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Abstract
Numerical solution for the regularized long wave equation is studied by a new
conservative Crank-Nicolson finite difference scheme. By the Richardson
extrapolation technique, the scheme has the accuracy of O(τ 2 + h4) without refined
mesh. Conservations of discrete mass and discrete energy are discussed, and
existence of the numerical solution is proved by the Browder fixed point theorem.
Convergence, unconditional stability as well as uniqueness of the solution are also
derived using energy method. Numerical examples are carried out to verify the
correction of the theory analysis.
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1 Introduction
Consider the initial boundary value problem for the regularized longwave (RLW) equation

ut + ux + uux – uxxt = , x ∈ (xL,xR), t ∈ (,T] (.)

with an initial condition

u(x, ) = u(x), x ∈ [xL,xR], (.)

and a boundary condition

u(xL, t) = u(xR, t) = , t ∈ [,T], (.)

where u(x) is a given known function. The RLW equation is originally introduced as an
alternative to the Korteweg-de Vries (KdV) equation to describe the behavior of the undu-
lar bore by Peregrine [] and plays a very important role in physicsmedia, since it describes
phenomena with weak nonlinearity and dispersion waves, including nonlinear transverse
waves in shallow water, ion-acoustic and magneto hydrodynamic waves in plasma and
phonon packets in nonlinear crystals. When it is used to model waves generated in a shal-
low water channel, the variables are normalized in the following way: distance x and water
elevation u are scaled to the water depth h, and time t is scaled to

√
h
g , where g is the ac-
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celeration due to gravity. The physical boundary requires

u→ , as |x| → ∞. (.)

So, if –xL �  and xR � , problems (.)-(.) is in accordance with the Cauchy problem
of equation (.). The RLW equation has the following conserved laws,

Q(t) =
∫ xR

xL
u(x, t)dx =

∫ xR

xL
u(x)dx =Q() (.)

and

E(t) = ‖u‖L + ‖ux‖L = ‖u‖L +
∥∥(u)x∥∥

L
= E(), (.)

where Q() and E() are two positive constants which relate to the initial condition.
Existence and uniqueness of the solution of the RLW equation are given in []. Its

analytical solution was found [] under restricted initial and boundary conditions,
and, therefore, it became interesting from a numerical point of view. Some numeri-
cal methods for the solution of the RLW equation such as variational iteration method
[, ], finite-difference method [–], Fourier pseudospectral method [], finite element
method [–], collocation method [] and adomian decomposition method [] have
been introduced in many works. In [], Li and Vu-Quoc pointed out that ‘in some ar-
eas, the ability to preserve some invariant properties of the original differential equa-
tion is a criterion to judge the success of a numerical simulation.’ Meanwhile, Zhang et
al. [] thought that the conservative difference schemes perform better than the non-
conservative ones, and the non-conservative difference schemes may easily show non-
linear ‘blow-up.’ Hence, constructing a conservative difference scheme for the numerical
solution of the nonlinear partial differential equation is quite significant. In this paper,
coupled with the Richardson extrapolation, a two-level nonlinear Crank-Nicolson finite
difference scheme for problems (.)-(.), which has the accuracy of O(τ  + h) without
refined mesh is proposed. The scheme simulates two conserved quantities (.) and (.)
well, respectively. Moreover, priori estimate, existence and uniqueness of the numerical
solutions are discussed. Convergence and unconditional stability of the scheme are also
proved.
The outline of the paper is as follows. In Section , a nonlinear conservative difference

scheme is proposed. In Section , we prove the existence of the difference solution by
the Browder fixed point theorem. Priori estimate, convergence and stability are proved
in Section , and numerical experiments to verify the theoretical analysis are reported in
Section .

2 Nonlinear finite difference scheme
As usual, let h = xR–xL

J be the step size for the spatial grid such that xj = xL + jh
(j = –, , , . . . , J , J + ). Let τ be the step size for the temporal direction tn = nτ (n =
, , , . . . ,N ), N = [T

τ
]. Denote unj ≈ u(xj, tn) and

Z
h =

{
u = (uj)|u– = u = uJ = uJ+ = , j = , , , . . . , J

}
.
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Define

(
unj

)
x =

unj+ – unj
h

,
(
unj

)
x̄ =

unj – unj–
h

,
(
unj

)
x̂ =

unj+ – unj–
h

,

(
unj

)
ẍ =

unj+ – unj–
h

,
(
unj

)
t =

un+j – unj
τ

, un+



j =
un+j + unj


,

〈
un, vn

〉
= h

J∑
j=

unj v
n
j ,

∥∥un∥∥ =
〈
un,un

〉
,

∥∥un∥∥∞ = max
≤j≤J

∣∣unj ∣∣.

