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1 Introduction
Recently, q-fractional calculus has been paidmuch attention to [–], i.e., q-factionalmod-
eling, linear q-fractional systems, q-special functions etc.As is well known, both fractional
calculus (FC) and q-calculus (QC) are not new as they appeared in  and about s,
respectively. Fractional q-calculus (FQC) serves as a bridge between FC andQC. The early
developments of q-fractional calculus can be found in [–]. Now, various q-fractional
initial value problems are proposed in [, –].
The variational iteration method (VIM) [–] has been one of the often used non-

linear methods in initial boundary value problems of differential equations. In this study,
the extension of the method into FQC is undertaken and the Caputo q-fractional initial
value problems are investigated. Our study is organized as follows. In Section , the basic
idea of the VIM is illustrated. In Section , the VIM is extended to q-difference equations,
and the Lagrange multipliers of the method are presented for the equations of high-order
q-derivatives. In Section , recent development of the method in fractional calculus is
introduced. Following Section , the application of the VIM in q-fractional calculus is
considered. Then the method is applied to the Caputo q-fractional initial value problem.

2 The VIM in ordinary calculus
We illustrate its basic idea through the following nonlinear system:

dmu
dtm

+ R[u] +N[u] = g(t), ()
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where u = u(t), R is a linear operator, N is a nonlinear operator, g(t) is a given continuous
function and dmu/dtm is the term of the highest-order derivative.
Then we construct the following correction function for Eq. ():

un+ = un +
∫ t

t
λ(t, τ )

(
dmun
dτm + R[un] +N[un] – g(τ )

)
dτ , ()

where λ = λ(t, τ ) is called the Lagrange multiplier which can be identified optimally by
variational calculus and un is the nth term approximate solution.
It is well known that Eq. () has the Lagrange multiplier []

λ =
(–)m(τ – t)m–

(m – )!
. ()

The interpretations and determination of various Lagrange multipliers can be found in
the review article [, ].
Following the above steps, we can design a Maple-program which contains three pa-

rameters: ICs, Eqs and n. ICs reads the value of initial points. Eqs contains information of
the linear terms, the nonlinear terms and the interval functions. nmeans the approximate
solution’s truncated order.

Example . Consider the following Riccati equations []:

du
dt

=  + u(t) – u(t), u() = . ()

We input ICs := [, []], Eqs := [[u(t) → – ∗ u(t),u(t) → u(t), t → ]], n can be set as
, , . . . ,  and so on.We set n =  and n = , respectively. Since u here is very tedious, we
only give the analytical approximate solutions u, u, u and u as follows:

u = t,

u = t + t –


t,

u = t + t +


t –




t +


t –




t –


t,

u = t + t + /t +



t +



t – /t – /t –


,
t +


,

t

–


,
t –


,

t +


,
t –


,

t –



t +



t.

The comparisons between u, u and the exact solution are listed in Table .

Example . The second example is a system representing a nonlinear reaction []:

⎧⎪⎪⎨
⎪⎪⎩

du
dt = –u, u() = ,
dv
dt = u – v, v() = ,
dw
dt = v, w() = .

()
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Table 1 Comparisons between u2, u9 and the exact solution

t VIM[u2] VIM[u9] Exact solution

0 0 0 0
0.1 0.109666666667 0.110295196915 0.110295196918
0.2 0.237333333333 0.241976799617 0.241976799622
0.3 0.381000000000 0.395104848537 0.395104848660
0.4 0.538666666667 0.567812165419 0.567812166292
0.5 0.708333333333 0.756014390810 0.756014393428
0.6 0.888000000000 0.953566212412 0.953566216469
0.7 1.07566666667 1.15294896351 1.15294896698
0.8 1.26933333333 1.34636365376 1.34636365537
0.9 1.46700000000 1.52691131294 1.52691131327
1.0 1.66666666667 1.68949839169 1.68949839159

The information of the system () reads

ICs :=
[
, [], [], []

]
;

Eqs :=
[[
(u, v,w) → u, (u, v,w) → , t → 

]
,
[
(u, v,w)→ –u + v, (u, v,w)→ , t → 

]
,[

(u, v,w)→ v, (u, v,w) → , t → 
]]
;

n := .

The fourth-order approximation can be presented as

u :=  – t + /t – /t + /t,

v := t –


t –



t +




t – /t +



t +



t

–


,
t –


,

t –


,
t

+


,
t +


,

t –


,
t –


,

t +



t,

w :=


t –




t + /t –



t –


t +


,

t

+


,
t +


,

t –


,
t

–


,
t +


,

t +


,
t –




t.

