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Abstract

Concerned are the difference ¢-Laplacian boundary value problems. The multiplicity
result based on the lower and upper solutions method associated with Brouwer
degree is applied to a difference ¢p-Laplacian eigenvalue problem. An existence result
of at least three positive solutions is established for the eigenvalue problem with the
parameter belonging to an explicit open interval. In addition, an example is given to
illustrate the three solutions result.
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1 Introduction
Recently, Kim [1] studied a one-dimensional differential p-Laplacian boundary value prob-
lem with a positive parameter and established an existence result of three positive solu-
tions by the lower and upper solutions method associated with Leray-Schauder degree
theory. Kim and Shi [2] studied the global continuum and multiple positive solutions of
a p-Laplacian boundary value problem. Motivated by the methods in [1, 2], we consider
difference ¢-Laplacian boundary value problems.

For a,b € Z with a < b, let [a,b]z ={a,a + 1,a + 2,...,b — 1,b}. First, by the upper and
lower solutions method associated with Brouwer degree theory, we establish the existence
and multiplicity results for the following discrete ¢-Laplacian boundary value problem:

! Alp(Autk=1)) +f(k,u(k)) =0, ke[l,Tlg, M
u(0)=u(T +1)=0,

where T > 1 is a given positive integer, Au(k) = u(k + 1) — u(k), and
(Al) ¢ :R— Risan odd and strictly increasing function;
(A2) f:[1,T]z x R— Ris continuous.
Then, we apply the multiplicity result of (1) to the following eigenvalue problem:
! A(p(Au(k -1))) + Ap(k)g(u(k)) =0, k€1, Tz, @
u(0)=u(T +1)=0,

where 1 is a positive parameter. Under some suitable assumptions imposed on g, we es-
tablish the existence of three positive solutions of (2) with A belonging to an explicit open
interval.
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The function ¢(u) covers two important cases: ¢(u) = u and ¢(u) = |ulP2u (p > 1). If
¢(u) = u, then problem (1) is the classical second order difference Dirichlet boundary
value problem. For the case that ¢(u) = |u|?~?u, problem (1) is the well-known discrete
p-Laplacian problem. The two cases have been widely studied. To name a few, see [3—10]
and the references therein.

Problem (1) can be viewed as the discrete analogue of the following differential ¢-
Laplacian problem:

{(«p(u/))/ fu)=0, O<t<l, o

u(0) = u(1) =0,

which rises from the study of radial solutions for p-Laplacian equations (¢(x) = |u|?~2u) on
an annular domain (see [11], and references therein). Recently, the differential ¢-Laplacian
problems have been widely studied in many different papers. We refer the readers to [12—
19] and the references therein.

For discrete ¢-Laplacian problems, there are fewer study results than for differential ¢-
Laplacian problems. See Cabda [20], Cabada and Espinar [21] and Bondar [22]. To the
best of our knowledge, there are no results on the existence and multiplicity of positive
solutions for difference ¢-Laplacian problems.

The remaining part of this paper is organized as follows. In Section 2, we show the lower
and upper solutions method and establish the existence and multiplicity of solutions of (1).
In Section 3, we establish the existence of three positive solutions of (2). Finally, we give

an example to illustrate our main results.

2 The upper and lower solutions method
In this section, we establish the existence and multiplicity results of solutions for problem
(1) by lower and upper solutions method associated with Brouwer degree.

Let E = {u: [0, T + 1]z — RT*2} with the norm ||u|| = max;cjo,r41], |u(2)|.

Definition 2.1 Given u,v,w € E, we say that
1) u<vifforal ke[0,T + 1]z, u(k) < v(k).
2) uev,wlifv<u=<w.
(3) u~=<vifforall k € [1, T]z, u(k) < v(k) and u(0) < v(0), u(T +1) < v(T +1).

Definition 2.2 « € E is called a lower solution of problem (1) if

A(p(Aalk -1))) +f(ka(k) >0, ke[l,Tlz
«(0) <0, a(T +1) <0.

If the first inequality above is strict, then « is called a strict lower solution of (1).

In the same way, we define the upper solution and the strict upper solution of (1) by
reversing the inequalities above.

