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Abstract
In the present paper, we are concerned with a class of stochastic functional
differential delay equations with the Poisson jump, whose coefficients are general
Taylor expansions of the coefficients of the initial equation. Taylor approximations are
a useful tool to approximate analytically or numerically the coefficients of stochastic
differential equations. The aim of this paper is to investigate the rate of approximation
between the true solution and the numerical solution in the sense of the Lp-norm
when the drift and diffusion coefficients are Taylor approximations.
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1 Introduction
Stochastic differential equations [–] have attracted a lot of attention, because the prob-
lems are not only academically challenging, but also of a practical importance and have
played an important role in many fields such as in option pricing, forecast of the growth of
population, etc. (see, e.g., []). Recently, much work has been done on stochastic differen-
tial equations. Here, we highlight Mao et al.’s great contribution (see [–] and references
therein). Svishchuk and Kazmerchuk [] studied the exponential stability of solutions of
linear stochastic differential equations with Poisson jump [–] and Markovian switch-
ing [, , ].
In many applications, one assumes that the system under consideration is governed by

a principle of causality, that is, the future states of the system are independent of the past
states and are determined solely by the present.However, under closer scrutiny, it becomes
apparent that the principle of causality is often only the first approximation to the true
situation, and that a more realistic model would include some of the past states of the
system. Stochastic functional differential equations [] give a mathematical explanation
for such a system.
Unfortunately, in general, it is impossible to find the explicit solution for stochastic

functional differential equations with the Poisson jump. Even when such a solution can
be found, it may be only in an implicit form or too complicated to visualize and evalu-
ate numerically. Therefore, many approximate schemes were presented, for example, EM
scheme, time discrete approximations, stochastic Taylor expansions [], and so on.
Meanwhile, the rate of approximation to the true solution by the numerical solution

is different for different numerical schemes. Jankovic et al. investigated the following
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stochastic differential equations (see []):

dx(t) = f (xt , t)dt + g(xt , t)dW (t), t ≤ t ≤ T .

In this paper, we develop approximatemethods for stochastic differential equations driven
by Poisson process, that is,

dx(t) = f (xt , t)dt + g(xt , t)dW (t) + h(xt , t)dN(t), t ≤ t ≤ T .

The rate of the Lp-closeness between the approximate solution and the solution of the
initial equation increases when the number of degrees in Taylor approximations of coef-
ficients increases. Although the Poisson jump is concerned, the rate of approximation to
the true solution by the numerical solution is the same as the equation in []. Even when
the Poisson process is replaced by Poisson random measure, the rate is also the same.

2 Approximate scheme and hypotheses
Throughout this paper, we let {�,F , {Ft}t≥,P} be a probability space with a filtration sat-
isfying the usual conditions, i.e., the filtration is continuous on the right and F-contains
allP-zero sets. LetW (t) = (w(t),w(t), . . . ,wm(t))T be anm-dimensional Brownianmotion
defined on the probability space. For a,b ∈ Rwith a < b, denoted byD([a,b];Rn), the family
of functions ϕ from [a,b] to Rn, that are continuous on the right and limitable on the left.
D([a,b];Rn) is equipped with the norm ‖ϕ‖ = supa≤s≤b |ϕ(s)|, where | · | is the Euclidean
norm in Rn, i.e., |x| = √

xTx (x ∈ Rn). If A is a vector or matrix, its trace norm is denoted
by |A| = √

trace(ATA), where its operator norm is denoted by ‖A‖ = sup{|Ax| : x = }. De-
note by Db

F
([–τ , ];Rn) the family of all bounded, F-measurable, D([–τ , ];Rn)-valued

random variable.
We consider the following Itô stochastic functional differential equations with Poisson

jump:

dx(t) = f (xt , t)dt + g(xt , t)dW (t) + h(xt , t)dN(t), t ≤ t ≤ T ()

with the initial condition xt = {ξ (t), t ∈ [–τ , ]}, xt = {x(t + θ ), θ ∈ [–τ , ]} ∈ Db
Ft
([–τ , ];

Rn), and xt is independent ofW (·) and N(·).
Assume that

f :Db
Ft

(
[–τ , ];Rn) × [t,T]→ Rn,

g :Db
Ft

(
[–τ , ];Rn) × [t,T] → Rn×m,

h :Db
Ft

(
[–τ , ];Rn) × [t,T] → Rn,

where

∫ T

t

∣∣f (xt , t)∣∣dt < ∞,
∫ T

t

[
g(xt , t)

] dt <∞,
∫ T

t

[
h(xt , t)

] dt < ∞.