We can calculate [u, v,w], [u, v,w], [u, v,w] even higher-order
approximation. Noting that un tends to e–t for n → ∞, we only compare [v,w] and
[v,w] with the numerical results from the Runge-Kutta method (RKM) in Figure  and
Figure , respectively. Obviously, v and w have higher accuracies than v and w. With
symbolic computation, if the computer is excellent enough, higher accuracies can be ob-
tained.

3 The VIM in q-calculus
The q-derivative is a deformation of the classical derivative and it has played a crucial role
in statistical physics and quantummechanics. Let us revisit some properties of q-calculus
[–].
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Figure 1 Comparisons between the RKM solution, v[4] and v[8].

Figure 2 Comparisons between the RKM solution, w[4] and w[8].

Definition . (q-calculus) Let f (x) be a real continuous function. The q-derivative is
defined by

dq
dqx

f (x) =
f (qx) – f (x)
(q – )x

, x �= , < q < , ()

and

dq
dqx

f (x)
∣∣∣∣
x=

= lim
n→∞

f (qn) – f ()
qn

.

http://www.advancesindifferenceequations.com/content/2013/1/21


Wu and Baleanu Advances in Difference Equations 2013, 2013:21 Page 5 of 16
http://www.advancesindifferenceequations.com/content/2013/1/21

The partial q-derivative is defined as

∂q

∂qx
f (x; y; . . .) =

f (qx; y; . . .) – f (x; y; . . .)
(q – )x

.

Jackson’s q-integral [, ] is given as

∫ x


f (t)dqt = ( – q)x

∞∑


qnf
(
qnx

)
. ()

Property . q-Leibniz product law is

dq
dqx

[
g(x)f (x)

]
= g(qx)

dq
dqx

f (x) + f (x)
dq
dqx

g(x). ()

Property . q-integration by parts holds

∫ b

a
g(qt)

dq
dqt

f (t)dqt =
[
f (t)g(t)

]|ba –
∫ b

a
f (t)

dq
dqt

g(t)dqt. ()

The properties above are needed in the construction of the correction functional for
q-difference equations. For more results and properties in q-calculus, readers are referred
to monographs [–].

Lemma . ([]) For the first-order q-difference equation,

dqx
dqt

+ f (t,x) = , ()

one of the Lagrange multipliers is λ(t, τ ) = –.

Lemma . ([]) For the q-difference equation of second order,

d
qx

dqt
+ f (t,x) = , ()

one of the Lagrange multipliers can be identified as

λ(t, τ ) = q–(τ – tq).

Proof We revisit the proof in []. First, establish the correctional functional for Eq. ()
as

xn+ = xn +
∫ t


λ
(
t,qτ

)(d
qxn

dqτ  + f (τ ,xn)
)
dqτ . ()

We only use the leading term dqx
dqt

, while other terms are restricted variations

xn+ = xn +
∫ t


λ
(
t,qτ

)(d
qxn

dqτ  + f (τ ,xn)
)
dqτ . ()
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Through the integration by parts (), we can have

δxn+ =
(
 – q

∂q

∂qτ
λ(t, τ )

∣∣∣∣
τ=t

)
δxn + λ(t,qτ )|τ=tδx′

n – q
∫ t



∂
qλ(t, τ )
∂qτ  δxn dqτ , ()

where δ is the variation operator and ‘′’ denotes the q-derivative with respect to t. As a
result, the system of the Lagrange multiplier can be obtained:

the coefficient of δxn:  – q
∂qλ(t, τ )

∂qτ

∣∣∣∣
τ=t

= ,

the coefficient of δx′
n(x, τ ): λ(t,qτ )|τ=t = ,

and the coefficient of δxn in the q-integral: q
∂
qλ(t, τ )
∂qτ  = ,

from which we can get

λ(t, τ ) = q–(τ – tq). ()
�

Furthermore, Kong [] gave the Lagrange multiplier for the q-difference equations of
third order,

λ(t, τ ) = –q–
(τ – tq)(τ – tq)

[]q!
, ()

where [k]q! denotes the q-factorial and [k]q! = ( + q)( + q + q) · · · ( + q + · · · + qk–) for
the integer k.
More generally, one can derive the following Theorem ..