Lemma 2.1 Let (Al) hold. The problem

-A(p(Au(k-1))) +uk) =0, kell,Tlz
u(0)=u(T+1)=0

has the unique solution u = 0.
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Proof Itis clear that 0 is a trivial solution of (4). Suppose that (4) has a nontrivial solution u.
Let |u(m)| = maxgepn, 1, |(k)| = |lull. If u(m) = maxgep, 11, #(k), then u(m) > 0 and Au(m) <
0, Au(m —1) > 0, which yields a contradiction:

u(m) = A(p(Au(m -1)))
= ¢(Au(m)) - ¢p(Au(m -1)) <0 < u(m).

Similarly, if u(m) = mingep, ), u(k), then u(m) < 0 and Au(m) > 0, Au(m — 1) < 0, which
implies that u(m) = A(¢(Au(m —1))) > 0 > u(m), which is a contradiction. The proof is
complete. O

Theorem 2.1 Let (Al) and (A2) hold.
(i) Assume that there exist o and B, respectively lower and upper solutions of (1) such
that o < B. Then problem (1) has at least one solution u with o <u < B.
(i) Assume that problem (1) has two pairs of lower and upper solutions (o1, 1) and

(a9, B2) with ay and By being strict, satisfying that
o Say < o, o < B < B,

and that there exists ko € [0, T + 1]z such that B,(ko) < az(ko). Then problem (1) has
at least three solutions uy, u,, uz with

o) < uy < P, oy < uy < P, uz € [o, Bo]\([o1, Bi] U [aa, B)).

Remark We denote that the result (i) has been proved in [20] by Brouwer fixed point
theorem. Here, for the convenience of the proof of (ii), it is proven by Brouwer degree
theory. The proof of (ii) is motivated by the idea in [1].

Proof of Theorem 2.1. (i) Define y : [1,T]z x R— R by

Bk), u>pk),
y(k,u) = { u, a(k) <u < B(k),
a(k), wu<a).

Consider the modified problem

A(p(Aulk - 1)) + f(k, y (k, u(k))) - [u(k) — y (k, u(k))] =0, kel[L,T], 5)

u(0) =u(T +1) =0.
Clearly, all solutions u of (5) satisfying « < u < § are solutions of (1). Let u be a solution
of (5). By the arguments in [20], we know that « < u < B. Now, we prove that problem
(5) has at least one solution. Let Ey = {&# € E : u(0) = u(T + 1) = 0} and define operator
T:Ey— R by

(Tu)(k) = A(@(Autk - 1)) +f(k,y (ku(k))) - [uk) -y (ku(k))], ke[L,Tlz. (6)
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Obviously, each solution u of Tu = 0 solves (5). Define homotopic mapping I" : [0,1] x
E, — RT by
T u)(k) = 1 - V[ A(p(Aultk ~1))) - uk)] + ATu(k)
= A(p(Autk =1))) - ulk) + A[f (kv (k, u(K))) + v (k, u(k))], k€ [L,Tlz.

By the definition of y and the continuity of f, there exists an R > 0, such that

max max[f(k, y (k, u)) +y(k, u)| <R

ke[1,T]z ueR

Let Br(0) = {u € Ey : |lu|]| < R}. We prove that if (A,u) € [0,1] x Ej is a solution of
I'(A,u) = 0, then u € Br(0). Let |u(m)| = maxiep,1), [4(k)| = [|u|l. Then there are two
cases that u(m) = maxiep, 1, #(k) and u(m) = mingep, 1, #(k). For the first case, since
u(m+1) —u(m) <0, u(m) — u(m —1) > 0 and ¢ is odd, we have that

u(m) = A[f (m,y (m,u(m))) + y (m,u(m))]
= A(p(Au(m -1)))
= ¢(u(m +1) - u(m)) — ¢>(u(m) —u(m — 1))

<0,
which implies that

u(m) < A[f (m,y (m,u(m))) +y (m,u(m))] <R.

Similarly, for the second case, we have that

u(m) > A[f (m, y (m,u(m))) + v (m,u(m))] > -R.

Therefore, ||u|| < R, and deg(I"(%, ), Br(0),0) is well defined. By the homotopy invariance
of Brouwer degree, we get that

deg(T, Br(0),0) = deg(T'(1, ), Bz(0),0) = deg(I"(0, -), Bz(0), 0).

By Lemma 2.1, the equation —A(¢(Au(k —1))) + u(k) = 0 has the unique solution # = 0 in
Ey, thus we have

deg(I'(0, ), Br(0),0) = 1.

Therefore, deg(T, Br(0),0) =1, which implies that problem (5) has at least one solution
ue k.

