearly dependent (modulo H(τ )). This is a contradiction. So,
rank(M,N) = . Further, from [βj : βk] =  and Lemmas . and ., (.), and Theo-
rem ., we get that

 =
(
[βj : βk]

)
≤j,k≤ =N	NT –M	MT .

So,M and N satisfy the second relation of (.).
Finally, for any (x, f ) ∈H(τ ), it follows from (.) and Theorem . that (.) holds with

M and N defined by (.). So, by Lemma .,H determined by (.) can be expressed as
(.). The necessity is proved. The entire proof is complete. �

5.2 The special cases
In this subsection, we characterize the J-SSEs of H(τ ) in the special cases that one of the
two endpoints a and b is finite and that both a and b are finite.
First, consider the case that a is finite and b = +∞. By Lemma ., da =  in this case.

Let φ and φ be two linearly independent solutions of (.) satisfying

φ(a – ) = , p(a – )�φ(a – ) = –,

φ(a – ) = , p(a – )�φ(a – ) = .
(.)

Then ((φj,φk)(a – ))× = –Ĵ and hence by Lemma ., 	 = –Ĵ , where 	 is defined by
(.) and Ĵ =

(  –
 

)
. It can be obtained from (.) that(

(x,φ)(a – )
(x,φ)(a – )

)
= –

(
x(a – )

p(a – )�x(a – )

)
. (.)

Then the following result can be directly derived from Theorem ..

Theorem . In the case that a is finite, b = +∞, and d = , H is a J-SSE of H(τ ) (i.e.,
H(τ )) if and only if there exists a matrix M = (m,m) ∈C× with M �=  such that

H =
{
(x, f ) ∈ H(τ ) :mx(a – ) +mp(a – )�x(a – ) = 

}
.

Furthermore, the following result is a direct consequence of (.), 	 = –Ĵ , and Theo-
rem ..

Theorem . In the case that a is finite, b = +∞, and d = , let φ and φ be the solutions
of (.) satisfying (.). Then H is a J-SSE of H(τ ) (i.e., H(τ )) if and only if there exist
matrices M,N ∈C× such that

rank(M,N) = , MĴMT =NĴNT ,

H =

{
(x, f ) ∈H(τ ) :M

(
x(a – )

p(a – )�x(a – )

)
+N

(
(x,φ)(+∞)
(x,φ)(+∞)

)
= 

}
.
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Theorem . In the case that a and b are finite, H is a J-SSE of H(τ ) (i.e., H(τ )) if and
only if there exist matrices M,N ∈C× such that

rank(M,N) = , M ĴMT
 =N ĴNT

 , (.)

H =

{
(x, f ) ∈H(τ ) :M

(
x(a – )

p(a – )�x(a – )

)
–N

(
x(b)

p(b)�x(b)

)
= 

}
. (.)

Proof In this case, da = db = . Let φ and φ be the solutions of (.) satisfying (.).
Then 	 = –Ĵ . By Theorem ., H is a J-SSE of H(τ ) if and only if there exist matrices
M,N ∈C× such that (.) and (.) hold. Set

M = –M, N =NPT Ĵ , P =

(
φ(b) φ(b)

p(b)�φ(b) p(b)�φ(b)

)
.

Then P is invertible and hence rank(M,N) = rank(M,N). It can be verified that

N ĴNT
 =NĴNT , N

(
(x,φ)(b)
(x,φ)(b)

)
=N

(
x(b)

p(b)�x(b)

)
.

So, (.) and (.) hold if and only if (.) and (.) hold by (.). This completes the
proof. �

Remark . Let p and q be real-valued. ThenH(τ ) is not only J-symmetric but also sym-
metric. However, the set of all the J-SSEs is not equal to the set of all the SSEs (SSE is an
abbreviation of self-adjoint subspace extension) in general, except for the case that d = .
For example, let a be finite, b = +∞, and d = , and set

H =
{
(x, f ) ∈ H(τ ) : ( + i)x(a – ) + p(a – )�x(a – ) = 

}
.

Then H is a J-SSE of H(τ ) by Theorem .. However, by Lemma ., it can be verified
that H is not a SSE of H(τ ).

6 J-self-adjoint operator extensions of H0(τ )
In this section, we discuss the characterization of all the J-self-adjoint operator extensions
of H(τ ) (i.e., H(τ )).
It is evident that each J-self-adjoint operator extension (briefly, J-SOE) of H(τ ) must

be its J-SSE. So, the J-SSEs of H(τ ) characterized in Section  contain all the J-SOEs of
H(τ ). With similar arguments to [, Section ], we can get the results for three different
cases that a = –∞ and b = +∞, a is finite and b = +∞, and both a and b are finite.

Theorem . In the case that a = –∞ and b = +∞, each J-SSE of H(τ ) (i.e., H(τ )) in
Theorems .-. is its J-SOE.

Theorem . In the case that a is finite and b = +∞, a J-SSE of H(τ ) (i.e., H(τ )) in
Theorems . and . is its J-SOE if and only if the matrix M in Theorems . and .

http://www.advancesindifferenceequations.com/content/2013/1/3


Sun and Ren Advances in Difference Equations 2013, 2013:3 Page 23 of 26
http://www.advancesindifferenceequations.com/content/2013/1/3

satisfies

M

(


–p(a – )

)
�= .

Theorem . In the case that both a and b are finite, a J-SSE of H(τ ) (i.e., H(τ )) in
Theorem . is its J-SOE if and only if the matrices M and N in Theorem . satisfy

rank

(
M

(


–p(a – )

)
,N

(


–p(b)

))
= .

