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Abstract
This work is devoted to studying the application of fixed point theory to the stability
analysis of complex neural networks. We employ the new method of contraction
mapping principle to investigate the stability of impulsive cellular neural networks
with time-varying delays. Some novel and concise sufficient conditions are presented
to ensure the existence and uniqueness of a solution and the global exponential
stability of the considered system at the same time. These conditions are easily
checked and do not require the differentiability of delays.
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1 Introduction
Cellular neural networks (CNNs), proposed by Chua and Yang in  [, ], have be-
come a hot topic for their numerous successful applications in various fields such as op-
timization, linear and nonlinear programming, associative memory, pattern recognition
and computer vision.
Due to the finite switching speed of neurons and amplifiers in the implementation of

neural networks, it turns out that time delays should not be neglected; and therefore,
the model of delayed cellular neural networks (DCNNs) is put forward, which is natu-
rally of better realistic significance. In fact, besides delay effects, stochastic and impul-
sive as well as diffusion effects are also likely to exist in the neural networks. Accord-
ingly, many experts are showing a growing interest in the dynamic behavior research of
complexCNNs such as impulsive delayed reaction-diffusionCNNs and stochastic delayed
reaction-diffusion CNNs, followed by a mass of achievements [–] obtained.
Synthesizing the reported results about the complex CNNs, we find that the existing re-

search skill for dealing with the stability is mainly based on Lyapunov theory. However, we
also notice that there are still lots of difficulties in the applications of corresponding theory
to the specific problems [–]. It is therefore necessary to seek some new techniques to
overcome those difficulties.
It is inspiring that in a few recent years, Burton and other authors have applied fixed

point theory to investigate the stability of deterministic systems and obtained some more
applicable results; for example, see the monograph [] and the papers [–]. In addi-
tion, more recently, there have been a few papers where fixed point theory is employed to
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deal with the stability of stochastic (delayed) differential equations; see [–, ]. Par-
ticularly, in [–], Luo used fixed point theory to study the exponential stability of mild
solutions for stochastic partial differential equations with bounded delays and with infi-
nite delays. In [, ], fixed point theory is used to investigate the asymptotic stability
in the pth moment of mild solutions to nonlinear impulsive stochastic partial differential
equations with bounded delays and with infinite delays. In [], the exponential stability
of stochastic Volterra-Levin equations is studied based on fixed point theory. As is known
to all, although Lyapunov functions play an important role in Lyapunov stability theory,
it is not easy to find the appropriate Lyapunov functions. This difficulty can be avoided
by applying fixed point theory. By means of fixed point theory, refs. [–] require no
Lyapunov functions for stability analysis, and the delay terms need no differentiability.
Naturally, for the complex CNNswhich have great application values, wewonder if fixed

point theory can be used to investigate the stability, not just the existence and uniqueness
of a solution. With this motivation, in the present paper, we aim to discuss the stability of
impulsive CNNs with time-varying delays via fixed point theory. It is worth noting that
our research skill is contraction mapping theory which is different from the usual method
of Lyapunov theory. We use the fixed point theorem to prove the existence and unique-
ness of a solution and the global exponential stability of the considered system all at once.
Some new and concise algebraic criteria are provided; moreover, these conditions are easy
to verify and do not require even the differentiability of delays, let alone the monotone de-
creasing behavior of delays.

2 Preliminaries
Let Rn denote the n-dimensional Euclidean space and ‖ · ‖ represent the Euclidean norm.
N � {, , . . . ,n}, R+ = [,∞), C[X,Y ] corresponds to the space of continuous mappings
from the topological space X to the topological space Y .
In this paper, we consider the following impulsive cellular neural network with time-

varying delays:

dxi(t)
dt

= –aixi(t) +
n∑
j=

bijfj
(
xj(t)

)
+

n∑
j=

cijgj
(
xj

(
t – τj(t)

))
, t ≥ , t �= tk , ()

�xi(tk) = xi(tk+) – xi(tk) = Pik
(
xi(tk)