For the existence and uniqueness of the solutions of Eq. () (see [], Theorem ..), we
give the following rather general assumptions.
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(H) f , g and h satisfy the Lipschitz condition and the linear growth condition as
follows: for any t ∈ [t,T] there exists a constant L >  such that

∣∣f (ϕ, t) – f (ψ , t)
∣∣ ∨ ∣∣g(ϕ, t) – g(ψ , t)

∣∣ ∨ ∣∣h(ϕ, t) – h(ψ , t)
∣∣ ≤ L‖ϕ –ψ‖,∣∣f (ϕ, t)∣∣ ∨ ∣∣g(ϕ, t)∣∣ ∨ ∣∣h(ϕ, t)∣∣ ≤ L

(
 + ‖ϕ‖),

where ϕ,ψ ∈Db
Ft
([–τ , ];Rn).

(H) (The Hölder continuity of the initial data.) There exist constants K ≥  and
γ ∈ (, ] such that for all –τ ≤ s < t ≤ ,

E
∣∣ξ (t) – ξ (s)

∣∣ ≤ K(t – s)γ .

(H) The functions f , g and h have Taylor expansions in the argument x up to themth,
mth, and mth Fréchet derivatives, respectively [].

(H) The functions f (m+)
(x,t) , g(m+)

(x,t) and h(m+)
(x,t) are uniformly bounded, i.e., there exists a

positive constant L such that

sup
Cb
Ft

([–τ ,];Rn)×[t,T]→Rn

∥∥f (m+)
(x,t) (h,h, . . . ,h)

∥∥ ≤ L‖h‖m+,

sup
Cb
Ft

([–τ ,];Rn)×[t,T]→Rn

∥∥g(m+)
(x,t) (h,h, . . . ,h)

∥∥ ≤ L‖h‖m+,

sup
Cb
Ft

([–τ ,];Rn)×[t,T]→Rn

∥∥h(m+)
(x,t) (h,h, . . . ,h)

∥∥ ≤ L‖h‖m+.

For some sufficiently large enough n ∈N , we assume the step 	 = T–t
n , where

 < 	 
 . Let t < t < · · · < tn = T be an equidistant partition of the interval
[t,T], that is, the partition points are tk = t + k

n (T – t), k = , , . . . ,n. The
explicit discrete approximation scheme is defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xnt = ξ (t), –τ ≤ t ≤ ;

xntk+ = xn(tk) +
∫ t
tk

∑m
i=

f (i)(xntk
,s)(x

n
s –xntk ,...,x

n
s –xntk )

i! ds

+
∫ t
tk

∑m
i=

g(i)(xntk ,s)
(xns –xntk ,...,x

n
s –xntk )

i! dW (s)

+
∫ t
tk

∑m
i=

h(i)(xntk ,s)
(xns –xntk ,...,x

n
s –xntk )

i! dN(s), k = , . . . ,n.

()

Then the continuous approximate solution is defined by

xn(t) = xn(tk) +
∫ t

tk

m∑
i=

f (i)(xntk ,s)
(xns – xntk , . . . ,x

n
s – xntk )

i!
ds

+
∫ t

tk

m∑
i=

g(i)(xntk ,s)
(xns – xntk , . . . ,x

n
s – xntk )

i!
dW (s)

+
∫ t

tk

m∑
i=

h(i)(xntk ,s)
(xns – xntk , . . . ,x

n
s – xntk )

i!
dN(s), t ∈ [tk , tk+], ()
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satisfying the initial condition xt = ξ , xntk = {xn(tk + θ ), θ ∈ [–τ , ]},
k = , , . . . ,n – .

Besides the hypotheses motioned above, we will need another one:
(H) There exists a positive constant Q, which is independent of n, such that for r ≥ ,

E
[

sup
t∈[t–τ ,T]

∣∣x(t)∣∣r] < ∞, E
[

sup
t∈[t–τ ,T]

∣∣xn(t)∣∣r] ≤ Q.