7 Examples for J-self-adjoint subspace extensions
In this section, we give three examples for J-self-adjoint subspace extensions.
Let T be a subspace in X. The set


(T) :=
{
λ ∈C : there exists c(λ) >  such that

‖f – λx‖ ≥ c(λ)‖x‖ for all (x, f ) ∈ T
}

is called to be the regularity field of T . First, we give a result for the regularity field of

(H(τ )).

Lemma . Assume that a is finite. If for some λ, (.) has two linearly independent solu-
tions in Lw(I), then λ ∈ 
(H(τ )), and consequently 
(H(τ )) =C.

Proof By Lemma ., let y and y be two linearly independent solutions of (.) such that
(y, y)(t) = . For z ∈ Lw(I), set

Rλ(z)(t) :=
t–∑
j=a

(
y(t)y(j) – y(j)y(t)

)
w(j)z(j), t ∈ {t}bt=a–,

where
∑a–

j=a =
∑a–

j=a = . Then it holds that

(
τ – λw(t)

)
Rλ(z)(t) = w(t)z(t), t ∈ I. (.)

Further, it can be concluded that

∥∥Rλ(z)
∥∥≤ ‖y‖‖y‖‖z‖. (.)

So, Rλ is a bounded operator from Lw(I) into D(H(τ )). In addition, (H(τ ) – λ)– is an
operator in Lw(I). Let x ∈D(H(τ )) and take z = 

w (τ –λw)x. Then (τ –λw)(x–Rλ(z)) = ,
i.e., x – Rλ(z) is a solution of (τ – λw)y = . Since

x(a – ) – Rλ(z)(a – ) = x(a) – Rλ(z)(a) = ,

one has that x ≡ Rλ(z) on I . This yields that the operator (H(τ )–λ)– is a restriction ofRλ.
Then (H(τ ) – λ)– is a bounded operator and hence λ ∈ 
(H(τ )). So, λ ∈ 
(H(τ )) by

(H(τ )) = 
(H(τ )) and hence 
(H(τ )) =C by Lemma .. This completes the proof.�
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If a is finite, then d =  or  by Lemma .. Further, by Lemma . the following result
can be proved.

Theorem . Assume that a is finite. Then d =  if and only if there are two linearly inde-
pendent solutions of (.) in Lw(I) and consequently d =  if and only if there is at most one
linearly independent solution of (.) in Lw(I).

Proof Let d = . It can be verified by Lemmas . and . that (.) has two linearly inde-
pendent solutions in Lw(I). Conversely, suppose that there are two linearly independent
solutions of (.) in Lw(I). Then 
(H(τ )) �= ∅ by Lemma ., and then by [, Theorem
.], d = . This completes the proof. �

Remark . In [], Brown et al. developed a spectral theory for second-order differential
operators with complex coefficients and one regular endpoint. They classified the corre-
sponding formally second-order differential expressions into three limit cases at the sin-
gular endpoint: Cases I, II, and III. In [], (.) was analogously classified into three limit
cases at b: Cases I, II, and III. By Lemma ., db =  if and only if (.) is in the limit Case I
at b. Hence, (.) is not in the limit Case I at b if and only if db = . Further, d = db by
Theorem . if a is finite.

Finally, we give three examples.

Example . Consider (.) on I = {t}∞t= with p(t) = w(t) =  and q(t) = t. It is noted that
(.) is both J-symmetric and symmetric in this case. By [, Corollary .], equation (.) is
in the limit Case I at t = +∞. So, d =  byTheorem.. By Theorem., it can be concluded
that (.) with the boundary condition

mx(–) +m�x(–) = , (m,m) �= , (.)

determines all the J-SSEs of H(τ ). In addition, (.) with the boundary condition

cosαx(–) + sinα�x(–) = , α ∈ (,π ],

determines all the J-SSEs of H(τ ) which are also SSEs of H(τ ). Especially, (.) contains
the Dirichlet condition x(–) =  and the Neumann condition �x(–) = .

Example . Consider (.) on I = {t}∞t= with p(t) = w(t) =  and q(t) = t + iq(t), where
q is real-valued. By [, Corollary .], equation (.) is in the limit Case I at t = +∞. So,
d =  by Theorem .. By Theorem ., it can be concluded that (.) with the boundary
condition (.) determines all the J-SSEs of H(τ ). Also, the condition x(–) =  and the
condition �x(–) =  are called the Dirichlet and Neumann boundary conditions, respec-
tively.

Example . Consider (.) on I = {t}∞t= with p(t) = (t + ), q(t) = –μ, where μ is a con-
stant in the open upper half-plane and w(t) = (t + )–. By [, Example .], equation (.)
is not in the limit Case I at t = +∞. So, d =  by Theorem .. Let φ and φ be solutions
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of (.) satisfying (.). By Theorem ., (.) with the boundary conditions

ix(–) + (x,φ)(+∞) = , ip(–)�x(–) + (x,φ)(+∞) = 

determines a J-SSE of H(τ ). In addition, (.) with the boundary conditions

ax(–) + bp(–)�x(–) = ,

c(x,φ)(+∞) + d(x,φ)(+∞) = , (a,b) �= , (c,d) �= ,

determines the J-SSEs of H(τ ) with separated boundary conditions.

Remark . By Theorem ., all the J-SSEs determined in terms of the Dirichlet or Neu-
mann boundary conditions in Examples . and . are J-SOEs of H(τ ).
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