)
, k = , , . . . , ()

where i ∈N and n is the number of neurons in the neural network. xi(t) corresponds to the
state of the ith neuron at time t. fj(·), gj(·) ∈ C[R,R], fj(xj(t)) is the activation function of the
jth neuron at time t and gj(xj(t– τj(t))) represents the activation function of the jth neuron
at time t – τj(t), where τj(t) ∈ C[R+,R+] corresponds to the transmission delay along the
axon of the jth neuron and satisfies  ≤ τj(t) ≤ τ (τ is a constant). The constant bij repre-
sents the connection weight of the jth neuron on the ith neuron at time t. The constant
cij denotes the connection strength of the jth neuron on the ith neuron at time t – τj(t).
The constant ai >  represents the rate with which the ith neuron will reset its potential
to the resting state when disconnected from the network and external inputs. The fixed
impulsive moments tk (k = , , . . .) satisfy  = t < t < t < · · · , and limk→∞ tk = ∞. xi(tk+)
and xi(tk–) stand for the right-hand and left-hand limit of xi(t) at time tk , respectively.
Pik(xi(tk)) shows the abrupt change of xi(t) at the impulsivemoment tk and Pik(·) ∈ C[R,R].
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Throughout this paper, we always assume that fi() = gi() = Pik() =  for i ∈ N and
k = , , . . . . Denote by x(t) � x(t; s,ϕ) = (x(t; s,ϕ), . . . ,xn(t; s,ϕn))T ∈ Rn the solution to
Eqs. ()-() with the initial condition

xi(s) = ϕi(s), –τ ≤ s ≤ , i ∈N , ()

where ϕ(s) = (ϕ(s), . . . ,ϕn(s))T ∈ Rn and ϕi(s) ∈ C[[–τ , ], R].
The solution x(t) � x(t; s,ϕ) ∈ Rn of Eqs. ()-() is, for the time variable t, a piecewise

continuous vector-valued function with the first kind discontinuity at the points tk (k =
, , . . .), where it is left-continuous, i.e., the following relations are valid:

xi(tk–) = xi(tk), xi(tk+) = xi(tk) + Pik
(
xi(tk)

)
, i ∈N ,k = , , . . . .

Definition. Equations ()-() are said to be globally exponentially stable if for any initial
condition ϕ(s) ∈ C[[–τ , ], Rn], there exists a pair of positive constants λ andM such that

∥∥x(t; s,ϕ)∥∥ ≤ Me–λt, for all t ≥ .

The consideration of this paper is based on the following fixed point theorem.

Theorem . [] Let ϒ be a contraction operator on a complete metric space �, then
there exists a unique point ζ ∈ � for which ϒ(ζ ) = ζ .

3 Main results
In this section, we investigate the existence and uniqueness of a solution to Eqs. ()-()
and the global exponential stability of Eqs. ()-() by means of the contraction mapping
principle. Before proceeding, we introduce some assumptions listed as follows:
(A) There exist nonnegative constants lj such that for any η,υ ∈ R,

∣∣fj(η) – fj(υ)
∣∣ ≤ lj|η – υ|, j ∈N .

(A) There exist nonnegative constants kj such that for any η,υ ∈ R,

∣∣gj(η) – gj(υ)
∣∣ ≤ kj|η – υ|, j ∈N .

(A) There exist nonnegative constants pjk such that for any η,υ ∈ R,

∣∣Pjk(η) – Pjk(υ)
∣∣ ≤ pjk|η – υ|, j ∈N ,k = , , . . . .

