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Abstract
This paper investigates global exponential synchronization of chaotic systems by
designing a novel impulsive controller. The novel impulsive controller is a
combination of current and past error states, which is a modification of the normal
impulsive one. Some global exponential stability criteria are derived for the error
system by utilizing the stability analysis of impulsive differential equations and
differential inequalities and, moreover, the exponential convergence rate can be
specified. An illustrative example is given to show the effectiveness of the modified
impulsive control scheme.
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1 Introduction
Synchronization of chaotic systems has become an active research area because of its po-
tential applications in different industrial areas [–]. Communication security scheme is
one of the hottest fields based on chaos synchronization. In this secure communication
scheme, the message signals are injected to a chaotic carrier in the transmitter and then
are masked or encrypted. The resulting masked signals are transmitted across a public
channel to the receiver. To recover the message in the receiver, the synchronization be-
tween the chaotic systems at the transmitter and receiver ends is required. Since Pecora
and Carroll [] originally proposed the synchronization of the drive and response systems
with different initial states in , many synchronization techniques such as coupling
control [], adaptive control [], feedback control [], fuzzy control [], observer-based
control [], etc. have been developed in the literature.
Most recently, the impulsive control techniques have been reported and developed to be

an interestingmethod [–]. In addition, Yang andCao [] investigated the exponential
synchronization of the complex dynamical networks with a coupled delay and impulsive
control. Guan et al. [] derived the synchronization of complex dynamical networks with
time-varying delays via impulsive distributed control. In [], the authors analyzed the ro-
bustness of impulsive synchronization coupled by linear delayed impulses. Themain ideas
of these impulses are to use samples of the state variables of the drive system at discrete
moments and to synchronize the response system discretely. Once the error system of the
two coupled systems is asymptotically stable, they are said to be synchronized. Generally
speaking, these impulses are samples of the state variables of the drive system at current
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discrete moments to drive the response system. However, we can also design a novel im-
pulse using not only current instantaneous errors, but also the previous time instants of
errors. By using such a technique, we can increase the impulse distances and reduce the
control cost. Although the idea is relatively well defined in control theory, it brings diffi-
culties and challenges to determine the stability of the impulsive differential equation due
to a combination of current and past error states. In [], the authors investigated the syn-
chronization of hyper-chaotic systems with such a modified impulsive controller. Based
on the above discussion, we design a more general impulsive controller than the one in
[] and give a new approach to investigate the synchronization of the drive and response
system.
The main contributions of this paper are three-fold: () An effective modified impulsive

controller is designed for the global exponential synchronization of coupled chaotic sys-
tems. () Due to the additional integral term of the errors corresponding to each impulse,
equipped with the definitions and results, we establish a uniform comparison system for
this case and derive a sufficient condition in this paper. () Global exponential synchro-
nization of the chaotic systems with the proposed impulsive controller can be simultane-
ously realized. In other words, by adding the summation term in the error dynamics, one
could achieve the same effect by increasing the impulse distance and reducing the control
cost.
The outline of this paper is listed as follows. In Section , model description and some

preliminaries are introduced. In Section , based on the stability analysis of impulsive func-
tional differential equations, the criteria for the synchronization are derived. In Section ,
a numerical example is given to illustrate the effectiveness and feasibility of the synchro-
nization criteria. Finally, concluding remarks are made in Section .

Notation We list some mathematical notations used throughout this paper as follows.
Let Rn denote the n-dimensional Euclidean space and N = {, , , . . .}. Let ‖ · ‖ be the
Euclidean norm and I be the identity matrix. Denote λmax(P) and λmin(P) as the maximal
andminimal eigenvalues of P, respectively. For a sequence tk , k ∈N satisfying  ≤ t < t <
· · · < tk < tk+ < · · · , let �k = tk – tk–, k = , , . . . , �sup � supk∈N {�k}, �inf � infk∈N{�k}.

2 Model description and some preliminaries
Achaos-based communication systemusually consists of two chaotic systems at the trans-
mitter and receiver ends, which are called the master system and the slave system. At the
transmitter end, the master system is

ẋ(t) = Ax(t) +�
(
x(t)

)
, (.)

where x(t) = (x(t),x(t), . . . ,xn(t))T ∈ R
n is the state variable, A ∈ R

n×n is a constant ma-
trix, and �(x) :Rn →R

n is a continuous function.
Generally speaking, all the chaotic systems such as Lorenz system, Chen system, Lü

system, and Chua’s circuit can be written in the above form.
At the receiver end, the slave system is written in the following form with an impulsive

control scheme:

ẏ(t) = Ay(t) +�
(
y(t)