Theorem . For the q-difference equation of mth order,

dm
q x

dqtm
+ f (t,x) = , ()

establish the correctional functional for Eq. () as

xn+ = xn +
∫ t


λ
(
t,qmτ

)(dm
q xn

dqτm + f (τ ,xn)
)
dqτ . ()

If f (τ ,xn) is considered as a restricted variation, one can derive a q-analogue Lagrange
multiplier

λ(t, τ ) = q–
m(m–)


(–)m(τ – tq)(m–)

[m – ]q!
()

or

λ
(
t,qmτ

)
= –

(t – τq)(m–)

[m – ]q!
, ()

where (t – a)(m–) = (t – a)(t – qa) · · · (t – qm–a) for the integer m.
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Substituting () into (), one can obtain a q-variational iteration formula

xn+ = xn –
∫ t



(t – τq)(m–)

[m – ]q!

( dm
q

dqτm xn + f (τ ,xn)
)
dqτ . ()

Here the initial iteration value can be determined via the q-Taylor series [].

Example . Consider the simple linear q-difference equation of second order []

d
qu(t)
dqt

– u(t) =  ()

subject to the initial conditions

u() =  and
dqu()
dqt

= .

The iteration formula and the initial iteration can be determined as
⎧⎨
⎩un+ = un + 

q
∫ t
 (q

τ – qt)[ d

qun(τ )
dqτ

– un(τ )]dqτ ,

u =  + t
[]q ! .

The successive solution can be given as

u =  +
t

[]q!
,

u =  +
t

[]q!
+

t

[]q!
+

t

[]q!
,

...

un =
n+∑
k=

tk

[k]q!
.

Recall that the limit u = limt→∞ un = eq(t) is an exact solution of (). Here eq(t) is one
of the q-exponential functions.

4 The VIM in fractional calculus
Let u(t) be a real-valued function defined on a closed interval [a,b].

Definition . The R-L integration of αorder is defined as

Iαt u(t) =


�(α)

∫ t

a
(t – τ )α–u(τ )dτ ,  < t,  < α. ()

Definition . The left Caputo derivative is defined by

C
D

α
t u(t) =


�(m – α)

∫ t




(t – τ )α–m+

dmu(τ )
dτm dτ ,  < t,  < α,m = [α] + . ()
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Definition . The αth Riemann-Liouville (R-L) derivative of a function u(t) is defined
by

RL
 Dα

t u =


�(m – α)
dm

dtm

∫ t




(t – τ )α–m+ u(τ )dτ ,  < t,  < α,m = [α] + . ()

More results and properties can be found in [, ].

In Sections  and , we note that the integration by parts plays an important role and is
often used in the derivation of the Lagrange multipliers in ordinary calculus. But in FC,
the similar integration by parts cannot hold. That’s the main reason why the applications
of the VIM were not very successful for fractional differential equations (FDEs). The pop-
ular iteration formulae of the VIM directly employed the so-called Lagrange multiplier
λ(t, τ ) = –. For the generalized FDE

C
D

α
t u + R[u] +N[u] = f (t),

the variational iteration formula was suggested

un+ = un +
∫ t


(–)

(C
D

α
τ un + R[un] +N[un] – f (τ )

)
dτ . ()

One can check the formula () results in a poor convergence even for a linear FDE.
Such difficulty can be overcome by the Laplace transform [–]. The following iteration
formula is initially proposed in [, ]. Let us revisit the proof.

Theorem . For the generalized FDE, one can have the variational iteration formula

un+ = un +
∫ t


λ(t, τ )

(C
D

α
τ un + R[un] +N[un] – f (τ )

)
dτ ,  < α, ()

where the function λ(t, τ ) = (–)α(τ – t)α–/�(α) is a Lagrange multiplier for any order α.

Proof We can construct a correction functional through the R-L integration

un+ = un + Iαt λ(t, τ )
[C
D

α
τ un + R[un] +N[un] – f (τ )

]
. ()

Take the Laplace transform L to both sides of ()

ūn+(s) = ūn(s) + L
[
Iαt λ(t, τ )

(C
D

α
τ un + R[un] +N[un] – f (τ )

)]
, ()

where ūn(s) = L[un(t)].
Assuming the termsR[un] andN[un] are restricted variations, respectively, we only need

to consider the term

Iαt λC
D

α
t un =


�(α)

∫ t


(t – τ )α–λ(t, τ )CD

α
τ un(τ )dτ . ()

http://www.advancesindifferenceequations.com/content/2013/1/21
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Setting the Lagrange multiplier λ(t, τ ) = λ(X)|X=t–τ , Eq. () can be considered as a con-
volution of the function a(t) = λ(t)tα–/�(α) and the term C

Dα
t un(t).

