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Abstract
In this article, one kind of the dynamical system which has a near saddle point is
investigated. An equivalent condition for the existence of intertwined attractors of
the planar dynamical systems and the related results are given.
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1 Introduction
In the investigation of the stability of dynamical systems, one of very important topics is
to determine the topological structure of the basin of attraction for an attractor (see [–
] and []). For a nonlinear dynamical system, it is an interesting phenomenon to have
intertwined attraction basins. It is a problem related to determine the geometrical struc-
ture of basins for variant attractors when the dynamical system happens to have multiple
attractors. The investigations of basin boundary of attraction began by Birkhoff []. If it
happens that different basins of attraction have mutual boundaries, the basin boundaries
can be more complicated (see [, ]). In [], the authors discuss the Wada property of
basins of attraction. The lakes of Wada continuum can be a common basin boundary for
three attracting fixed points. A more complex case is Handel’s construction in [], which
shows that extremely complicated sets (pseudocircle, a pathological set that is hereditar-
ily indecomposable) can be the co-frontier of disjoint basins. Later, some examples with
intermingled basins were established in [] for discrete dynamical systems. As to a dy-
namical system given by a vector field, the situation could also be intricate. For example,
in [], the author gives a definition of intertwined basins of attractors. Then in [], the
authors introduce a new general definition of intertwined basins of attraction, and present
the condition of existence of smoothly intertwined basins, and in this case, there exist inac-
cessible points on the basin boundary. Along the mutual boundary of intertwined basins,
variant basins of attraction become narrower and narrower, meanwhile they intertwine
together. So, to some extent, it leads to the sensitive dependence on initial conditions,
which is the central assumption in the investigation of chaos. For the case of planar flows,
the situation is simpler. Recently, several authors discussed the property of intertwined
basins of attraction (see [–, , ]). Those definitions of intertwined basins were used
to characterize a kind of intertwined attractors. That is, a saddle point connecting two dis-
tinct attractors played an important role in occurrence of intertwined basins of attraction
that they investigated. In the plane systems, the authors only studied the systems which
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had a saddle point O and two attractors A and A. To our best knowledge, we do not find
the intertwining phenomenon of other dynamical systems that have been investigated.
We shall introduce the definition of near saddle point, consider one kind of dynamical
system which has a near saddle point, investigate the intertwining phenomenon of this
kind of dynamical system, and give some conditions to guarantee the existence of inter-
twined attractors of the dynamical systems on the plane and get some related results. We
give a plane graph to characterize the intertwining property of basins of attraction of the
dynamical systems. The example in [] is a special case of the dynamical system that we
investigate.
The novelty of this paper is to study the intertwined attractor basins of the systemwhich

has a near saddle point connecting two distinct attractors. The rest of the paper is orga-
nized as follows. In Section , we fix some notations and definitions. In Section , we give
themain results about intertwining phenomenon, and present an equivalent condition for
existence of intertwined attractors of the dynamical systems.

2 Preliminaries
In this section, first of all, we recall some basic notions. Let X be a two-dimensional Eu-
clidean space with ametric d, on which there is a flow π : X×R → X defined by the vector
field

ẋ = V (x), x ∈ X. (.)

WhereV (x) is continuous, and assume that solutions of arbitrary initial value problems are
unique. For A⊂ X and I ⊂ R, we denote AI = {π (p, t)|p ∈ A, t ∈ I} for brevity, in particular,
pt = π (p, t). A set A is invariant under the flow π if AR = A holds. In particular, for a point
p ∈ M, the orbit pR is an invariant set. Throughout the paper for A⊂ X, A and ∂A denote
the closure and boundary of A, respectively. The set B(p, r) = {x|d(x,p) < r} denotes a ball
with p the center and r the radius. A spaceM is locally arcwise connected at a point x ∈M
if for any neighborhood U of x, there exists an arcwise connected open set V such that
x ∈ V ⊂ U , and M is locally arcwise connected if it is locally arcwise connected at each
point inM. Recall that each component of an open set in a locally arcwise connected space
is open. In the literature, several different concepts of an attractor and related definitions
are used by different authors. To avoid confusion, here we fix the following definition.

Definition . The ω-limit set ω(p) (or positive limit set ω(p)) of p (or of the orbit pR) is
defined to be the set

⋂
t≥ p[t, +∞), equivalently q ∈ ω(p) means that there is a sequence

{tn} with tn → +∞ such that ptn → q as n→ +∞.

Similarly, we define the α-limit set α(p) (or negative limit set α(p)) of p by reversing the
direction of time.