In the paper, C denotes a general positive constant which may have different values in
different occurrences.

Lemma . For a mesh function u ∈ Z
h , we have

‖uẍ‖ ≤ ‖ux̂‖ ≤ ‖ux‖.

Proof Obviously,

(uj)ẍ =
uj+ – uj–

h
=



(
uj+ – uj

h
+
uj – uj–

h

)
=


(
(uj+)x̂ + (uj–)x̂

)
,

(uj)x̂ =
uj+ – uj–

h
=



(
uj+ – uj

h
+
uj – uj–

h

)
=


(
(uj)x + (uj)x̄

)
.

Since ∀u ∈ Z
h , we have ‖ux‖ = ‖ux̄‖. By Cauchy-Schwarz inequality, we get

‖uẍ‖ = 

h

J∑
j=

(
(uj+)x̂ + (uj–)x̂

) · ((uj+)x̂ + (uj–)x̂
) ≤ ‖ux̂‖,

‖ux̂‖ = 

h

J∑
j=

(
(uj)x + (uj)x̄

) · ((uj)x + (uj)x̄
) ≤ ‖ux‖. �

The following Crank-Nicolson conservative difference scheme for problems (.)-(.)
is considered,

(
unj

)
t –



(
unj

)
xx̄t +



(
unj

)
x̂x̂t +



(
un+




j
)
x̂ –



(
un+




j
)
ẍ

+


{(
un+




j
)(
un+




j
)
x̂ +

[(
un+




j
)]

x̂

}

–


{
un+




j
(
un+




j
)
ẍ +

[(
un+




j
)]

ẍ

}
= , j = , , . . . , J – ;n = , , . . . ,N – , (.)

uj = u(xj),  ≤ j ≤ J , (.)

un ∈ Z
h , n = , , , . . . ,N . (.)

From boundary condition (.), and physical boundary (.), discrete boundary condi-
tion (.) is reasonable. Based on scheme (.)-(.), the discrete versions of (.) and (.)
are obtained as follows.
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Theorem . Scheme (.)-(.) admits the following invariants, i.e.,

Qn = h
J∑

j=

unj =Qn– = · · · =Q, (.)

En =
∥∥un∥∥ +



∥∥unx∥∥ –



∥∥unx̂∥∥ = En– = · · · = E (.)

for n = , , . . . ,N .

Proof Multiplying (.) with h, then summing up for j from  to J – , by boundary condi-
tion (.) and formula of summation by parts [], we have

h
J∑

j=

(
unj

)
t = . (.)

By the definition of Qn, (.) is obtained from (.).
Taking the inner product of (.) with un+ 

 , according to boundary condition (.), we
get

∥∥un∥∥
t +



∥∥unx∥∥

t –


∥∥unx̂∥∥

t +


〈
un+




x̂ ,un+


〉
–


〈
un+




ẍ ,un+


〉
+ 

〈
ϕ
(
un+



)
,un+



〉

– 
〈
κ
(
un+



)
,un+



〉
= , (.)

where

ϕ
(
un+




j
)
=


{(
un+




j
)(
un+




j
)
x̂ +

[(
un+




j
)]

x̂

}

and

κ
(
un+




j
)
=


{(
un+




j
)(
un+




j
)
ẍ +

[(
un+




j
)]

ẍ

}
.

Since

〈
un+




x̂ ,un+


〉
= ,

〈
un+




ẍ ,un+


〉
= , (.)