)
+ u(t), (.)
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where �(x) :Rn →R
n is a continuous function and u(t) is the modified impulsive hybrid

controller designed as

u(t) =
∞∑
k=

δ(t – tk)

[
Bpe(tk) + Bl

k–∑
i=k–N

e(ti)

]
,

where Bp ∈ R
n×n and Bl ∈ R

n×n are impulsive control gain matrices to be designed and
δ(·) is the Dirac delta function. The impulsive instant sequence {tk}∞k= satisfies  ≤ t <
t < · · · < tk < · · · , with �sup < ∞ and limk→∞ tk = ∞. Let e(t) = y(t) – x(t) be the synchro-
nization error between the states of the master system (.) and the slave system (.).

Remark  Theproposedmodified impulsive control scheme in [] utilizes feedback from
the error at the current time instant and the errors at the previous time instants, which
is quite different from the impulsive controllers in [–]. By this modification, one can
increase the impulsive distance and therefore reduce the control cost effectively. In this
paper, we design a more generally modified impulsive control scheme than the one in
[].

Hence, the slave system with the modified impulsive controller can then be described
by the following impulsive differential equation:

⎧⎨
⎩ẏ(t) = Ay(t) +�(y(t)), t �= tk ,k ∈N , t ≥ t,

�y(t) = Bpe(tk) + Bl
∑k–

i=k–N e(ti), t = tk ,
(.)

where �y(tk) = y(t+k ) – y(t–k ) is the ‘jump’ in the state variable at the time instant tk , y(t+k ) =
limt→t+k y(t) and y(t–k ) = limt→t–k y(t). For simplicity, we assume that y(t) is left continuous
at t = tk , i.e., y(t–k ) = y(tk).
Subtracting (.) from (.) yields the following error dynamics:

⎧⎨
⎩ė(t) = Ae(t) +�(x(t), y(t)), t �= tk ,k ∈N , t ≥ t,

�e(t) = Bpe(tk) + Bl
∑k–

i=k–N e(ti), t = tk ,
(.)

where �(x(t), y(t)) = �(y(t)) – �(x(t)). It is easy to see the master system (.) and the
slave system (.) achieve global exponential synchronization if and only if the trivial so-
lution e(t) =  is globally exponentially stable in the error system (.).

Assumption  There exist a positive definite matrix P and constant matrices D ∈ R
n×n

such that

(x – y)TP�(x, y) ≤ (x – y)TPD(x – y).

Remark  Assumption  gives some requirements for the dynamics of the master sys-
tem and the slave system. If the functions describing the master and slave systems satisfy
‖�(x, y)‖ ≤ l‖y– x‖, where x, y ∈R, one can chooseD = lIn to satisfy Assumption . In ad-
dition, several groups of chaotic systems such as Lorenz system, Chen system, Lü system,
and Chua’s circuit also satisfy Assumption  with � = �.
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Definition  ([] Average impulsive interval) The average impulsive interval of the im-
pulsive sequence ζ = {t, t, . . .} is less than Ta if there exist a positive integer N and a
positive number Ta such that

Nζ (T , t)≥ T – t
Ta

–N, ∀T ≥ t ≥ ,

where Nζ (T , t) denotes the number of impulsive times of the impulsive sequence ζ in the
time interval [t,T].

Definition  The error dynamical system (.) is said to be globally exponentially syn-
chronized if there exist α > , T > , and K >  such that

∥∥e(t)∥∥ ≤ Ke–αt

holds for all t > T and any initial value.

We will need the following lemmas.

Lemma  (see []) For any vectors x, y ∈R
n and a positive-definite matrix Q ∈R

n×n, the
following matrix inequality holds: xTy≤ xTQx + yTQ–y.

Lemma  (see []) Let P ∈R
n×n be a positive definite matrix, then

λmin(P)xTx≤ xTPx ≤ λmax(P)xTx, ∀x ∈R
n.

3 Synchronization criteria
In this section, based on the stability analysis for an impulsive delayed system, some suf-
ficient conditions are derived to ensure the global exponential synchronization for the
master system and the slave system.