(ii) First, we show that if @ and B are strict lower and upper solutions, respectively, such
that o < B, then deg(T, Qqp,0) =1, where Qqp = {1 € Ey,o0 < u < B, ||lul| < R}. By the argu-
ments above, each solution u of (5) satisfies that @ < u < 8. We claim that « < u < 8.
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In fact, if it is not true, then there exists an m € [1, T]z such that a(m) = u(m). Since
Au(m —1) < Aa(m - 1), Au(m) > Aa(m), we have by the monotonicity of ¢ that

A((Au(m -1))) - A(p(Aa(m -1)))
= [¢p(Au(m)) — p(Aa(m))] + [¢(Aa(m —1)) - p(Au(m -1))]

>0.
It yields a contradiction:

A(p(Au(m -1))) = ~f (m, y (m, u(m))) + [u(m) — y (m, u(m))]
= —f(m,ot(m)) < A(¢(Aa(m - 1))).

Thus o < u. Similarly, one can check that # < . By the excision property of Brouwer
degree,

deg(T, Qup,0) = deg (T, B(0),0) = 1.
Now, consider the following modified problem:

A(p(Au(k - 1)) +f(k, y*(k,u(k))) — [u(k) - y*(k, u(k))] =0, ke[LT],
u(0)=u(T +1) =0,

where y*:[1,T]z x R — Ris defined by

Ba(k), u> By(k),
y*(k,u)={ u, ap(k) < u < By(k),
Oll(k), u <Oll(k).

It is easy to see that for sufficiently small € > 0, (1 — €, $1) and (o2, B2 + €) are two pairs of
strict lower and upper solutions of (7). Similarly to (6), let T* be the operator correspond-
ing to problem (7). For sufficiently large R > 0, define

Quipy = {1 € Eoyo —€ < u < fu, |lull <R},

Qayp, = {u € Egon —€ <u < Ba + €, |lull <R},
and
Quopy = {0 €Egyas <u < P + 6, |ul <R}

Then deg(T*, 2u,p,,0) = 1, deg(T*, Ru,p,,0) = 1 and deg(T*, 2y, 4,,0) = 1. Thus by the
additivity property of Brouwer degree, we have deg(T*, Q015 \(Qaypy U Quipy, 0)) = —1.
Therefore, problem (7) has three solutions i, #, and u3 with u; € Qq,p,, U2 € Qq,p, and
U3 € Qo p, \§u1 g U ﬁ,z g, - By the facts that all solutions of (7) satisfy [c1, 8] and are solu-
tion of (1), the proof is complete. d
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3 Three positive solutions of eigenvalue problems
Lemma 3.1 Let (Al) hold and u satisfy the following difference inequality:

-A(p(Auk-1))) =0, ke[l,Tlz (8)

with u(0) > 0, u(T + 1) > 0. Then u(k) > 0 for all k € [1, Tz, and Au(k — 1) > 0 for k €
[1,k*]z, Au(k) < 0 fork € [k*, Tz, where k* € [0,1+ Tz satisfies u(k*) = maxgejo,1+17, (k).

Proof Since Alp(Au(k —1))] = ¢(Au(k)) — ¢(Au(k — 1)) <0, k € [1, T]z, we have by the
monotonicity of ¢ that Au(k) < Au(k—1), k € [1,T]z. If k* =0 or T + 1, the result is clear.
Now, we assume that k* € [1, T]z. Since

Au(k*=1) = u(k*) —u(k* -1) > 0,

Au(k*) = u(k* + 1) - u(k*) <0,

we have by the monotonicity of Au(-) that Au(k—1) > 0 for k € [1,k*]z, Au(k) <0 for k €
[k*, T]z, which implies that u(k) > 0 holds for all k € [1, T]z by the boundary conditions
u(0) >0, u(T +1) > 0. a

Remark If inequality (8) is strict, then u(k) > O for k € [1, T]z, and there exists k* € [0,1 +
T1z such that u(k*) = ||u||,and Au(k—-1) > 0 for k € [1,k* —1]z, Au(k* 1) > 0,and Au(k) <
0 for k € [k*, T]z.

Consider the following problem:

Alp(Au(k -1))) + h(k) =0, ke[l,T]z, ©)
u(0) =u(T +1) =0,
where /1 : (1, T]z — (0, 00).
In the following arguments, we assume that
(B1) ¢ :R— Risan odd and strictly increasing homeomorphism.