〈
ϕ
(
un+



)
,un+



〉
=


h

J∑
j=

{
un+




j
(
un+




j
)
x̂ +

[(
un+




j
)]

x̂

}
un+




j

=


h

J∑
j=

(
un+




j
)(un+ 


j

)
x̂ +



h

J∑
j=

[(
un+




j
)]

x̂u
n+ 


j

=


h

J∑
j=

(
un+




j
)(un+ 


j

)
x̂ –



h

J∑
j=

(
un+




j
)(un+ 


j

)
x̂

=  (.)
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and

〈
κ
(
un+



)
,un+



〉
=



h

J∑
j=

{(
un+




j
)(
un+




j
)
ẍ +

[(
un+




j
)]

ẍ

}
un+




j

=


h

J∑
j=

(
un+




j
)(un+ 


j

)
ẍ +



h

J∑
j=

[(
un+




j
)]

ẍu
n+ 


j

=


h

J∑
j=

(
un+




j
)(un+ 


j

)
ẍ –



h

J∑
j=

(
un+




j
)(un+ 


j

)
ẍ

= . (.)

Substituting (.)-(.) into (.), we have

(∥∥un+∥∥ –
∥∥un∥∥) + 


(∥∥un+x

∥∥ –
∥∥unx∥∥) – 


(∥∥un+x̂

∥∥ –
∥∥unx̂∥∥) = . (.)

Similarly, by the definition of En, (.) is obtained from (.). �

3 Existence
To prove the existence of solution for scheme (.)-(.), the following Browder fixed point
theorem should be introduced. For the proof, see [].

Lemma . Let H be a finite dimensional inner product space. Suppose that g : H → H
is continuous, and there exists an α >  such that 〈g(x),x〉 >  for all x ∈ H with ‖x‖ = α.
Then there exists x∗ ∈H such that g(x∗) =  and ‖x∗‖ ≤ α.

Theorem . There exists un ∈ Z
h satisfying difference scheme (.)-(.).

Proof Use themathematical induction. Obviously, with condition (.), the solution exists
for n = . Suppose that for n ≤ N – , u,u, . . . ,un satisfy (.)-(.), then we prove that
there exists un+ satisfying (.)-(.).
Define an operator g on Z

h as follows:

g(v) = v – un –


vxx̄ +



unxx̄ +



vx̂x̂ –



unx̂x̂ +



τvx̂ –



τvẍ + τϕ(v) – τκ(v). (.)

Taking the inner product of (.) with v, we get

〈vx̂, v〉 = , 〈vẍ, v〉 = ,
〈
ϕ(v), v

〉
= ,

〈
κ(v), v

〉
= .

From Lemma . and Cauchy-Schwarz inequality, we get

〈
g(v), v

〉
= ‖v‖ – 

〈
un, v

〉
+


‖vx‖ – 


〈
unx , vx

〉
–


‖vx̂‖ + 


〈
unx̂ , vx̂

〉

≥ ‖v‖ – (‖u‖ + ‖v‖) + 

‖vx‖ – 


(∥∥unx∥∥ + ‖vx‖

)

–


‖vx̂‖ – 


(∥∥unx̂∥∥ + ‖vx̂‖

)
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≥ ‖v‖ – ∥∥un∥∥ +


‖vx‖ – 


∥∥unx∥∥ –



∥∥unx̂∥∥

≥ ‖v‖ –
(∥∥un∥∥ +



∥∥unx∥∥ +



∥∥unx̂∥∥

)
.

Hence, for ∀v ∈ Z
h , 〈g(v), v〉 ≥  when ‖v‖ = (‖un‖ + 

‖unx‖ + 
‖unx̂‖)+. By Lemma .,

there exists v∗ ∈ Z
h which satisfies g(v∗) = . Let un+ = v∗–un, and it can be proved easily

that un+ is the solution of scheme (.)-(.). �

4 Priori estimate, convergence and unconditional stability
Let v(x, t) be the solution of problems (.)-(.) and vnj = v(xj, tn), then the truncation error
of scheme (.)-(.) is obtained as follows:

rnj =
(
vnj

)
t –



(
vnj

)
xx̄t +



(
vnj

)
x̂x̂t +



(
vn+




j
)
x̂ –



(
vn+




j
)
ẍ + +ϕ

(
vn+




j
)
– κ

(
vn+




j
)
,

j = , , . . . , J – ;n = , , . . . ,N – , (.)

vj = u(xj),  ≤ j ≤ J , (.)

vn ∈ Z
h , n = , , , . . . ,N . (.)

According to Taylor expansion, we obtain the following result.