Definition . If A (⊂ X) is an attractor, its basin of attraction B(A) is defined to be the
set of initial points p such that ω(p) ⊂ A, i.e., d(pt,A) →  (t → +∞), where d(pt,A) =
inf{d(pt,a)|a ∈ A}, d is the ordinary metric on the space X, and, with no confusion, we
also use it for the distance between a point and a set.

From the definition of the basin of attraction B(A), it can be shown that the basin B(A)
is an open set (see [, Chapter ]).
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Figure 1 The portrait of a near saddle point p.

Definition . The point p is said to be a near saddle point if there exist at least two orbits
xt and yt, whose negative limit sets α(x) and α(y) are the single point set {p}, beside the
curve xt∪yt∪{p}, there respectively exist at least two orbits xit, yit, i = , , whose positive
limit sets ω(xi) and ω(yi) also are {p}.

Figure  is a phase portrait of a near saddle point p.

Remark . If there only exist orbits xt and yt beside the curve xt ∪ yt ∪ {p}, then the
point P becomes a saddle point.

To end this section, we give the general definition of intertwined basins of attractors,
which is presented in [] and used to prove our main result.

Definition . Let B be an open subset of X, a point p ∈ ∂B is accessible from B, provided
that there is an arc ς in B ∪ {p} with an end p such that ς \ {p} ⊂ B, otherwise, p ∈ ∂B is
inaccessible from B.

Remark Easy examples show that the local disconnectedness of B at p ∈ ∂B does not im-
ply that p is inaccessible from B, e.g., B is the region surrounded by the Warsaw circle.
Conversely, if p is inaccessible from B, then B∩N(p, ε) has an infinite number of compo-
nents for a small ε > .

Definition . Let {Bi}ni= (n ≥ ) be pairwise disjoint open sets in X. We say that {Bi}ni=
has an intertwining property at a point p ∈ ⋂n

i= ∂Bi, provided:
() p is inaccessible from {Bi}ni=;
() for each arc ς in {Bi}ni= from p to a point x ∈ Bi for some i ∈ {, , . . . ,n}, then

ς ∩ Bj = ∅ holds for every j ∈ {, , . . . ,n}.

Remark . We note that from the definition above, beside p, the basins B(A) and B(A)
approach to p alternately, meanwhile they become narrower and narrower. By the con-
tinuity of dependence on initial conditions, we can say that the basins B(A) and B(A)
intertwine together beside p. In [, , ] and [], the existence of a saddle point with
its two branches of unstable manifold approaching different attractors plays an essential
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role in occurrence of intertwined basins of attraction. In the next section, we study the
phenomenon of intertwining attractors of a new kind of dynamical system.

3 Main results
To be simpler, in this section, we consider that the flow π defined by system (.) has a
near saddle point O and two attractors A and A, where A and A need not be equilibria
in system (.). Let B(A) and B(A) be respectively the basins of A and A, A ∩ A = ∅.
Denote byWs

 (O) andWs
(O) the orbits whose negative limit sets also are the single point

set {p} besides the orbits whose positive limit sets also are the single point set {p} and the
set O, respectively. For example, in Figure , the orbits xi and yi, i = , . Similarly, Wu

 (O)
andWu

 (O) respectively denote the orbits whose positive limit sets also are the single point
set {p} besidesWs

 (O) andWs
(O) and the set O such that the orbits xt and yt in Figure .

Theorem . Assume that system (.) has a near saddle point O, and Wu
 (O) ⊂ B(A),

Wu
 (O) ⊂ B(A). Then system (.) has the intertwining property if the α-limit set α(q) of

q ∈ ∂Ws
 (O) \ {O} (or ∂Ws

(O) \ {O}) is at least two common points.

Proof First of all, let X∗ = X ∪ {∞} denote the one-point compactification of X. Then
we extend the dynamical system π on X to a dynamical system π∗ on X∗, where π∗ is
given by π∗(x, t) = π (x, t) for x ∈ X, t ∈ R, and π∗(∞, t) = ∞ for all t ∈ R. Hence the neg-
ative limit set α(q) of q ∈ Ws(O) \ {O} is a compact and connected set in X from Theo-
rem . in []. By assumptions, the α-limit set α(q) of q ∈ ∂Ws

 (O) \ {O} is at least two
common points. So α(q) contains uncountable points. By the connectedness of α-limit
set α(q), there is a connected component containing uncountable points in α(q). Further-
more, there at least exists an arc S connecting two points in this connected component.
Otherwise, if we arbitrarily choose two distinct points p and p in the connected com-
ponent, there exists a δ (> , sufficiently small) such that B(p, δ) and B(p, δ) are relatively
compact sets, that is, B(p, δ) is compact, and there is no point of α(q) on ∂B(p, δ) and
∂B(p, δ), which respectively are the boundaries of B(p, δ) and B(p, δ). Since p and p in
α(q), there exist sequences {t′n}–∞

n= and {t′′n}–∞
n= such that qt′n ∈ B(p, δ) and qt′′n ∈ B(p, δ).