Moreover, in what follows, C is a generic positive constant independent of 	,
whose values may vary from line to line.

3 Preparatory lemmas and themain result
Since the proof of the main result is very technical, to begin with, we present several lem-
mas which will play an important role in the subsequent section.

Lemma  Let conditions (H), (H), (H), (H) be satisfied. Then, for any r ≥ ,

E
[
sup

s∈[tk ,t]

∣∣xn(s) – xn(tk)
∣∣r] ≤ C	r/, t ∈ [tk , tk+],k = , , . . . ,n – . ()

Proof For convenience, we denote

F
(
xnt , t;x

n
tk

)
=

m∑
i=

f (i)(xntk ,s)
(xns – xntk , . . . ,x

n
s – xntk )

i!
,

G
(
xnt , t;x

n
tk

)
=

m∑
i=

g(i)(xntk ,s)
(xns – xntk , . . . ,x

n
s – xntk )

i!
,

H
(
xnt , t;x

n
tk

)
=

m∑
i=

h(i)(xntk ,s)
(xns – xntk , . . . ,x

n
s – xntk )

i!
.

Then, in view of (H), for t ∈ [tk , tk+], k = , , . . . ,n, and β ∈ (, ),

f
(
xnt , t

)
= F

(
xnt , t;x

n
tk

)
+
f (m+)
(xntk +β(xnt –x

n
tk
),t)(x

n
t – xntk , . . . ,x

n
t – xntk )

(m + )!
,

g
(
xnt , t

)
= F

(
xnt , t;x

n
tk

)
+
g(m+)
(xntk +β(xnt –x

n
tk
),t)(x

n
t – xntk , . . . ,x

n
t – xntk )

(m + )!
,

h
(
xnt , t

)
= F

(
xnt , t;x

n
tk

)
+
h(m+)
(xntk +β(xnt –x

n
tk
),t)(x

n
t – xntk , . . . ,x

n
t – xntk )

(m + )!
.

Obviously, for any t ∈ [tk , tk+], k = , , . . . ,n – ,

xnt – xntk =
∫ t

tk
F
(
xns , s;x

n
tk

)
ds +

∫ t

tk
G

(
xns , s;x

n
tk

)
dW (s) +

∫ t

tk
H

(
xns , s;x

n
tk

)
dN(s).

Making use of the elementary inequality |a + b + c|r ≤ r–(|a| + |b| + |c|), a,b, c ≥ ,
r ∈ N , the Hölder inequality to the Lebesgue integral, and the Burkholder-Davis-Gundy
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inequality to the Itô integral for r ≥ , we can obtain

E
[
sup

s∈[tk ,t]

∣∣xn(s) – xn(tk)
∣∣]

≤ r–
[
(t – tk)r–

∫ t

tk
E
∣∣F(

xns , s;x
n
tk

)∣∣r ds

+
(

r

(r – )

)r/

(t – tk)r/–
∫ t

tk
E
∣∣G(

xns , s;x
n
tk

)∣∣r ds

+ E
[
sup

tk≤s≤t

∣∣∣∣
∫ s

tk
H

(
xnt , t;x

n
tk

)
dN(t)

∣∣∣∣
r]]

.= r–
[
(t – tk)r–J(t) +

(
r

(r – )

)r/

(t – tk)r/–(t – tk)r/–J(t) + J(t)
]
.

Then we compute J(t), J(t), J(t)

J(t) =
∫ t

tk
E
∣∣f (xns , s) – [

f
(
xns , s

)
– F

(
xns , t;x

n
tk

)]∣∣r ds

=
∫ t

tk
E
∣∣∣∣f (xns , s) –

f (m+)
(xntk +β(xns –xntk ),s)

(xns – xntk , . . . ,x
n
s – xntk )

(m + )!

∣∣∣∣
r

ds

≤ r–
[
Lr

∫ t

tk
E
(
 +

∥∥xnt ∥∥)r ds + Lr
[(m + )!]r

∫ t

tk
E
[∥∥xn(s) – xn(tk)

∥∥(m+)r]ds
]

≤ C(t – tk) +
Lr

(m + )!
Qm+(t – tk)

≤ C(t – tk).