Theorem . |rnj | =O(τ  + h) holds as τ ,h→ .

Proof Since v(x, t) is the solution of problems (.)-(.), we have

vt + vx + vvx – vxxt = , x ∈ (xL,xR), t ∈ (,T]. (.)

Firstly, considering the term vt , by Taylor expansion at the point (xj, tn+ 

), we get

vn+j = vn+



j +
(

τ



)
vt|n+




j +

!

(
τ



)

vtt|n+



j +O
(
τ ), (.)

vnj = vn+



j +
(
–

τ



)
vt|n+




j +

!

(
–

τ



)

vtt|n+



j +O
(
τ ). (.)

It follows from (.) and (.) that

vt|n+



j =
vn+j – vnj

τ
+O

(
τ ) = (

vnj
)
t +O

(
τ ). (.)

Similarly, by Taylor expansion, we can obtain the following results, respectively:

(vx)|n+



j =
vn+




j+ – vn+



j–

h
–


h(vxxx)|n+




j +O
(
h

)

=
(
vn+




j
)
x̂ –



h(vxxx)|n+




j +O
(
h

)
, (.)
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(vx)|n+



j =
vn+




j+ – vn+



j–

h
–


h(vxxx)|n+




j +O
(
h

)

=
(
vn+




j
)
ẍ –



h(vxxx)|n+




j +O
(
h

)
(.)

and

(vxx)|n+



j =
(
vn+




j
)
xx̄ –




h(vxxxx)|n+



j +O
(
h

)
, (.)

(vxx)|n+



j =
(
vn+




j
)
x̂x̂ –



h(vxxxx)|n+




j +O
(
h

)
. (.)

Thus, by (.) and (.), we have



(
vn+




j
)
x̂ –



(
vn+




j
)
ẍ = (vx)|n+




j +O
(
h

)
. (.)

By (.) and (.), we have



(
vn+




j
)
xx̄ –



(
vn+




j
)
x̂x̂ = (vxx)|n+




j +O
(
h

)
. (.)

Moreover,

ϕ
(
vn+




j
)
– κ

(
vn+




j
)

=


{(
vn+




j
)(
vn+




j
)
x̂ +

[(
vn+




j
)]

x̂

}
–


{
vn+




j
(
vn+




j
)
ẍ +

[(
vn+




j
)]

ẍ

}

=


vn+




j

{


(
un+




j
)
x̂ –



(
un+




j
)
ẍ

}
+



{


[(
un+




j
)]

x̂ –


[(
un+




j
)]

ẍ

}

= (uux)|n+



j +O
(
h

)
. (.)

Apparently, it follows from (.), (.), (.) and (.) that (.) holds. �

Lemma . Suppose that u ∈ H
[xL,xR], then the solution of the initial-boundary value

problems (.)-(.) satisfies

‖u‖L ≤ C, ‖ux‖L ≤ C, ‖u‖L∞ ≤ C.

Proof It follows from (.) that

E(t) = ‖u‖L + ‖ux‖L = E() = C,

which yields

‖u‖L ≤ C, ‖ux‖L ≤ C.

By Sobolev inequality, ‖u‖L∞ ≤ C holds. �
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Lemma . Suppose that u ∈H
[xL,xR], then the solution of scheme (.)-(.) satisfies

∥∥un∥∥ ≤ C,
∥∥unx∥∥ ≤ C,

∥∥un∥∥∞ ≤ C

for n = , , . . . ,N .

Proof It follows from Theorem . and Lemma . that

∥∥un∥∥ +
∥∥unx∥∥ ≤ En =

∥∥un∥∥ +


∥∥unx∥∥ –



∥∥unx̂∥∥ = C,

that is,

∥∥un∥∥ ≤ C,
∥∥unx∥∥ ≤ C.

By discrete Sobolev inequality [], we have ‖un‖∞ ≤ C. �

Theorem . Suppose that u ∈H
[xL,xR], then the solution un of difference scheme (.)-

(.) converges to the solution of problems (.)-(.) with order O(τ  + h) by the ‖ · ‖∞
norm.