Theorem  Suppose that Assumption  holds and �sup < ∞. Let λ be the largest eigen-
value of (In +Bp)T (In +Bp) and λ be the largest eigenvalue of BT

l Bl . If there exist a positive
definite matrix P such that the discrete system

z(k + ) = Jk(N + )z(k), k ∈ Z

is globally exponentially stable with decay rate σ > , where

Jk(N + ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

   · · ·  
   · · ·  

· · · · · · · · · · · · · · · · · ·
   · · ·  
   · · ·  

αk–N αk–N+ αk–N+ · · · αk– α̃k–

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where α̃k– = aeα�k , αk–N+i– = beα�k–N+i– , i = , , . . . ,N , a = λ
λmax(P)
λmin(P)

, b = Nλ
λmax(P)
λmin(P)

,

α = λmax(ATP+PA+DTP+PD)
λmax(P) , λ = λmax((Bp + I)TP(Bp + I)), and λ = λmax(BT

l Bl). Then the error
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system (.) is globally exponentially stable with the convergence rate – σ
Ta , and hence the

slave system (.) can achieve global exponential synchronization with the master system
(.).

Proof Consider a Lyapunov function in the form of

V (t) = eT (t)Pe(t),

when t ∈ (tk–, tk]. The Dini derivative of V (t) along the trajectory of the error system (.)
can be obtained as follows:

V̇ (t) = ėT (t)Pe(t) + eT (t)Pė(t)

= eT (t)
(
ATP + PA

)
e(t) + eT (t)P�

(
x(t), y(t)

)
+�T(

x(t), y(t)
)
Pe(t)

≤ eT (t)
(
ATP + PA

)
e(t) + eT (t)

(
DTP + PD

)
e(t)

= eT (t)
(
ATP + PA +DTP + PD

)
e(t)

≤ λmax(ATP + PA +DTP + PD)
λmin(P)

V (t)

� αV (t), (.)

where the first inequality is obtained by Assumption  and α = λmax(ATP+PA+DTP+PD)
λmin(P)

.
Therefore,

V (t) ≤ V
(
t+k–

)
exp

[
α(t – tk–)

]
, t ∈ (tk–, tk],k = , , . . . . (.)

On the other hand, it follows from (.) for t = t+k , k = , , . . . , that we obtain

V
(
e
(
t+k

))
=

[
eT (tk)(Bp + I)T +

k–∑
i=k–N

eT (ti)BT
l

]
P

[
(Bp + I)e(tk) + Bl

k–∑
i=k–N

e(ti)

]

= eT (tk)(Bp + I)TP(Bp + I)e(tk) +
k–∑

i=k–N

eT (ti)BT
l PBl

k–∑
i=k–N

e(ti)

+ eT (tk)(Bp + I)TPBl

k–∑
i=k–N

e(ti). (.)

By Lemmas  and , we can obtain that

eT (tk)(Bp + I)TP(Bp + I)e(tk) ≤ λ
λmax(P)
λmin(P)

eT (tk)Pe(tk) =
a

V

(
e(tk)

)
, (.)

k–∑
i=k–N

eT (ti)BT
l PBl

k–∑
i=k–N

e(ti)≤ Nλ
λmax(P)
λmin(P)

k–∑
i=k–N

eT (ti)Pe(ti) =
b


k–∑
i=k–N

V
(
e(ti)

)
, (.)

eT (tk)(Bp + I)TPBl

k–∑
i=k–N

e(ti)
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≤ eT (tk)(Bp + I)TP(Bp + I)e(tk) +
k–∑

i=k–N

eT (ti)BT
l PBl

k–∑
i=k–N

e(ti)

≤ a

V (e(tk) +

b


k–∑
i=k–N

V
(
e(ti)

)
, (.)

where λ = λmax((Bp + I)TP(Bp + I)), λ = λmax(BT
l Bl), a = λ

λmax(P)
λmin(P)

and b = Nλ
λmax(P)
λmin(P)

are utilized.
From (.)-(.), we have

V
(
e
(
t+k

)) ≤ aV
(
e(tk)

)
+ b

k–∑
i=k–N

V
(
e(ti)

)

≤ aV
(
e
(
t+k–

))
eα(tk–tk–) + b

k–∑
i=k–N

V
(
e
(
t+i–

))
eα(ti–ti–)

= aeα�kV
(
e
(
t+k–

))
+ b

k–∑
i=k–N

eα�iV
(
e
(
t+i–

))

�
N∑
i=

αk–N+i–V
(
t+k–N+i–

)
+ α̃k–V

(
t+k–

)
, (.)

where α̃k– = aeα�k , αk–N+i– = beα�k–N+i– , i = , , . . . ,N .
Similar to the proof of Theorem . in [], by (.), for k ∈ Z, let

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ω(k) = V (e(t+k+)),

ω(k) = V (e(t+k+)),
...

ωN+(k) = V (e(t+k+N+))

(.)

and ω(k) = (ω(k),ω(k), . . . ,ωN+(k))T . Then the system of difference equations obtained
above together with (.) and (.) can be expressed as

ω(k –N)≤ Jk(N + )ω(k –N – ),

where

Jk(N + ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

   · · ·  
   · · ·  

· · · · · · · · · · · · · · · · · ·
   · · ·  
   · · ·  

αk–N αk–N+ αk–N+ · · · αk– α̃k–

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (.)