Similarly, by repeating the procedure above, we see that J(t) ≤ C(t – tk).
Noting that {N(s), s ∈ [tk , t]} is a Poisson process, we will use the compensated Poisson

process {Ñ(s) – λs, s ∈ [tk , t]}, which is a martingale. Then we obtain

J(t) = E
[
sup

tk≤s≤t

∣∣∣∣
∫ s

tk
H

(
xnt , t;x

n
tk

)
dN̄(t) + λ

∫ s

tk
H

(
xnt , t;x

n
tk

)
dt

∣∣∣∣
r]

≤ r–E
[
sup

tk≤s≤t

∣∣∣∣
∫ s

tk
H

(
xnt , t;x

n
tk

)
dN̄(t)

∣∣∣∣
r]

+ r–λrE
[
sup

tk≤s≤t

∣∣∣∣
∫ s

tk
H

(
xnt , t;x

n
tk

)
dt

∣∣∣∣
r]

≤ r–λr/
(

r

(r – )

)r/

E
[∫ t

tk

∣∣H(
xns , s;x

n
tk

)∣∣ ds
]r/

+ r–λr
∫ t

tk
E
∣∣H(

xns , s;x
n
tk

)∣∣r ds

≤ r–λr/
(

r

(r – )

)r/

(t – tk)r/–
∫ t

tk
E
∣∣H(

xns , s;x
n
tk

)∣∣r ds

+ r–λr
∫ t

tk
E
∣∣H(

xns , s;x
n
tk

)∣∣r ds
≤ C(t – tk)r/ +C(t – tk).

In view of J(t), J(t), J(t), we can obtain

E
[
sup

s∈[tk ,t]

∣∣xn(t) – xn(tk)
∣∣] ≤ C(t – tk)r/ +C(t – tk) ≤ C(t – tk)r/ ≤ C	r/. �
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Lemma  Under conditions (H), (H), (H) and (H), for any r ≥ ,

E
[∥∥xnt – xntk

∥∥r] ≤ C	r/, t ∈ [tk , tk+],k = , , . . . ,n – . ()

The proof of this lemma is similar to Proposition  in [].
Then, by Lemmas  and , we can prove the following main result.

Theorem  Let conditions (H)-(H) be satisfied, then for any r ≥ ,

E
[

sup
t∈[t–τ ,T]

∣∣x(t) – xn(t)
∣∣r] ≤ C	–(m+)r/, ()

where m =min{m,m,m}.

Proof For an arbitrary t ∈ [t,T], it follows that

x(t) – xn(t) =
∫ t

t

∑
k:tk≤t

[
f (xs, s) – F

(
xns , s;x

n
tk

)]
I[tk ,tk+)(s)ds

+
∫ t

t

∑
k:tk≤t

[
g(xs, s) –G

(
xns , s;x

n
tk

)]
I[tk ,tk+)(s)dW (s)

+
∫ t

t

∑
k:tk≤t

[
h(xs, s) –H

(
xns , s;x

n
tk

)]
I[tk ,tk+)(s)dN(s).

Since x(t) and xn(t) satisfy the same initial condition, we can obtain

E
[

sup
s∈[t–τ ,t]

∣∣x(s) – xn(s)
∣∣r]

≤ E
[

sup
s∈[t–τ ,t]

∣∣x(s) – xn(s)
∣∣r] + E

[
sup

s∈[t,t]

∣∣x(s) – xn(s)
∣∣r] = E

[
sup

s∈[t,t]

∣∣x(s) – xn(s)
∣∣r]

≤ r–E
[

sup
s∈[t–τ ,t]

∣∣∣∣
∫ s

t

∑
k:tk≤t

[
f (xu,u) – F

(
xnu,u;x

n
tk

)]
I[tk ,tk+)(u)du

∣∣∣∣
r]

+ r–E
[

sup
s∈[t–τ ,t]

∣∣∣∣
∫ s

t

∑
k:tk≤t

[
g(xu,u) –G

(
xnu,u;x

n
tk

)]
I[tk ,tk+) dW (u)

∣∣∣∣
r]

+ r–E
[

sup
s∈[t–τ ,t]

∣∣∣∣
∫ s

t

∑
k:tk≤t

[
h(xu,u) –H

(
xnu,u;x

n
tk

)]
I[tk ,tk+) dN(u)

∣∣∣∣
r]