Let H =H × · · · × Hn, and let Hi (i ∈ N ) be the space consisting of functions φi(t) :
[–τ ,∞) → R, where φi(t) satisfies:
() φi(t) is continuous on t �= tk (k = , , . . .);
() limt→t–k φi(t) and limt→t+k φi(t) exist; furthermore, limt→t–k φi(t) = φi(tk) for

k = , , . . . ;
() φi(s) = ϕi(s) on s ∈ [–τ , ];
() eαtφi(t) →  as t → ∞, where α is a positive constant and satisfies α <mini∈N {ai},
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here tk (k = , , . . .) and ϕi(s) (s ∈ [–τ , ]) are defined as shown in Section . Also, H is a
complete metric space when it is equipped with a metric defined by

d
(
q(t),h(t)

)
=

n∑
i=

sup
t≥–τ

∣∣qi(t) – hi(t)
∣∣,

where q(t) = (q(t), . . . ,qn(t)) ∈H and h(t) = (h(t), . . . ,hn(t)) ∈H.
In what follows, we give the main result of this paper.

Theorem . Assume that the conditions (A)-(A) hold. Provided that
(i) there exists a constant μ such that infk=,,...{tk – tk–} ≥ μ,
(ii) there exist constants pi such that pik ≤ piμ for i ∈N and k = , , . . . ,
(iii) ϑ �

∑n
i={ 

ai
maxj∈N |bijlj| + 

ai
maxj∈N |cijkj|} +maxi∈N {pi(μ + 

ai
)} < ,

then Eqs. ()-() are globally exponentially stable.

Proof The following proof is based on the contraction mapping principle, which can be
divided into three steps.
Step . The mapping is needed to be determined. Multiplying both sides of Eq. () with

eait gives, for t >  and t �= tk ,

deaitxi(t) = eait dxi(t) + aixi(t)eait dt

= eait
{
–aixi(t) +

n∑
j=

bijfj
(
xj(t)

)
+

n∑
j=

cijgj
(
xj

(
t – τj(t)

))}
dt + aixi(t)eait dt

= eait
{ n∑

j=

bijfj
(
xj(t)

)
+

n∑
j=

cijgj
(
xj

(
t – τj(t)

))}
dt,

which yields, after integrating from tk– + ε (ε > ) to t ∈ (tk–, tk) (k = , , . . .),

xi(t)eait = xi(tk– + ε)eai(tk–+ε)

+
∫ t

tk–+ε

eais
{ n∑

j=

bijfj
(
xj(s)

)
+

n∑
j=

cijgj
(
xj

(
s – τj(s)

))}
ds. ()

Letting ε →  in (), we have, for t ∈ (tk–, tk) (k = , , . . .),

xi(t)eait = xi(tk–+)eaitk– +
∫ t

tk–
eais

{ n∑
j=

bijfj
(
xj(s)

)
+

n∑
j=

cijgj
(
xj

(
s – τj(s)

))}
ds. ()

Setting t = tk – ε (ε > ) in (), we get

xi(tk–ε)eai(tk–ε) = xi(tk–+)eaitk– +
∫ tk–ε

tk–
eais

{ n∑
j=

bijfj
(
xj(s)

)
+

n∑
j=

cijgj
(
xj

(
s–τj(s)

))}
ds,

which generates by letting ε → 

xi(tk–)eaitk = xi(tk–+)eaitk– +
∫ tk

tk–
eais

{ n∑
j=

bijfj
(
xj(s)

)
+

n∑
j=

cijgj
(
xj

(
s – τj(s)

))}
ds. ()
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Noting xi(tk – ) = xi(tk), () can be rearranged as

xi(tk)eaitk = xi(tk–+)eaitk– +
∫ tk

tk–
eais

{ n∑
j=

bijfj
(
xj(s)

)
+

n∑
j=

cijgj
(
xj

(
s – τj(s)

))}
ds. ()

Combining () and (), we derive that

xi(t)eait = xi(tk–+)eaitk– +
∫ t

tk–
eais

{ n∑
j=

bijfj
(
xj(s)

)
+

n∑
j=

cijgj
(
xj

(
s – τj(s)

))}
ds

is true for t ∈ (tk–, tk] (k = , , . . .). Further,

xi(t)eait =
{
xi(tk–) + Ii(k–)

(
xi(tk–)

)}
eaitk–

+
∫ t

tk–
eais

{ n∑
j=

bijfj
(
xj(s)

)
+

n∑
j=

cijgj
(
xj

(
s – τj(s)