Proof Letting

enj = vnj – unj ,

and subtracting (.)-(.) from (.)-(.), respectively, we have

rnj =
(
enj

)
t –



(
enj

)
xx̄t +



(
enj

)
x̂x̂t +



(
en+




j
)
x̂

–


(
en+




j
)
ẍ + ϕ

(
vn+




j
)
– ϕ

(
un+




j
)

– κ
(
vn+




j
)
+ κ

(
un+




j
)
, j = , , . . . , J – ;n = , , . . . ,N – , (.)

ej = ,  ≤ j ≤ J , (.)

en ∈ Z
h , n = , , , . . . ,N . (.)

Computing the inner product of (.) with en+ 
 , and using boundary condition (.),

we get

〈
rn, en+



〉
=

∥∥en∥∥
t +



∥∥enx∥∥

t –


∥∥enx̂∥∥

t +


〈
en+




x̂ , en+


〉
–


〈
en+




ẍ , en+


〉

+ 
〈
ϕ
(
vn+



)
– ϕ

(
un+



)
, en+



〉
– 

〈
κ
(
vn+



)
– κ

(
un+



)
, en+



〉
. (.)

Similarly to (.), we have

〈
en+




x̂ , en+


〉
= ,

〈
en+




ẍ , en+


〉
= . (.)

http://www.advancesindifferenceequations.com/content/2013/1/287
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According to Lemma ., Lemma ., Theorem . and Cauchy-Schwartz inequality, we
get

〈
ϕ
(
vn+



)
– ϕ

(
un+



)
, en+



〉

=


h

J∑
j=

[
vn+




j
(
vn+




j
)
x̂ – un+




j
(
un+




j
)
x̂

]
en+




j +


h

J∑
j=

[(
vn+




j
) – (

un+



j
)]

x̂e
n+ 


j

=


h

J∑
j=

[
vn+




j
(
en+




j
)
x̂ + en+




j
(
un+




j
)
x̂

]
en+




j –


h

J∑
j=

[
en+




j
(
un+




j + vn+



j
)](

en+



j
)
x̂

≤ C
(∥∥en+∥∥ +

∥∥en∥∥ +
∥∥en+x̂

∥∥ +
∥∥enx̂∥∥)

≤ C
(∥∥en+∥∥ +

∥∥en∥∥ +
∥∥en+x

∥∥ +
∥∥enx∥∥), (.)

〈
κ
(
vn+



)
– κ

(
un+



)
, en+



〉

=


h

J∑
j=

[
vn+




j
(
vn+




j
)
ẍ – un+




j
(
un+




j
)
ẍ

]
en+




j +


h

J∑
j=

[(
vn+




j
) – (

un+



j
)]

ẍe
n+ 


j

=


h

J∑
j=

[
vn+




j
(
en+




j
)
ẍ + en+




j
(
un+




j
)
ẍ

]
en+




j –


h

J∑
j=

[
en+




j
(
un+




j + vn+



j
)](

en+



j
)
ẍ

≤ C
(∥∥en+∥∥ +

∥∥en∥∥ +
∥∥en+ẍ

∥∥ +
∥∥enẍ∥∥)

≤ C
(∥∥en+∥∥ +

∥∥en∥∥ +
∥∥en+x

∥∥ +
∥∥enx∥∥) (.)

and

〈
rn, en+



〉
=

〈
rn, en+ + en

〉 ≤ ∥∥rn∥∥ +
∥∥en+∥∥ +

∥∥en∥∥. (.)

Substituting (.)-(.) into (.), we get

∥∥en∥∥
t +



∥∥enx∥∥

t –


∥∥enx̂∥∥

t ≤ ∥∥rn∥∥ +C
(∥∥en+∥∥ +

∥∥en∥∥ +
∥∥en+x

∥∥ +
∥∥enx∥∥). (.)

Letting Bn = ‖en‖ + 
‖enx‖ – 

‖enx̂‖ and summing up (.) from  to n – , we have

Bn ≤ B +Cτ

n–∑
l=

∥∥rl∥∥ +Cτ

n∑
l=

(∥∥el∥∥ +
∥∥elx∥∥). (.)

Noticing

τ

n–∑
l=

∥∥rl∥∥ ≤ nτ max
≤l≤n–

∥∥rl∥∥ ≤ T ·O(
τ  + h

),

and B =O(τ  + h), from (.), we get

∥∥en∥∥ +
∥∥enx∥∥ ≤ Bn ≤O

(
τ  + h

) +Cτ

n∑
l=

(∥∥el∥∥ +
∥∥elx∥∥).
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By discrete Gronwall inequality [], we have

∥∥en∥∥ ≤O
(
τ  + h

)
,

∥∥enx∥∥ ≤O
(
τ  + h

)
.