Now, choose a sequence {τn} (t′n < τn < t′′n) such that qτn in ∂B(p, δ). By the compact-
ness of B(p, δ), ∂B(p, δ) is compact, so {qτn} has a convergence subsequence {qτ ′

n} whose
convergence point in ∂B(p, δ). That is, there exists a point in α(q) ∩ ∂B(p, δ), which is
a contradiction. Hence there exists an arc S containing in some connected component
of α(q), and S ⊂ ∂(B(A) ∪ B(A)). Now, we arbitrarily choose one arc ς with one end
point p ∈ S and the other end point qt ∈ B(A) (t = t(ς ) < ). Hence by the contin-
uous dependence on initial conditions, we can assert that all the orbits cross ς in the
same direction beside the point p when ς is sufficiently small. Then the negative semi-
orbit qR– crosses ς successively at {ti}+∞

i= with  > t > t > · · · (ti → –∞ as i → ∞)
and qti tends monotonously to p along ς (see [, Chapter ]). Since p is in the com-
mon limit set of Ws(O) \ {O}, there exists a point qθ ∈ B(A) such that qθ ∈ ς , neg-
ative semi-orbit qR– crosses ς successively at θi with  > θ > θ > · · · (θi → –∞ as
i → ∞) and qθi tends monotonously to p along ς . Thus it follows that () in Defini-
tion . is true. On the other hand, obviously, one branch of the set Wu(O) \ {O} lies
in B(A), and the other in B(A). Thus B(A) and B(A) are respectively open neighbor-
hoods of two branches of Wu(O) \ {O}. For any ε > , qR– crosses D(p, ε/) ⊂ D(p, ε) for
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Figure 2 The phase portrait of an intertwined
attractor.

q ∈ ∂Ws
 (O)\{O}. Choose q, q on twoboundaries ofWs

 (O)\({O}∪α(q)) with q ∈Ws
 (O).

Let θ =max{ti} where ti is the first time that qiR– crosses D(p, ε/), i = ,. Consider the
diffeomorphism F = π (∗, ) : X → X. By the inclination lemma in [], it is easy to see that
both Fn(D(p, ε)) ∩ B(A) �= ∅ and Fn(D(p, ε)) ∩ B(A) �= ∅ hold for a sufficiently large n.
Hence we obtain that π (D(pθ , ε),n) ∩ B(A) �= ∅ and π (D(pθ , ε),n) ∩ B(A) �= ∅. Thus it
follows that () in Definition . is true, so we are done. Theorem . is completed. �

Remark . In applications of Theorem . above, we need to determine the location of
the setWs(O). From the proof of Theorem ., α(q) may be either bounded or unbounded,
and also α(q) may have equilibria (see []). Of course, α(q) can be a closed orbit in [].

Theorem . Assume that system (.) has a near saddle point O, Wu
 (O) ⊂ B(A),

Wu
 (O) ⊂ B(A). There exist no equilibria in X \A ∪A ∪ {O} if system (.) has the inter-

twining property if and only if the α-limit set α(q) of q ∈ ∂Ws
 (O) \ {O} (or ∂Ws

(O) \ {O})
is at least two common points.

Proof FromTheorem ., the sufficiency is shown. For the necessity, similarly to the proof
of Theorem  in [], we have the α-limit set α(q) of q ∈ Ws

 (O) \ {O} or q ∈ Ws
(O) \ {O}

is at least two common points. In fact, if system (.) has the intertwining property at
the point p, which is a regular point since there exist no equilibria in X \ A ∪ A ∪ {O},
then the orbit pR is contained in α(q). Hence the α-limit set α(q) of q ∈ ∂Ws

 (O) \ {O} (or
∂Ws

(O) \ {O}) is at least two common points. The theorem is completed. �

Figure  is a phase portrait of a planar system satisfying the conditions of Theorem ..
Clearly, there exist two attractors A and A, which are asymptotically stable equilibria.
Their basins B(A) and B(A) are separated by the stable manifold of the saddle point O.
The periodic orbit L also lies in the common boundary of those basins, and each point in L
is inaccessible from A and A. Hence, by Definition ., B(A) and B(A) are intertwined
basins of attraction.
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