))}
ds

= xi(tk–)eaitk– +
∫ t

tk–
eais

{ n∑
j=

bijfj
(
xj(s)

)
+

n∑
j=

cijgj
(
xj

(
s – τj(s)

))}
ds

+ Pi(k–)
(
xi(tk–)

)
eaitk–

holds for t ∈ (tk–, tk] (k = , , . . .). Hence,

xi(tk–)eaitk– = xi(tk–)eaitk– +
∫ tk–

tk–
eais

{ n∑
j=

bijfj
(
xj(s)

)
+

n∑
j=

cijgj
(
xj

(
s – τj(s)

))}
ds

+ Pi(k–)
(
xi(tk–)

)
eaitk– ,

...

xi(t)eait = xi(t)eait +
∫ t

t
eais

{ n∑
j=

bijfj
(
xj(s)

)
+

n∑
j=

cijgj
(
xj

(
s – τj(s)

))}
ds

+ Pi
(
xi(t)

)
eait ,

xi(t)eait = ϕi() +
∫ t


eais

{ n∑
j=

bijfj
(
xj(s)

)
+

n∑
j=

cijgj
(
xj

(
s – τj(s)

))}
ds,

which produces, for t > ,

xi(t) = ϕi()e–ait + e–ait
∫ t


eais

{ n∑
j=

bijfj
(
xj(s)

)
+

n∑
j=

cijgj
(
xj

(
s – τj(s)

))}
ds

+ e–ait
∑
<tk<t

{
Pik

(
xi(tk)

)
eaitk

}
. ()

Noting xi() = ϕi() in (), we define the following operator π acting on H for x(t) =
(x(t), . . . ,xn(t)) ∈H:

π (x)(t) =
(
π (x)(t), . . . ,π (xn)(t)

)
,

http://www.advancesindifferenceequations.com/content/2013/1/23


Zhang and Luo Advances in Difference Equations 2013, 2013:23 Page 6 of 12
http://www.advancesindifferenceequations.com/content/2013/1/23

where π (xi)(t) : [–τ ,∞) → R (i ∈N ) obeys the rule as follows:

π (xi)(t) = ϕi()e–ait + e–ait
∫ t


eais

{ n∑
j=

bijfj
(
xj(s)

)
+

n∑
j=

cijgj
(
xj

(
s – τj(s)

))}
ds

+ e–ait
∑
<tk<t

{
Pik

(
xi(tk)

)
eaitk

}
()

on t ≥  and π (xi)(s) = ϕi(s) on s ∈ [–τ , ].
Step .We need to prove π (H) ⊂H. Choosing xi(t) ∈Hi (i ∈N ), it is necessary to testify

π (xi)(t)⊂Hi.
First, since π (xi)(s) = ϕi(s) on s ∈ [–τ , ] and ϕi(s) ∈ C[[–τ , ], R], we immediately know

π (xi)(s) is continuous on s ∈ [–τ , ]. Then, for a fixed time t > , it follows from ()
that

π (xi)(t + r) – π (xi)(t) =Q +Q +Q +Q, ()

where

Q = ϕi()e–ai(t+r) – ϕi()e–ait ,

Q = e–ai(t+r)
∫ t+r


eais

n∑
j=

bijfj
(
xj(s)

)
ds – e–ait

∫ t


eais

n∑
j=

bijfj
(
xj(s)

)
ds,

Q = e–ai(t+r)
∫ t+r


eais

n∑
j=

cijgj
(
xj

(
s – τj(s)

))
ds – e–ait

∫ t


eais

n∑
j=

cijgj
(
xj

(
s – τj(s)

))
ds,

Q = e–ai(t+r)
∑

<tk<(t+r)

{
Iik

(
xi(tk)

)
eaitk

}
– e–ait

∑
<tk<t

{
Pik

(
xi(tk)

)
eaitk

}
.