Finally, by discrete Sobolev inequality [], we get

∥∥en∥∥∞ ≤O
(
τ  + h

)
.

This completes the proof of Theorem .. �

Similarly, we can prove the stability and uniqueness of the difference solution.

Theorem . Under the conditions of Theorem ., the solution of scheme (.)-(.) is
stable by the ‖ · ‖∞ norm.

Theorem . The solution un of scheme (.)-(.) is unique.

5 Numerical experiments
In this section, we compute a numerical example to demonstrate the effectiveness of our
difference scheme. The single solitary-wave solution of RLW equation (.) is given by

u(x, t) = A sech(kx –ωt + δ), (.)

where

A =
a

 – a
, k =

a

, ω =

a
( – a)

,

and a, δ are constants.
Scheme (.)-(.) is a nonlinear system of equationswhich can be solved by theNewton

iteration. Take a = 
 , δ = , and the initial function of problems (.)-(.) is rewritten as

u(x, ) = sech
(


x
)
.

In the numerical experiments, we take xL = –, xR =  and T = . The errors in the
sense of L∞-norm and L-norm of the numerical solutions under different mesh steps
h and τ are listed in Table . Table  shows that the computational and the theoretical
orders of the scheme are very close to each other. Furthermore, since we have shown in

Table 1 The errors estimates of numerical solution with various h and τ

τ = 0.2, h = 0.1 τ = 0.05, h = 0.05 τ = 0.0125, h = 0.025

‖en‖ ‖en‖∞ ‖en‖ ‖en‖∞ ‖en‖ ‖en‖∞
t = 2 1.815667e–3 9.106257e–4 1.139049e–4 5.714576e–6 7.120731e–6 3.572519e–6
t = 4 3.558495e–3 1.786774e–3 2.232765e–4 1.121945e–4 1.395820e–5 7.013983e–6
t = 6 5.186555e–3 2.536722e–3 3.254965e–4 1.592516e–4 2.034878e–5 9.955996e–6
t = 8 6.691763e–3 3.175770e–3 4.200524e–4 1.994228e–4 2.626042e–5 1.246776e–5
t = 10 8.084741e–3 3.734968e–3 5.076006e–4 2.346426e–4 3.173410e–5 1.467109e–5
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Table 2 The numerical verification of theoretical accuracy O(τ 2 + h4)

‖en(h,τ )‖/‖e4n( h2 , τ4 )‖ ‖en(h,τ )‖∞/‖e4n( h2 , τ4 )‖∞
τ = 0.2,
h = 0.1

τ = 0.05,
h = 0.05

τ = 0.0125,
h = 0.025

τ = 0.2,
h = 0.1

τ = 0.05,
h = 0.05

τ = 0.0125,
h = 0.025

t = 2 - 15.940202 15.996241 - 15.935139 15.995926
t = 4 - 15.937612 15.996078 - 15.925675 15.995839
t = 6 - 15.934289 15.995869 - 15.929016 15.995554
t = 8 - 15.930779 15.995648 - 15.924811 15.995067
t = 10 - 15.927366 15.995430 - 15.917690 15.993525

Table 3 Discrete mass and discrete energy with various h and τ

τ = 0.2, h = 0.1 τ = 0.05, h = 0.05

Qn En Qn En

t = 2 7.99999999942 5.59999998149 7.99999999938 5.59999999884
t = 4 7.99999999815 5.59999998149 7.99999999797 5.59999999884
t = 6 7.99999999320 5.59999998149 7.99999999255 5.59999999884
t = 8 7.99999997441 5.59999998149 7.99999997199 5.59999999884
t = 10 7.99999990304 5.59999998149 7.99999999404 5.59999999884

Theorem . that the numerical solution un satisfies invariants (.) and (.), respectively,
Table  is also presented to show the conservative laws of discrete mass Qn and discrete
energy En.
From these computational results, the stability and convergence of the scheme are ver-

ified, and it shows that our proposed algorithm is effective.
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