Let the comparison system be
⎧⎨
⎩z(k + ) = Jk(N + )z(k),

z(N) = ω(–).
(.)

http://www.advancesindifferenceequations.com/content/2013/1/24
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Then, by the comparison principle, we can get

ω(k –N – ) ≤ z(k), k ≥ N ,k ∈ Z.

Thus, by the condition in the theorem, there exists a constant K >  such that

∥∥ω(k –N – )
∥∥ ≤ Ke–σ (k–N)∥∥ω(–)

∥∥, k ≥ N ,k ∈ Z,

where ‖ω(–)‖ = ∑N
i=V (e(t+i )).

From (.), for t = tk , k ∈ Z, we can get that

V
(
e
(
t+k

))
= ωN+(k –N – ) ≤ ∥∥ω(k –N – )

∥∥ ≤ K
∥∥ω(–)

∥∥e–σ (k–N). (.)

Hence, by Lemma , (.) and (.), and for any t ∈ (tk–, tk], k ∈ Z, we get

∥∥e(t)∥∥ ≤ 
λmin(P)

V
(
e(t)

) ≤ 
λmin(P)

V
(
t+k–

)
eα(t–tk–)

≤ K‖ω(–)‖eα�sup

λmin(P)
eσ (N+)e–σk � K̃e–σk ,

where K̃ = K‖ω(–)‖eα�sup

λmin(P)
eσ (N+).

LetNζ (t, t) be the number of impulsive times of the impulsive sequence ζ in the interval
(t, t). Hence, we can obtain

∥∥e(t)∥∥ ≤ K̃e–σNζ (t,t). (.)

Since the average impulsive interval of the impulsive sequence ζ = {t, t, . . .} is equal to
Ta, we have

Nζ (t, t) ≥ t – t
Ta

–N, ∀T ≥ t ≥ .

Hence, by (.), we get

∥∥e(t)∥∥ ≤ K̃e
σN
 e–

σ
Ta (t–t).

Thus, the trivial solution e =  of the error system (.) is globally exponentially sta-
ble with the convergence rate – σ

Ta , and hence the slave system (.) can achieve global
exponential synchronization with the master system (.). �

Remark  In this paper, a modified impulsive control system is adopted to provide the
basis for developing global exponential synchronization between the master system and
the slave system, which can reduce the impulsive times and the control cost effectively. In
addition, to stabilize the error system (.) more effectively, we can also consider that the
error at the current time instant and the previous time instants play different roles in the
impulsive control system. For example, we can suppose that Bp =

ηbp
bp+bl

I and Bl = ηbl
N(bp+bl)

I ,
where η, bp and bl are constants, and |bp| ≥ |bl|. Obviously, it is a special case of Theorem .

http://www.advancesindifferenceequations.com/content/2013/1/24
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Remark  Note that in the proof of Theorem , the concept of an average impulsive in-
terval is employed to prove the global exponential stability for the error system under
Assumption . By this approach, the requirement on the lower bound and upper bound
of impulsive interval is removed in Theorem , which is different from the conventional
ones in the literature.

Remark  If N = , the modified impulsive control scheme is the normal impulsive one,
such as in [–].Hence, byTheorem,we only need a positive definitematrix P such that
|α̃k–| < ,∀k ∈ Z, where α̃k– = aeα�k , i = , , . . . ,N , are the same as inTheorem. Then the
slave system (.) can achieve global exponential synchronization with the master system
(.). In fact, it can be seen from (.) that α̃k– is the impulsive strength of the impulsive
signal if N = . If |α̃k–| < , ∀k ∈ Z, the impulse is beneficial for the error system since
the difference is reduced. Thus, the error system can be stable easily with the impulsive
control system.

In the following, by using Theorem , we give some simple corollaries of Theorem .

Corollary  Suppose the impulsive interval is a positive constant �, and the impulsive
gain matrix Bp = bpI , and Bl = blI . If there exists a positive definite matrix P such that

ρ
(
J(N + )

)
< e–σ ,

where

J(N + ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

   · · ·  
   · · ·  

· · · · · · · · · · · · · · · · · ·
   · · ·  
   · · ·  

beα� beα� beα� · · · beα� aeα�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where a = ( + bp) λmax(P)
λmin(P)

, b = Nbl
λmax(P)
λmin(P)

and α is the same as in Theorem . Then the
error system (.) is globally exponentially stable with the convergence rate – σ

Ta , and hence
the slave system (.) can achieve global exponential synchronization with the master sys-
tem (.).