Owing to xi(t) ∈ Hi, we see that xi(t) is continuous on t �= tk (k = , , . . .). Moreover, as
t = tk , limt→t–k xi(t) and limt→t+k xi(t) exist, in addition, limt→t–k xi(t) = xi(tk).
Consequently, when t �= tk (k = , , . . .) in (), it is easy to find that Qi →  as r → 

for i = , . . . , , and so π (xi)(t) is continuous on the fixed time t �= tk (k = , , . . .). On the
other hand, as t = tk (k = , , . . .) in (), it is not difficult to find that Qi →  as r →  for
i = , , . Furthermore, if letting r <  be small enough, we have

Q = e–ai(tk+r)
∑

<tm<(tk+r)

Pim
(
xi(tm)

)
eaitm – e–aitk

∑
<tm<tk

Pim
(
xi(tm)

)
eaitm

=
{
e–ai(tk+r) – e–aitk

} ∑
<tm<tk

{
Pim

(
xi(tm)

)
eaitm

}
,

which implies limr→– Q = . While if letting r >  be small enough, we get

Q = e–ai(tk+r)
∑

<tm<(tk+r)

Pim
(
xi(tm)

)
eaitm – e–aitk

∑
<tm<tk

Pim
(
xi(tm)

)
eaitm

= e–ai(tk+r)
{ ∑
<tm<tk

{
Pim

(
xi(tm)

)
eaitm

}
+ Pik

(
xi(tk)

)
eaitk

}
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Zhang and Luo Advances in Difference Equations 2013, 2013:23 Page 7 of 12
http://www.advancesindifferenceequations.com/content/2013/1/23

– e–aitk
∑

<tm<tk

{
Pim

(
xi(tm)

)
eaitm

}
=

{
e–ai(tk+r) – e–aitk

} ∑
<tm<tk

{
Pim

(
xi(tm)

)
eaitm

}
+ e–ai(tk+r)Pik

(
xi(tk)

)
eaitk ,

which yields limr→+ Q = e–aitk Pik(xi(tk))eaitk .
According to the above discussion, we see that π (xi)(t) : [–τ ,∞) → R is continuous on

t �= tk (k = , , . . .), and for t = tk (k = , , . . .), limt→t–k π (xi)(t) and limt→t+k π (xi)(t) exist;
furthermore, limt→t–k π (xi)(t) = π (xi)(tk) �= limt→t+k π (xi)(t).
Next, we will prove eαtπ (xi)(t) →  as t → ∞ for i ∈ N . First of all, it is obvious that

limt→∞ e–(ai–α)t =  for ai – α > . In addition, owing to xj(t) ∈ Hj for j ∈ N , we know
limt→∞ eαtxj(t) = . Then, for any ε > , there exists a Tj >  such that s ≥ Tj implies
|eαsxj(s)| < ε. Choose T∗ =maxj∈N {Tj}. It is derived from (A) that

eαte–ait
∫ t


eais

n∑
j=

bijfj
(
xj(s)

)
ds

≤ eαte–ait
∫ t


eais

n∑
j=

{|bijlj|∣∣xj(s)∣∣}ds
= e–(ai–α)t

∫ T∗


e(ai–α)s

n∑
j=

{|bijlj|eαs∣∣xj(s)∣∣}ds
+ e–(ai–α)t

∫ t

T∗
e(ai–α)s

n∑
j=

{|bijlj|eαs∣∣xj(s)∣∣}ds
≤ e–(ai–α)t

n∑
j=

{
|bijlj| sup

s∈[,T∗]

∣∣eαsxj(s)
∣∣}{∫ T∗


e(ai–α)s ds

}

+ ε

n∑
j=

{|bijlj|}e–(ai–α)t
∫ t

T∗
e(ai–α)s ds

≤ e–(ai–α)t
n∑
j=

{
|bijlj| sup

s∈[,T∗]

∣∣eαsxj(s)
∣∣}{∫ T∗


e(ai–α)s ds

}
+

ε

ai – α

n∑
j=

{|bijlj|},
which leads to

eαte–ait
∫ t


eais

n∑
j=

bijfj
(
xj(s)