≤ r–(t – t)r–E
[∫ s

t

∣∣∣∣
∑
k:tk≤t

[
f (xs, s) – F

(
xns , s;x

n
tk

)]
I[tk ,tk+)

∣∣∣∣
r

ds
]

+ r–C(t – t)r/–E
[∫ s

t

∑
k:tk≤t

∣∣[g(xs, s) –G
(
xns , s;x

n
tk

)]
I[tk ,tk+)

∣∣r ds
]

+ r–C(t – t)r/–E
[∫ s

t

∑
k:tk≤t

∣∣[h(xs, s) –H
(
xns , s;x

n
tk

)]
I[tk ,tk+)

∣∣r ds
]

+ r–λrE
[∫ s

t

∑
k:tk≤t

∣∣[h(xs, s) –H
(
xns , s;x

n
tk

)]
I[tk ,tk+)

∣∣r ds
]
. ()
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Let j =max{i ∈ {, , , . . . ,n – }, ti ≤ t ≤ T}. Denote that

J(tk , t,u) =
[
f (xu,u) – F

(
xnu,u;x

n
tk

)]
Itk ,t(u),

J(tk , t,u) =
[
g(xu,u) –G

(
xnu,u;x

n
tk

)]
Itk ,t(u),

J(tk , t,u) =
[
h(xu,u) –H

(
xnu,u;x

n
tk

)]
Itk ,t(u).

Then we can write () as

E
[

sup
s∈[t–τ ,t]

∣∣x(s) – xn(s)
∣∣r]

≤ r–(t – t)r–
∫ t

t
E

∣∣∣∣∣
j–∑
k=

J(tk , tk+,u) + J(tj, t,u)

∣∣∣∣∣
r

ds

+ r–C(t – t)r/–
∫ t

t
E

∣∣∣∣∣
j–∑
k=

J(tk , tk+,u) + J(tj, t,u)

∣∣∣∣∣
r

ds

+ r–C(t – t)r/–
∫ t

t
E

∣∣∣∣∣
j–∑
k=

J(tk , tk+,u) + J(tj, t,u)

∣∣∣∣∣
r

ds

+ r–λr
∫ t

t
E

∣∣∣∣∣
j–∑
k=

J(tk , tk+,u) + J(tj, t,u)

∣∣∣∣∣
r

ds. ()

On the other hand, for k = , , . . . , j – ,

j–∑
k=

J(tk , tk+,u) + J(tj, t,u) =

⎧⎨
⎩
f (xu,u) – F(xnu,u;xntk ), u ∈ [tk , tk+),

f (xu,u) – F(xnu,u;xntj ), u ∈ [tj, t),

j–∑
k=

J(tk , tk+,u) + J(tj, t,u) =

⎧⎨
⎩
g(xu,u) –G(xnu,u;xntk ), u ∈ [tk , tk+),

g(xu,u) –G(xnu,u;xntj ), u ∈ [tj, t),

j–∑
k=

J(tk , tk+,u) + J(tj, t,u) =

⎧⎨
⎩
h(xu,u) –H(xnu,u;xntk ), u ∈ [tk , tk+),

h(xu,u) –H(xnu,u;xntj ), u ∈ [tj, t).

The relation () becomes

E
[

sup
s∈[t–τ ,t]

∣∣x(s) – xn(s)
∣∣r]

≤ r–(T – t)r–
j–∑
k=

∫ tk+

tk
E
∣∣f (xu,u) – F

(
xnu,u;x

n
tk

)∣∣r du

+ r–(T – t)r–
∫ t

tj
E
∣∣f (xu,u) – F

(
xnu,u;x

n
tj

)∣∣r du

+ r–C(T – t)r/–
j–∑
k=

∫ tk+

tk
E
∣∣g(xu,u) –G

(
xnu,u;x

n
tk

)∣∣r du

+ r–C(T – t)r/–
∫ t

tj
E
∣∣g(xu,u) –G

(
xnu,u;x

n
tj

)∣∣r du

http://www.advancesindifferenceequations.com/content/2013/1/230
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+ r–C(T – t)r/–
j–∑
k=

∫ tk+

tk
E
∣∣h(xu,u) –H

(
xnu,u;x

n
tk

)∣∣r du

+ r–C(T – t)r/–
∫ t

tj
E
∣∣h(xu,u) –H

(
xnu,u;x

n
tj

)∣∣r du

+ r–λr
j–∑
k=

∫ tk+

tk
E
∣∣h(xu,u) –H

(
xnu,u;x

n
tk

)∣∣r du

+ r–
∫ t

tj
E
∣∣h(xu,u) –H

(
xnu,u;x

n
tj

)∣∣r du.