Making the correction functional of Eq. () stationary, we can get

δūn+(s) = δūn(s) + δ

[
ā(s)sαūn(s) –

m–∑
k=

u(k)
(
+

)
sα––k

]
=

(
 + ā(s)sα

)
δūn(s). ()

From Eq. (), with the inverse Laplace transform L–, we can have

a(t) = L–
[
ā(s)

]
= –

tα–

�(α)
,  < α. ()

For a(t) = λ(t)tα–/�(α), the Lagrange multiplier can be explicitly identified as

λ(t, τ ) = –. ()

As a result, the iteration formula is given as

un+ = un – Iαt
[C
Dτun + R[un] +N[un] – f (τ )

]
,  < α. ()

This completes the proof. �

We only derive the simplest Lagrange multiplier λ(t, τ ) = – here. In fact, more explicit
Lagrange multipliers can be identified if more terms in R[un] (if they exist) are used. For
example, we can derive a variational iteration formula

un+ = un –
∫ t


(t – τ )γ–Eγ–β ,γ

(
–(t – τ )γ–β

)
× [C

D
γ
τ un +

C
D

β
τ un + f (τ ,un)

]
dτ ,  < β < γ ()

for a multi-order FDE

C
D

γ
t u + C

D
β
t u + f (t,u) = ,  < t,  < β < γ . ()

For γ = , β =  and γ = , β = , Eq. () reduces to the formulae (see the iteration
formulae (a) and (a) in [])

⎧⎨
⎩un+ = un +

∫ t
 λ(t, τ )(u′

n + un + f (τ ,un))dτ ,

λ(t, τ ) = –(t – τ )γ–Eγ–β ,γ (–(t – τ )γ–β)|γ=,β= = –e–(t–τ )
()

and

⎧⎨
⎩un+ = un +

∫ t
 λ(t, τ )(u()n + un + f (τ ,un))dτ ,

λ = –(t – τ )γ–Eγ–β ,γ (–(t – τ )γ–β)|γ=,β= = sin(τ – t).
()

http://www.advancesindifferenceequations.com/content/2013/1/21
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We conclude the following useful Lagrange multipliers for FDEs

I.

⎧⎨
⎩

C
D

γ
t u + f (t,CD

β
t u,u) = ,  < β < γ ,

λ(t, τ ) = (–)γ (τ–t)γ–
(γ–)! ,

(a)

II.

⎧⎨
⎩

C
D

γ
t u + C

D
β
t u + f (t,u) = ,  < β < γ ,

λ(t, τ ) = –(t – τ )γ–Eγ–β ,γ (–(t – τ )γ–β),
(b)

III.

⎧⎨
⎩

RL
 Dγ

t u + f (t,CD
β
t u,u) = ,  < β < γ ,

λ(t, τ ) = (–)γ (τ–t)γ–
(γ–)!

(c)

and

IV.

⎧⎨
⎩

RL
 Dγ

t u + C
D

β
t u + f (t,u) = ,  < β < γ ,

λ(t, τ ) = –(t – τ )γ–Eγ–β ,γ (–(t – τ )γ–β).
(d)

Example . Let us consider the linear fractional Schrodinger equation []

i CD
α
t u +




∂u
∂x

= , u(x, ) = eix. ()

The variational iteration formula for () reads

un+ = un – Iαt

(
i CD

α
τ un +




∂un
∂x

)
. ()

Starting from the initial iteration u = u(x, ) = eix, the successive approximate solutions
can be given as

u = eix + eix
itα

�( + α)
,

u = eix + eix
itα

�( + α)
– eix

tα

�( + α)
,

...

un = eix
n∑

k=

(it)kα

k�( + kα)
.

For n→ ∞, un tends to eixEα(itα/) which is an exact solution of ().