)
ds →  as t → ∞ for i ∈N . ()

Similarly, for any ε > , since limt→∞ eαtxj(t) = , there also exists a T ′
j >  such that

s ≥ T ′
j – τ implies |eαsxj(s)| < ε. Select T̂ =maxj∈N {T ′

j }. It follows from (A) that

eαte–ait
∫ t


eais

n∑
j=

cijgj
(
xj

(
s – τj(s)

))
ds

≤ eαte–ait
∫ t


eais

n∑
j=

{|cijkj|∣∣xj(s – τj(s)
)∣∣}ds

http://www.advancesindifferenceequations.com/content/2013/1/23
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≤ e–(ai–α)t
∫ t


eaise–α{s–τ }

n∑
j=

{|cijkj|eα[s–τj(s)]
∣∣xj(s – τj(s)

)∣∣}ds
= eατe–(ai–α)t

∫ T̂


e(ai–α)s

n∑
j=

{|cijkj|eα[s–τj(s)]
∣∣xj(s – τj(s)

)∣∣}ds
+ eατe–(ai–α)t

∫ t

T̂
e(ai–α)s

n∑
j=

{|cijkj|eα[s–τj(s)]
∣∣xj(s – τj(s)

)∣∣}ds
≤ eατ

n∑
j=

{
|cijkj| sup

s∈[–τ ,T̂]

∣∣eαsxj(s)
∣∣}e–(ai–α)t

∫ T̂


e(ai–α)s ds

+ eατ ε

n∑
j=

{|cijkj|}e–(ai–α)t
∫ t

T̂
e(ai–α)s ds

≤ eατ

n∑
j=

{
|cijkj| sup

s∈[–τ ,T̂]

∣∣eαsxj(s)
∣∣}e–(ai–α)t

∫ T̂


e(ai–α)s ds +

eατ ε

ai – α

n∑
j=

{|cijkj|},
which results in

eαte–ait
∫ t


eais

n∑
j=

cijgj
(
xj

(
s – τj(s)

))
ds →  as t → ∞ for i ∈N . ()

Furthermore, from (A), we know that |Pik(xi(tk))| ≤ pik|xi(tk)|. So,

eαte–ait
∑
<tk<t

{
Pik

(
xi(tk)

)
eaitk

} ≤ eαte–ait
∑
<tk<t

{
pik

∣∣xi(tk)∣∣eaitk}.
As xi(t) ∈ Hi, we have limt→∞ eαtxi(t) = . Then, for any ε > , there exists a non-

impulsive point Ti >  such that s ≥ Ti implies |eαsxi(s)| < ε. It then follows from the con-
ditions (i) and (ii) that

eαte–ait
∑
<tk<t

{
pik

∣∣xi(tk)∣∣eaitk}
= eαte–ait

{ ∑
<tk<Ti

{
pik

∣∣xi(tk)∣∣eaitk} + ∑
Ti<tk<t

{
pik

∣∣xi(tk)∣∣eαtke(ai–α)tk
}}

≤ eαte–ait
∑

<tk<Ti

{
pik

∣∣xi(tk)∣∣eaitk} + eαte–aitpiε
∑

Ti<tk<t

{
μe(ai–α)tk

}
≤ e–(ai–α)t

∑
<tk<Ti

{
pik

∣∣xi(tk)∣∣eaitk}
+ e–(ai–α)tpiε

{ ∑
Ti<tr<tk

{
e(ai–α)tr (tr+ – tr)

}
+μe(ai–α)tk

}

≤ e–(ai–α)t
∑

<tk<Ti

{
pik

∣∣xi(tk)∣∣eaitk} + e–(ai–α)tpiε
∫ t

Ti
e(ai–α)s ds + e–(ai–α)tpiεμe(ai–α)t

≤ e–(ai–α)t
∑

<tk<Ti

{
pik

∣∣xi(tk)∣∣eaitk} + piε
ai – α

+ piεμ,

http://www.advancesindifferenceequations.com/content/2013/1/23
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which produces

eαte–ait
∑
<tk<t

{
Pik

(
xi(tk)