Using (H), (H) and (), yields

∫ t

tk
E
∣∣f (xu,u) – F

(
xnu,u;x

n
tj

)∣∣r du

≤ r–
[∫ t

tk
E
∣∣f (xu,u) – f

(
xnu,u

)∣∣r du +
∫ t

tk
E
∣∣f (xnu,u)

– F
(
xnu,u;x

n
tj

)∣∣r du
]

≤ r–Lr
∫ t

tk
E
∥∥xu – xnu

∥∥r du + r–
∫ t

tk
E
∥∥∥∥
f (m+)
(xntk +β(xnu–xntk ),u)

(xnu – xntk , . . . ,x
n
u – xntk )

(m + )!

∥∥∥∥
r

du

≤ r–Lr
∫ t

tk
E
∥∥xu – xnu

∥∥r du + r–
Lr

[(m + )!]r

∫ t

tk
E
∥∥xnu – xntk

∥∥(m+)r du

≤ r–Lr
∫ t

tk
E
∥∥xu – xnu

∥∥r du + r–
LrC

[(m + )!]r
	(m+)r/(t – tk),

where k = , , . . . , j and t ∈ [tk , tk+]. Similarly,

∫ t

tk
E
∣∣g(xu,u) –G

(
xnu,u;x

n
tj

)∣∣r du≤ C
∫ t

tk
E
∥∥xu – xnu

∥∥r du +C	(m+)r/(t – tk),

∫ t

tk
E
∣∣h(xu,u) –H

(
xnu,u;x

n
tj

)∣∣r du≤ C
∫ t

tk
E
∥∥xu – xnu

∥∥r du +C	(m+)r/(t – tk).

Altogether,

E
[

sup
s∈[t–τ ,t]

∣∣x(s) – xn(s)
∣∣r] ≤ C

∫ t

tk
E
∥∥xu – xnu

∥∥r du +C	(m+)r/(t – tk),

wherem =min{m,m,m}. In order to estimate the E‖xu – xnu‖r , we distinguish two cases:
() when u – τ < t,

E
∥∥xu – xnu

∥∥r ≤ E
[

sup
θ∈[–τ ,]

∥∥x(u + θ ) – xn(u + θ )
∥∥r

]
= E

[
sup

γ∈[u–τ ,u]

∥∥x(γ ) – xn(γ )
∥∥r

]

≤ E
[

sup
γ∈[u–τ ,t]

∥∥x(γ ) – xn(γ )
∥∥r

]
+ E

[
sup

γ∈[t,u]

∥∥x(γ ) – xn(γ )
∥∥r

]

= E
[

sup
γ∈[t,u]

∥∥x(γ ) – xn(γ )
∥∥r

]
≤ E

[
sup

γ∈[t–τ ,u]

∥∥x(γ ) – xn(γ )
∥∥r

]
;
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() when u – τ ≥ t,

E
∥∥xu – xnu

∥∥r ≤ E
[

sup
γ∈[u–τ ,u]

∥∥x(γ ) – xn(γ )
∥∥r

]
≤ E

[
sup

γ∈[t–τ ,u]

∥∥x(γ ) – xn(γ )
∥∥r

]
.

So,

E
[

sup
s∈[t–τ ,t]

∣∣x(s) – xn(s)
∣∣r] ≤ C

∫ t

t
E
[

sup
γ∈[t–τ ,u]

∥∥x(γ ) – xn(γ )
∥∥r

]
du +C	(m+)r/(t – t).

By the Gronwall inequality, we obtain the desired result

E
[

sup
s∈[t–τ ,t]

∣∣x(s) – xn(s)
∣∣r] ≤ C	(m+)r/(T – t)eC(T–t) = C	(m+)r/,

which completes the proof. �

Remark From the proof, we can easily understand that the convergence speed between
the true solution of Eq. () and the approximation solution is faster than the Euler-
Maruyama method.
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