Example. As the second example, consider the nonlinear fractional Schrodinger equa-
tion []

i CD
α
t u +




∂u
∂x

+ |u|u = , u(x, ) = eix. ()

The corresponding iteration formula reads

un+ = un – Iαt

(
i CD

α
τ un +




∂un
∂x

+ |un|un
)
.

http://www.advancesindifferenceequations.com/content/2013/1/21


Wu and Baleanu Advances in Difference Equations 2013, 2013:21 Page 11 of 16
http://www.advancesindifferenceequations.com/content/2013/1/21

As a result, the approximate solutions can be obtained

u = eix,

u = eix
(
 –




tα

�( + α)

)
,

u = eix
(
 –




tα

�( + α)
+



tα

�( + α)
–



�( + α)tα

�( + α)�( + α)

+



�( + α)tα

�( + α)�( + α)

)
,

...

Remarks Our simplest iteration formula () can reduce to the Volterra integral equa-
tion. See the analysis of the convergence and existence in [] and the references therein.
However, regarding Eq. (), the VIM transforms it into a more general Volterra integral
equation from which one can obtain approximate solutions of higher accuracies.
FDEs have been proven to be a useful tool to describe the nonlocal behaviors or

long range interactions of dynamical systems. The previous applications of the VIM just
‘guessed’ the Lagrange multipliers or directly used the one in ordinary differential equa-
tions. In this study, various Lagrange multipliers are identified more explicitly and the
variational approach for FDEs is systematically developed now.

5 The Caputo q-fractional initial value problem
We employ some notations of the q-fractional derivative and integral in []. For  < q < ,
let Tq be the time scale

Tq =
{
qm :m ∈ Z

} ∪ {}, ()

where Z is the set of integers.

Definition . More generally, if α is a nonnegative real number, then we define the time
scale as follows:

Tα
q =

{
qm+α :m ∈ Z

} ∪ {}. ()

The q-fractional derivative and integral have been defined in earlier work [–].

Definition . The q-fractional integral of α order is defined by

qIα f (t) =


�q(α)

∫ t


(t – qτ )(α–)f (τ )dqτ , t ∈ Tα

q ()

and the left Caputo q-fractional derivative is defined as

C
q D

α
u(t) =


�(m – α)

∫ t




(t – τ )(α–m+)

dm

dτm u(τ )dτ ,  < α,m = [α] + , t ∈ Tα
q . ()

http://www.advancesindifferenceequations.com/content/2013/1/21
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When v is not a positive integer, the q-factorial function is defined by

(t – τ )(v) = tv
∞∏
n=

 – qnτ

t

 – qv+nτ

t

. ()

The fractional q-derivative of the q-factorial function with respect to t is

C
q D

α
a (t – a)(v) =

�q(v + )
�q(v – α + )

(t – a)(v–α) ()

and

qIαa (t – a)(v) =
�q(v + )

�q(α + v + )
(t – a)(α+v), a < t, ()

where α ∈ R+ and v ∈ (–,∞).

Now, we introduce the q-Laplace transform and some properties.

Definition . The q-Laplace transform was defined by Hahn [] in  as follows:

Lq
[
h(t)

]
=


 – q

∫ /s


h(t)e,q(qst)dqt, ()

where e,q(t) =
∏∞

n=( – qnt), e,q() = .

Lemma. ([]) Let g(t) be an analytic function and assume g(t) = tv– on Tq \{},where
v ∈ R \ {. . . , –,–, }. Then the following convolution theorem can hold:

Lq
[
h(t) ∗ g(t)

]
= Lq

[
h(t)

]
Lq

[
g(t)

]
, (a)

where the convolution is defined as

(h ∗ g)(s) =


 – q

∫ s


h(τ )g[s – qτ ]dqτ and g[s – qτ ] = (s – qτ )(v–). (b)

Lemma . For the Caputo q-derivative of g(t), the following Laplace transform holds:

Lq
[C
q D

α
g(t)

]
=

sα

( – q)α
Lq

[
g(t)

]
–

m–∑
i=

di
qg()
dqti

sα–i–

( – q)α–i
,  < α,m = [α] +  (a)

and

Lq
[
qIα g(t)

]
(s) =

( – q)α

sα
Lq

[
g(t)

]
(s). (b)

Lemma . ([]) (t – τ )(β+γ ) = (t – τ )(β)(t – qβτ )(γ ), β ,γ ∈ R.

The existence and uniqueness of the solutions of the Caputo q-initial value problems
have been discussed in [].
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Lemma . Considering the initial value problems of the Caputo q-fractional equations,

C
q D

α
u(t) + f (t,u) = ,

dq
dqt

ui() = ai, m = [α] + , i = , . . . ,m – , ()

we construct a q-fractional correction functional

un+ = un + qIαλ(t, τ )
[C
q D

α
un + f (τ ,un)

]
. ()

One of the Lagrange multipliers can be identified as λ(t, τ ) = –.