)
eaitk

} →  as t → ∞. ()

From (), () and (), we deduce eαtπ (xi)(t) →  as t → ∞. We therefore conclude
that π (xi)(t)⊂Hi (i ∈N ), which means π (H) ⊂H.
Step . We need to prove π is contractive. For x = (x(t), . . . ,xn(t)) ∈ H and y =

(y(t), . . . , yn(t)) ∈H, we estimate |π (xi)(t) – π (yi)(t)| ≤ J + J + J, where

J = e–ait
∫ t


eais

n∑
j=

[|bij|∣∣fj(xj(s)) – fj
(
yj(s)

)∣∣]ds,
J = e–ait

∫ t


eais

n∑
j=

[|cij|∣∣gj(xj(s – τj(s)
))
– gj

(
yj

(
s – τj(s)

))∣∣]ds.
J = e–ait

∑
<tk<t

{
eaitk

∣∣Pik
(
xi(tk)

)
– Pik

(
yi(tk)

)∣∣},
Note

J ≤ e–ait
∫ t


eais

n∑
j=

[|bijlj|∣∣xj(s) – yj(s)
∣∣]ds

≤ max
j∈N

|bijlj|
n∑
j=

{
sup
s∈[,t]

∣∣xj(s) – yj(s)
∣∣}e–ait ∫ t


eais ds

≤ 
ai

max
j∈N

|bijlj|
n∑
j=

{
sup
s∈[,t]

∣∣xj(s) – yj(s)
∣∣}, ()

and

J ≤ e–ait
∫ t


eais

n∑
j=

[|cijkj|∣∣xj(s – τj(s)
)
– yj

(
s – τj(s)

)∣∣]ds
≤ max

j∈N
|cijkj|

n∑
j=

{
sup

s∈[–τ ,t]

∣∣xj(s) – yj(s)
∣∣}e–ait ∫ t


eais ds

≤ 
ai

max
j∈N

|cijkj|
n∑
j=

{
sup

s∈[–τ ,t]

∣∣xj(s) – yj(s)
∣∣}, ()

and

J ≤ e–ait
∑
<tk<t

{
eaitk pik

∣∣xi(tk) – yi(tk)
∣∣}

≤ pie–ait sup
s∈[,t]

∣∣xi(s) – yi(s)
∣∣ ∑
<tk<t

{
eaitkμ

}
≤ pie–ait sup

s∈[,t]

∣∣xi(s) – yi(s)
∣∣{ ∑

<tr<tk

{
eaitr (tr+ – tr)

}
+ eaitkμ

}
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≤ pi sup
s∈[,t]

∣∣xi(s) – yi(s)
∣∣e–ait{∫ t


eais ds + eaitμ

}

≤ pi
(

μ +

ai

)
sup
s∈[,t]

∣∣xi(s) – yi(s)
∣∣. ()

It hence follows from (), () and () that

∣∣π (xi)(t) – π (yi)(t)
∣∣ ≤ 

ai
max
j∈N

|bijlj|
n∑
j=

{
sup
s∈[,t]

∣∣xj(s) – yj(s)
∣∣}

+

ai

max
j∈N

|cijkj|
n∑
j=

{
sup

s∈[–τ ,t]

∣∣xj(s) – yj(s)
∣∣}

+ pi
(

μ +

ai

)
sup
s∈[,t]

∣∣xi(s) – yi(s)
∣∣,

which implies

sup
t∈[–τ ,T]

∣∣π (xi)(t) – π (yi)(t)
∣∣ ≤ 

ai
max
j∈N

|bijlj|
n∑
j=

{
sup

s∈[–τ ,T]

∣∣xj(s) – yj(s)
∣∣}

+

ai

max
j∈N

|cijkj|
n∑
j=

{
sup

s∈[–τ ,T]

∣∣xj(s) – yj(s)
∣∣}

+ pi
(

μ +

ai

)
sup

s∈[–τ ,T]

∣∣xi(s) – yi(s)
∣∣.