Lemma3.2 Let (Bl) hold and u solve (9). If h is symmetricon [1, Tz, i.e., h(k) = h(T +1-k),
k € [1, Tz, then u(k) is symmetric on [1, T|z. Moreover,

(i) if T +1 (T = 2) is odd, then |u| = u(%) = u(% + 1), and the solution u of (9) can be
expressed as

T
wio - | T 97 LD, k<3
Yk (g b)), k=1
(i) if T + 1 (T = 3) is even, then |ull = u(32), and the solution u of (9) can be expressed

as

o= | s S E 0+ 3y, ke B,
Zs s I(Zl T, h(l) + lh(T“)) k> T2+1.
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Proof It is easy to see that

k T
u(k) =Y ¢ <—¢(u(T)) > h(l)), kel0,T +1]z, (10)
s=1 I=s
with
T+1 T
> o™ <—¢(u(T)) + Zh(l)) =0. (11)
k=1 I=k
Equivalently,
T s
u(k) = Z¢-1< (u(1)) h(l)), ke[0,T +1]z, (12)
s=k =1
with

Z¢< (1)) Zhu) (13)

By (10) or (12), one has

T
¢ (u(D) + ¢ (w(T)) = Y (D). (14)
=1

The symmetry of % first implies that #(1) = u(T). In fact, by (11),

T+1

0= qu ( (u(T)) Zh(l))

T+1 T+1-k

Z¢ ( (w(D)) + Zh(l)>
=1

T

Z¢>( (1)) Zh(l)>

Since ¢! is a homeomorphism from R onto itself, the solution C of the equation

1211 o (C+ Zszk h(l)) = 0 is unique. Comparing the equation above with (13), we have

d(u(1)) = p(u(T)). Thus for k € [1, Tz,

k)=i¢‘1<—¢(u(1))+i}h(l)) iqﬁl( ¢ (u(T)) XTj h(l))

=1 s=k I=T+1-s
T+1-k T
=Y ¢ (—qb(u(T)) + Zh(l)> =u(T +1-Kk),
m=1

the solution « of (9) is symmetric on [1, T]z.
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(i) Assume that T + 1 (T > 2) is odd. Since u(1) = u(7T), by the symmetry of s and (14),

we have

% T
¢(u(1)) = (u(T)) = = Z h(l).
=1 T,
Then for k < I,
k
uk)=> ¢ ( (w(T)) Zh(l)) Z ( Z h( l)+Zh(l))
s=1 l_—+1

N

£

andfork2§+1,

Clearly, ||u|| = u(%) = u(% +1).
(ii) If T+ 1 (T > 3) is even, then (14) and the symmetry of /2 imply that

T+1 -1

T
p(uD) = 6(uT)) = Y h)+ h(T”) S h+ (T”)

=1 lT+11

Thus for k < %,

(o

_ Xk:¢—1<— i D) - %h(T;rl) +ih(z>>
(
(
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and for k > %,
T s
uk) =y ¢ <—¢(u<1)) + Zh(l))

s=k =1
r T Te1y <

=Z¢-1<_ h(l)——h( * )+ h(l))
s=k =1 2 2 =1
u : 1 (T+1

— -1 _

2 (- ()
s= l:Tﬂ

Clearly, ||| = u(%). The proof is complete. O

Now, we state the existence result of at least three positive solutions of (2). Throughout
the following arguments, we suppose that 7' > 4. Let v be the unique positive solution of

the following boundary value problem:

Alp(Au(k -1)) +p(k) =0, ke [L, Tz,
u(0)=u(T +1) =0,

and po = mingep, 71, p(k).
We make the following assumptions.
(B2) There exists an increasing homeomorphism v : (0, 00) — (0, 00) such that for all

u>1,

d(1ux) — p(1y) -
dx)-o(y)

(Bs) p: [1) T]Z - (01 OO);
(B4) g € C((0,00),(0,00)) and lim, . 55 = 0;
vl
(B5) There exist a, b and M satisfying ||v|| < a < b < M such that g is nondecreasing on

[b, M) and

v(n), Vx,yeR:x<y;

| 200 To0)|
gDV ()" $(2L)

Here g* (1) = maxo<s<, g(S).