Proof Take the Laplace transform of both sides of ()

Lq[un+] = Lq[un] + ( – q)Lq
[


( – q)

∫ t



(t – qτ )(α–)

�q(α)
λ(t, τ )

× [C
q D

α
un + f (τ ,un)

]]
dqτ . ()

From Lemma ., we set λ(t, τ ) =
∑∞

i= ai[t – qατ ](βi), where βi ≥ . Then the Lagrange
multiplier is ‘good’ enough so that the product of (t–qτ )(α–)

�q(α) and λ(t, τ ) is similar as the

function g[s – qτ ] in (b) and 
(–q)

∫ t


(t–qτ )(α–)
�q(α) λ(t, τ )[Cq Dα

un + f (τ ,un)] becomes a convo-
lution (b).
Then we get the following equation:

Lq[un+] = Lq[un] + ( – q)ā(s)

(
sα

( – q)α
Lq[un]

–
m–∑
i=

di
qun()
dqti

sα–i–

( – q)α–i
+ Lq

[
f (t,un)

])
, ()

where ā(s) is the Laplace transform of some function.
Considering Lq[f (t,un)] as a restricted variation so that after taking the classical varia-

tional derivative to both sides of (), we can obtain

δLq[un+] = δLq[un] + ā(s)
sα

( – q)α–
δLq[un], ()

from which we can derive

ā(s) = –
( – q)α–

sα
. ()

The inverse Laplace transform of ā(s) is

a(t) = –
tα–

�q(α)
. ()

As a result, we can get

λ(t, τ ) = –. ()
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Substituting λ(t, τ ) = – into (), the variational iteration formula is determined as

un+ = un – qIα
[C
q D

α
un + f (τ ,un)

]
,  < α. ()

�

Example . Now consider the application in the initial value problems of the Caputo
q-fractional difference equations [],

C
q D

α
au = ωu + f (t), u(a) = c, t ∈ Tα

q ,  < α < . ()

We have the following variational iteration formula:

un+ = un –
∫ t

a

(t – qτ )(α–)

�q(α)
(C
q D

α
aun –ωun – f (τ )

)
dqτ . ()

Starting from the initial iteration

u = u(a) = c,

the successive solutions can be given as

u = c
[
 +

ω(t – a)(α)

�q(α + )

]
+ qIαa f (t),

u = c
[
 +

ω(t – a)(α)

�q(α + )
+

ω(t – a)(α)

�q(α + )

]
+ qIαa f (t) +ωqIαa f (t),

...

un = c
n∑

k=

ωk(t – a)(kα)

�q(kα + )
+

∫ t

a
(t – qτ )(α–)

[ n∑
k=

ωk(t – qατ )(kα)

�q(kα + α)

]
f (τ )dqτ .

For n→ ∞, un tends to the exact solution

u = cqEα

(
ω, (t – a)

)
+

∫ t

a
(t – qτ )(α–)qEα,α

(
ω, t – qατ

)
f (τ )dqτ ,

where qEα,β(ω, (t – qατ )) is the discrete Mittag-Leffler function defined by []

qEα,β
(
ω, t – qατ

)
=

∞∑
k=

ωk(t – qατ )(kα)

�q(kα + β)
()

and

qEα,
(
ω, (t – a)

)
= qEα(ω, t – a). ()

Readers are referred to the recent development in the application of the VIM for solving
fuzzy equations [–] and the calculus of variations on time scales [–]. Since this
study only concentrates on the applications of the VIM, other numerical methods in FC
can be found in [–].

http://www.advancesindifferenceequations.com/content/2013/1/21


Wu and Baleanu Advances in Difference Equations 2013, 2013:21 Page 15 of 16
http://www.advancesindifferenceequations.com/content/2013/1/21

6 Conclusions
We aim at some new applications of the VIM from differential equations to q-fractional
difference equations, and the following main contributions of this study are obtained:
(a) Designing a maple program of the VIM for differential equations. Now, there is no

need for one to obtain approximate solutions of high order by hand. The efficiency
and accuracy are improved;

(b) Correcting the popularly used variational iteration formulae in FC and explicitly
identifying some new Lagrange multipliers from the Laplace transform. The FDEs
are transformed into generalized Volterra integral equations;

(c) Applying the VIM in q-difference equations and identifying a Lagrange multiplier of
q-difference equations of mth order;

(d) Extending the VIM to FQC and investigating the initial value problems analytically.
The obtained variational iteration formula in FQC can reduce to those in FC and
QC.