Proof The proof is similar to Theorem . �

Corollary  If there exists a positive constant  < γ <  such that every root λj (j =
, , . . . ,N + ) of the characteristic polynomial

Fk(λ)� λN+ – α̃k–λ
N – αk–λ

N – · · · – αk–N+λ – αk–N

satisfies |λj| ≤ γ < , j = , , . . . ,N + , where α̃k– = aeα�k , αk–N+i– = beα�k–N+i– , i =
, , . . . ,N , are the same as in Theorem . Then the error system (.) is globally exponen-
tially stable with the convergence rate – σ

Ta , and hence the slave system (.) can achieve
global exponential synchronization with the master system (.).

http://www.advancesindifferenceequations.com/content/2013/1/24
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Proof In fact, Fk(λ) is the characteristic polynomial of Jk(n + ) in Theorem . Hence, if
every root satisfies |λj| ≤ γ < , j = , , . . . ,N + , there exists a constant σ >  such that
|λj| ≤ γ ≤ e–σ < , j = , , . . . ,N + , then the spectral radius of Jk(n + ) satisfies ρ(Jk(n +
)) ≤ γ < . Thus, we conclude that this corollary is true. �

4 Numerical example
In this section, the chaotic system used in this example and simulation is given by

⎧⎪⎪⎨
⎪⎪⎩
ẋ = α(x – x – f (x)),

ẋ = x – x + x,

ẋ = –βx,

(.)

where α, β are parameters and f (x) represents the piecewise-linear function of the Chua
diode, which is given by f (x) = dx + .(c – d)(|x + | – |x – |), where c < d <  are
two constants. When α = ., β = ., c = –., and d = –., the Chua system
is chaotic. We can obtain the double scroll attractor shown in Figure  with x() = .,
x() = , and x() = ..
The Chua oscillator can be written in the form of (.), i.e.,

ẋ(t) = Ax(t) +�
(
x(t)

)
,

where

A =

⎡
⎢⎣
d – α α 

 – 
 –β 

⎤
⎥⎦ , �

(
x(t)

)
=

⎡
⎢⎣
.(c – d)(|x + | – |x – |)




⎤
⎥⎦ .

Figure 1 A double scroll attractor in Chua’s circuit.
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The function � is defined as follows:

�
(
y(t)

)
= �

(
y(t)

)
.

Therefore,

(x – y)TP�(x, y) = (x – y)TP(�
(
y(t)

)
–�

(
x(t)

) ≤ (x – y)TP

⎡
⎢⎣
c – d  
  
  

⎤
⎥⎦ (x – y)

which shows that Assumption  holds with D =
[
c–d  
  
  

]
, P = I .

Suppose Bp = bpI , Bl = blI . We should choose proportional and integral gains (bp,bl) to
satisfy the conditions in Corollary . Set bp = –., bl = –., and N = , we have a = .,
b = ., α = ., and an impulsive interval � = ., one obtains aeα� = beα� = .
which results in ρ(J(N + )) < e–.. Based on Corollary , the error system is glob-
ally exponentially stable with the convergence rate – 

 , and hence the slave system can
achieve global exponential synchronization with the master system. The quantity e(t) =√
e + e + e is used to measure the quality of synchronization errors of drive-response

dynamical systems, which is simulated in Figure .
To illustrate the effectiveness of the synchronization scheme with the modified impul-

sive controller, using the given parameters in the original impulsive method bp = –. and
bl = , one obtains aeα� = . <  according to Corollary , which is simulated in Fig-
ure .
The effectiveness of the proposed impulsive controller can be observed from the numer-

ical simulations. This implies that by adding the summation term in the error dynamics,
one could reduce the synchronization time with the same impulsive distance. In other

Figure 2 The error systemwith the impulsive interval � = 0.09 and N = 2.

http://www.advancesindifferenceequations.com/content/2013/1/24
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Figure 3 The error systemwith the impulsive interval � = 0.09 and N = 0.

words, by adding the summation term in the error dynamics, one could achieve the same
effect by increasing the impulse distance and reducing the control cost.

5 Conclusions
This paper is focused on the global exponential synchronization of chaotic systems with
an effective modified impulsive controller. Because the modified impulsive controller is a
combination of current and past error states, we establish a uniform comparison system
for this case and derive a sufficient condition in Theorem . At the same time, a numerical
example is given to illustrate the effectiveness and feasibility of the proposedmethods and
results. In other words, by adding the summation term in the error dynamics, one could
achieve the same effect by increasing the impulse distance and reducing the control cost.
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