We denote that condition (B4) implies that lim,_ ]f:(iu)) =0 (see [12], Lemma 2.8).
]

Clearly, g* is nondecreasing on [0, 00).
Assumption (B2) is satisfied by two important cases ¢(x) = x and ¢(x) = [x[P2x (p > 1).
We also provide the following two functions as examples:

1 1
o(x) = ax® + %, ¢(x) = c3x3 + cqx'5,

where¢; >0 (i=1,2,3,4).

Page9of 13
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Theorem 3.1 Let (B1)-(B5) hold. Then for 1 € (71, 1;), problem (2) has at least three posi-

tive solutions. Here

_20() N :mm{ ¥ () 2¢(T+1)}
pog(b)’ 2 g*(@) " Tpog(b) |’

Proof Let A be fixed with A € (A1, 15). Clearly, & = 0 is a strict lower solution of (2). Let
Bi= M v. Note that a > ||v|| and Av(k) < Av(k—1), k € [1, T]z. Then by (B2) and the mono-
tonicity of g*, for k € [1, Tz, we have

A(¢(Api(k-1))

P(AB1(K)) - p(ABi (K - 1))
o) -o(fan-0)

¥ (ﬁ) (¢(Av(K) - p(Av(k - 1))

i ””l( ||>’”()

< =g (a)p(k)
< -2g* (Bu(k))p(k)
—3g(B1 () p(K).

IA

Thus B is a strict upper solution of (2). Now, let «; solve the following problem:

A(d(Aulk 1)) + A*pog(b) =0, ke [1,T]z,
u(0) =u(T +1) =0,

where 1* € (A1, A). By the expression (12), we have

(1) = qu ¢ (@2(1)) + sA*pog (b))
> ¢~ (~p(2(1) + 1*pog(h)),

which implies that ¢(ay(1)) > %)L*pog(b) > ¢(b). Thus Lemma 3.2 implies that a,(T) =
a3(1) > b. Consequently, by Lemma 3.1, a3 (k) > b for all k € [1, T]z. Again by Lemma 3.2,

T+1 T
" ¢1(5A*p0g(b))<M

one can see that if 7 + 1 is odd, then

loall = o™ (Z A*mg(b)) <
s=1

I=s
and that if T + 1 is even, then

T+1
-1

T+1
o 1 T+1 T

lleal = Z¢_1< > ¥pog() + 5”1’08@’)) < ¢_1(5)»*P0g(b)) <M
s=1 I=s
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Thus b < as(k) < M for k € [1, T]z. Therefore,

0 = A(¢(Acs(k - 1)) + 1*pog(b)
< A(p(Aaa(k - 1)) + 1" pog (e (k)
< A(p(Aaz(k=1))) + Ap(k)g(2(k)), ke [1,T]z

which implies that «; is a strict lower solution of (2). It is easy to see that

ar(k)>b>a> pi(k), kell,T]z.

By limy,_, o0 1//(* () 3= =0, one can choose a sufficiently large positive number C;, such that
y (%) "W
vl
and
rC
—A > 1y (%) S ﬁz»
vl

where B, = AC; 7. Then by (B2) and the monotonicity of g*, B, is a strict upper solution
of (2). In fact, for k € [1, Tz,

¢ (AB2(K)) — p(ABa(k - 1))
o{ o ) o{fi i)
(

<y AC*) (k)) - ¢(Av(k -1)))

vl

o (e

A(#(AB2(k-1))

< =Ag*(ACy)p(k)

< -2g* (Ba(k))p(k)

< —2g(B2(K)) p(k).
Thus by Theorem 2.1, problem (2) has three positive solutions for A € (A1, A2). O
Remark If g is nondecreasing on [0, 00), then we take M = co and A, = W;(‘LZT)” ).

4 An example
Taking ¢(u) = us + ué, gw)=(u+ 1)%,p(k) =1, T = 4, consider

A(Aulk—1)3 + (Au(k —1))3) + Au(k) + 1) =0, ke[l, Tz

u(0) = u(5) = 0. 15)

Page 11 0f 13
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Let ¥ (u) = u. It is easy to see that (B1)-(B4) hold. Choose a = 14, b = 15, then (B5) is satis-
fied. In fact, after some simple calculations, we get that ||v|| & 1.089 and that

20b) 1, 1 1
= = —(153 +155) ~ 2.091,
1 702 () 2( +155)
AT 14

= ~

2T @) V|

Thus by Theorem 3.1, problem (15) has at least three positive solutions for A:2.091 < A <
3.319.
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