Due to the rapid development of advanced applied sciences, non-classical tools of cal-
culus, i.e., fractional calculus, q-calculus, etc., have been becoming more active and have
been found useful in describing important physical phenomena. This study discusses
some new applications of the VIM and provides a potential tool to analytically investi-
gate such models. There is still some other work needed to consider, i.e., maple-packages
or the symbolic computation of the VIM in FC even in FQC, other numerical methods
based on the VIM, etc. The authors believe, in not far future, the VIM can play the same
crucial role as that in ordinary calculus.
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2. Rajković, PM, Marinković, SD, Stanković, MS: Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete

Math. 1, 311-323 (2007)
3. Mansour, Z: Linear sequential q-difference equations of fractional order. Fract. Calc. Appl. Anal. 12, 159-178 (2009)
4. Atici, FM, Senguel, S: Modeling with fractional difference equations. J. Math. Anal. Appl. 369, 1-9 (2010)
5. Herrmann, R: Common aspects of q-deformed Lie algebras and fractional calculus. Physica A 389, 4613-4622 (2010)
6. Purohit, SD, Yadav, RK: On generalized fractional q-integral operators involving the q-Gauss hypergeometric function.

Bull. Math. Anal. Appl. 2, 35-44 (2010)
7. Atici, FM, Eloe, PW: Linear systems of fractional nabla difference equations. Rocky Mt. J. Math. 41, 353-370 (2011)
8. Al-Salam, WA: Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 15, 135-140 (1966)
9. Agarwal, R: Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 66, 365-370 (1969)
10. Al-Salam, W, Verma, A: A fractional Leibniz q-formula. Pac. J. Math. 60, 1-9 (1975)
11. Mozyrska, D, Pawłuszewicz, E: Observability of linear q-difference fractional-order systems with finite initial memory.

Bull. Pol. Acad. Sci. 58, 601-605 (2010)
12. Abdeljawad, T, Baleanu, D: Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function.

Commun. Nonlinear Sci. Numer. Simul. 16, 4682-4688 (2011)

http://www.advancesindifferenceequations.com/content/2013/1/21


Wu and Baleanu Advances in Difference Equations 2013, 2013:21 Page 16 of 16
http://www.advancesindifferenceequations.com/content/2013/1/21

13. Ferreira, RAC: Positive solutions for a class of boundary value problems with fractional q-differences. Comput. Math.
Appl. 61, 367-373 (2011)

14. Ahmad, B, Nieto, JJ: On nonlocal boundary value problems of nonlinear q-difference equations. Adv. Differ. Equ.
2012, 81 (2012)

15. Ahmad, B, Ntouyas, SK, Purnaras, IK: Existence results for nonlocal boundary value problems of nonlinear fractional
q-difference equations. Adv. Differ. Equ. 2012, 140 (2012)

16. Graef, JR, Kong, L: Positive solutions for a class of higher order boundary value problems with fractional q-derivatives.
Appl. Math. Comput. 218, 9682-9689 (2012)

17. He, JH: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput.
Methods Appl. Mech. Eng. 167, 57-68 (1998)

18. He, JH: Variational iteration method - a kind of non-linear analytical technique: some examples. Int. J. Non-Linear
Mech. 34, 699-708 (1999)

19. He, JH: Variational iteration method - some recent results and new interpretations. J. Comput. Appl. Math. 207, 3-17
(2007)

20. He, JH, Wu, XH: Variational iteration method: new development and applications. Comput. Math. Appl. 54, 881-894
(2007)

21. El-Tawil, MA, Bahnasawi, AA, Abdel-Naby, A: Solving Riccati differential equation using Adomian’s decomposition
method. Appl. Math. Comput. 157, 503-514 (2004)

22. Hull, T, Enright, W, Fellen, B, Sedgwick, A: Comparing numerical methods for ordinary differential equations. SIAM
J. Numer. Anal. 9, 603-637 (1972)