Therefore,

n∑
i=

sup
t∈[–τ ,T]

∣∣π (xi)(t) – π (yi)(t)
∣∣ ≤ ϑ

n∑
j=

{
sup

s∈[–τ ,T]

∣∣xj(s) – yj(s)
∣∣}.

In view of the condition (iii), we see π is a contraction mapping, and thus there exists
a unique fixed point x(·) of π in H, which means xT(·) is the solution to Eqs. ()-() and
meets eαt‖xT(·)‖ →  as t → ∞. This completes the proof. �

Theorem . Assume the conditions (A)-(A) hold. Provided that
(i) infk=,,...{tk – tk–} ≥ ,
(ii) there exist constants pi such that pik ≤ pi for i ∈N and k = , , . . . ,
(iii)

∑n
i={ 

ai
maxj∈N |bijlj| + 

ai
maxj∈N |cijkj|} +maxi∈N {pi( + 

ai
)} < ,

then Eqs. ()-() are globally exponentially stable.

Proof Theorem . is a direct conclusion by letting μ =  in Theorem .. �

Remark . In Theorem ., we see that it is fixed point theory that deals with the exis-
tence anduniqueness of a solution and the global exponential stability of impulsive delayed
neural networks at the same time, while the Lyapunov method fails to do this.

Remark . The presented sufficient conditions in Theorems .-. do not require even
the differentiability of delays, let alone the monotone decreasing behavior of delays which
is necessary in some relevant works.

http://www.advancesindifferenceequations.com/content/2013/1/23


Zhang and Luo Advances in Difference Equations 2013, 2013:23 Page 11 of 12
http://www.advancesindifferenceequations.com/content/2013/1/23

Remark . In [], the abrupt changes are assumed linear with the coefficient α ∈ (, ),
while in our paper, this restriction is removed and the abrupt changes can be linear
and nonlinear. On the other hand, the activation functions in [] are assumed to satisfy
 ≤ f (x)–f (y)

x–y ≤ l, where f is an activation function. However, in this paper, we relax this
restriction and instead suppose an activation function f satisfies |f (x) – f (y)| ≤ l|x – y|.

4 Example
Consider the following two-dimensional impulsive cellular neural network with time-
varying delays:

dxi(t)
dt

= –aixi(t) +
∑
j=

bijfj
(
xj(t)

)
+

∑
j=

cijgj
(
xj

(
t – τj(t)

))
, t ≥ , t �= tk ,

�xi(tk) = xi(tk+) – xi(tk) = Pik
(
xi(tk)

)
, k = , , . . . ,

with the initial conditions x(s) = cos(s), x(s) = sin(s) on –τ ≤ s ≤ , where a = a = ,
b = , b = 

 , b = – 
 , b = – 

 , c =

 , c =


 , c = , c = 

 , fj(s) = gj(s) = (|s + | –
|s – |)/ (j = , ), Pik(xi(tk)) = arctan(.xi(tk)) for i = ,  and k = , , . . . , tk = tk– + .k
(k = , , . . .). It is easy to see that μ = . and lj = kj =  as well as pik = ..
Select pi = . and compute

∑
i={ 

ai
maxj=, |bijlj| + 

ai
maxj=, |cijkj|} + maxi=,{pi(μ +


ai
)} < . FromTheorem ., we conclude that this two-dimensional impulsive cellular neu-

ral network with time-varying delays is globally exponentially stable.

5 Conclusion
This work aims to seek new methods to study the stability of complex CNNs. From what
have been discussed above, we find that the application of fixed point theory to the stability
analysis of complex CNNs is successful. We utilize the contraction mapping principle to
deal with the existence and uniqueness of a solution and the global exponential stability
of the considered system at the same time, for which Lyapunov theory feels helpless. Now
that there are different kinds of fixed point theorems and complex neural networks, our
future work is to continue the study on the application of fixed point theory to the stability
analysis of complex neural networks.
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