23. Kac, VG, Cheung, P: Quantum Calculus. Springer, Berlin (2002)
24. Bohner, M, Peterson, AC: Advances in Dynamic Equations on Time Scales. Birkhäuser, Basel (2003)
25. Gasper, G, Rahman, M: Basic Hypergeometric Series. Cambridge University Press, Cambridge (2004)
26. Jackson, FH: q-form of Taylor’s theorem. Messenger Math. 38, 62-64 (1909)
27. Jackson, FH: On q-definite integrals. Q. J. Pure Appl. Math. 41, 193-203 (1910)
28. Wu, GC: Variational iteration method for q-diffusion equations on time scales. Heat Transf. Res. (2012, in press)
29. Wu, GC: Variational iteration method for q-difference equations of second order. J. Appl. Math. 2012, 102850 (2012)
30. Kong, H, Huang, LL: Lagrange multipliers of q-difference equations of third order. Commun. Fract. Calc. 3, 30-33

(2012)
31. Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)
32. Kilbas, AA, Srivastav, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam

(2006)
33. Sheng, H, Li, Y, Chen, YQ: Application of numerical inverse Laplace transform algorithms in fractional calculus.

J. Franklin Inst. 348, 315-330 (2011)
34. Wu, GC: Variational iteration method for the fractional diffusion equations in porous media. Chin. Phys. B 21, 120504

(2012)
35. Wu, GC, Baleanu, D: Variational iteration method for the Burgers’ flow with fractional derivatives - new Lagrange

multipliers. Appl. Math. Model. (2012, in press). doi:10.1016/j.apm.2012.12.018
36. Baleanu, D, Golmankhaneh, AK, Golmankhaneh, AK: Solving of the nonlinear and linear Schrödinger equations by

the homotopy perturbation method. Rom. J. Phys. 54, 823-832 (2010)
37. Diethelm, K: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)
38. Atici, FM, Eloe, PW: Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 14, 341-352 (2007)
39. Hahn, W: Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der hypergeometrischen

q-Differenzengleichung. Das q-Analogon der Laplace-Transformation. Math. Nachr. 2, 340-379 (1949)
40. Annaby, MH, Mansour, ZSI: q-Fractional Calculus and Equations. Springer, Berlin (2012)
41. Allahviranloo, T, Abbasbandy, S, Rouhparvar, H: The exact solutions of fuzzy wave-like equations with variable

coefficients by a variational iteration method. Appl. Soft Comput. 11, 2186-2192 (2011)
42. Jafari, H, Saeidy, M, Baleanu, D: The variational iteration method for solving n-th order fuzzy differential equation.

Cent. Eur. J. Phys. 10, 76-85 (2012)
43. Jafari, H, Khalique, CM: Homotopy perturbation and variational iteration methods for solving fuzzy differential

equations. Commun. Fract. Calc. 3, 38-48 (2012)
44. Bangerezako, G: Variational q-calculus. J. Math. Anal. Appl. 289, 650-665 (2004)
45. Ferreira, RAC, Torres, DFM: Higher-order calculus of variations on time scales. Math. Control Theory Finance 2008,

149-159 (2008)
46. Abdeljawad, T, Jarad, F, Baleanu, D: Variational optimal-control problems with delayed arguments on time scales. Adv.

Differ. Equ. 2009, 840386 (2009)
47. Martins, N, Torres, DFM: Calculus of variations on time scales with nabla derivatives. Nonlinear Anal., Theory Methods

Appl. 71, e763-e773 (2009)
48. Malinowska, AB, Torres, DFM: The Hahn quantum variational calculus. J. Optim. Theory Appl. 147, 419-442 (2010)
49. Chen, W, Sun, HG, Li, XC: Mechanics Engineering Problems of Fractional Derivative Modeling. Science Press, Beijing

(2010)
50. Baleanu, D, Diethelm, K, Scalas, E, Trujillo, JJ: Fractional Calculus Models and Numerical Methods. World Scientific,

Singapore (2012)
51. Duan, JS, Buleanu, D, Wazwaz, AM: A review of the Adomian decomposition method and its applications to fractional

differential equations. Commun. Fract. Calc. 3, 73-99 (2012)

doi:10.1186/1687-1847-2013-21
Cite this article as:Wu and Baleanu: New applications of the variational iteration method - from differential
equations to q-fractional difference equations. Advances in Difference Equations 2013 2013:21.

http://www.advancesindifferenceequations.com/content/2013/1/21
http://dx.doi.org/10.1016/j.apm.2012.12.018

	New applications of the variational iteration method - from differential equations to q-fractional difference equations
	Abstract
	MSC
	Keywords

	Introduction
	The VIM in ordinary calculus
	The VIM in q-calculus
	The VIM in fractional calculus
	The Caputo q-fractional initial value problem
	Conclusions
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


