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Abstract
In this study, we investigate the solutions of two special types of the Riccati difference
equation xn+1 = 1

1+xn
and yn+1 = 1

–1+yn
such that their solutions are associated with

Fibonacci numbers.
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1 Introduction
Nonlinear difference equations have long interested researchers in the field of mathemat-
ics aswell as in other sciences. They play a key role inmany applications such as the natural
model of a discrete process. There have been many recent investigations and interest in
the field of nonlinear difference equations by several authors [–]. For example, in [],
Brand defined a sequence which stems from the Riccati difference equation

xn+ =
axn + b
cxn + d

.

In [], Cinar studied the solution of the difference equation

xn+ =
xn–

 + xnxn–
.

In [], Papaschinopoulos and Papadopoulos studied the fuzzy difference equation

xn+ = A +
B
xn

,

which is a special case of the Riccati difference equation. In [], Elabbasy et al. obtained the
Fibonacci sequence in solutions of some special cases of the following difference equation

xn+ =
axn–lxn–k

bxn–p – cxn–q
.
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In [], the author deals with behavior of the solution of the nonlinear difference equation

xn+ = axn– +
bxnxn–

cxn + dxn–
.

Also, he gives specific forms of the solutions of four special cases of this equation. These
specific forms also contain Fibonacci numbers.
Fibonacci numbers have been interesting to the researchers for a long time to get the

main theory and applications of these numbers. For instance, the ratio of two consecu-
tive Fibonacci numbers converges to the golden section α = +

√


 . The applications of the
golden ratio appear in many research areas, particularly in physics, engineering, archi-
tecture, nature and art. Physicists Naschie and Marek-Crnjac gave some examples of the
golden ratio in theoretical physics and physics of high energy particles [–].We should
recall that the Fibonacci sequence {Fn}∞n= has been defined by the recursive equation

Fn+ = Fn+ + Fn, ()

with initial conditions F = , F = . Also, it is obtained to extend the Fibonacci sequence
backward as

F–n = F–n+ – F–n+ = (–)n+Fn. ()

One can clearly obtain the characteristic equation of () as the form x – x –  =  such
that the roots

α =
 +

√



and β =

 –
√



. ()

Hence the Binet formula for Fibonacci numbers

Fn =
αn – βn

α – β
, ()

can be thought of as a solution of the recursive equation in (). Also, the following ratio is
satisfied:

lim
n→∞

Fn+r
Fn

= αr , ()

where r ∈ Z.
Let us consider the following lemma which will be needed for the results in this study.

Lemma  [] The following equalities hold:
(i) For n > k + , n ∈N

+ and k ∈N, Fn = Fk+Fn–k + FkFn–(k+).
(ii) For n > , αn = αFn + Fn– and βn = βFn + Fn–.
(iii) For n > , Fn–Fn+ – F

n = (–)n (Cassini’s formula).

In this study, we consider the Riccati difference equation

xn+ =
a + bxn
c + dxn

, n = , , . . . . ()
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Obviously, by taking a = c = d = , b =  and a = d = , c = –, b = , equation (), respec-
tively, is transformed into the following equations:

xn+ =


 + xn
, n = , , . . . , ()

yn+ =


– + yn
, n = , , . . . , ()

where initial conditions are x ∈ R – {– Fm+
Fm }∞m= and y ∈ R – { Fm+

Fm }∞m=, respectively, and
Fm is themth Fibonacci number.
The aim of this study is to investigate some relationships both between Fibonacci num-

bers and solutions of equations () and () and between the golden ratio and equilibrium
points of equations () and ().

2 Main results
Firstly, it is not difficult to prove that equilibrium points of equations () and () are x =
–β , x = –α and y = α, y = β , respectively, where α =

√
+
 is the golden ratio and β = –

√



is the conjugate of α. Note that one of the equilibrium points of equation () is the golden
ratio.

Theorem  For n = , , , . . . , the solutions of equations () and () are as follows:
(i) For x ∈R – ({ 

α
, 

β
} ∪ {– Fm+

Fm }∞m=), xn =
Fn+Fn–x
Fn++Fnx

.
(ii) For y ∈R – ({α,β} ∪ { Fm+

Fm }∞m=), yn =
F–n+F–(n–)y
F–(n+)+F–ny

.

Proof Firstly, in here we will just prove (ii) since (i) can be thought in the same manner.
(ii) We will prove this theorem by induction. For k = ,

F + Fy
F– + Fy

=
 + y
 + y

= y.

Now assume that

yk =
F–k + F–(k–)y
F–(k+) + F–ky

, ()

is true for all positive integers k. Therefore, we have to show that it is true for k + . Taking
into account () and (), we write

yk+ =


– + yk

=
F–(k+) + F–ky

F–k – F–(k+) + (F–(k–) – F–k)y

=
F–(k+) + F–ky

F–(k+) + F–(k+)y
,

which ends the induction and the proof. �

Theorem  Let the solutions of equations () and () be {xn}∞n= and {yn}∞n=, respectively
and x ∈ R – {– Fm+

Fm }∞m=. Therefore, {xn}∞n= = {–yn}∞n= is satisfied if and only if the initial
conditions are x = –y.
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Proof First, assume that {xn}∞n= = {–yn}∞n=. Taking into account (), we can write

Fn + Fn–x
Fn+ + Fnx

= –
F–n + F–(n–)y
F–(n+) + F–ny

=
Fn – Fn–y
Fn+ – Fny

.

By using simple mathematical operations and the well-known Cassini’s formula for Fi-
bonacci numbers, we have

(
Fn–Fn+ – F

n
)
x =

(
F
n – Fn–Fn+

)
y,

(–)nx = (–)n+y,

x = –y.

Second, assume that x = –y. By considering the solutions of equation (), we get

xn =
Fn + Fn–x
Fn+ + Fnx

=
(–)n+Fn – (–)n+Fn–y
(–)n+Fn+ – (–)n+Fny

=
F–n + F–(n–)y
–F–(n+) – F–ny

=
F–n + F–(n–)y

–(F–(n+) + F–ny)
= –yn,

which is desired. �

Theorem  The following statements hold:
(i) For the initial condition x = 

α
(or x = 

β
), equation () has the fixed solution xn = 

α

(or xn = 
β
).

(ii) For the initial condition y = α (or y = β), equation () has the fixed solution yn = α

(or yn = β).

Proof Here we will just prove (i) since the proof of (ii) can be done quite similarly.
(i) Firstly, let x = 

α
=

√
–
 be the initial condition of equation (). Then, by using

Lemma (ii), we have

xn =
Fn + Fn–

α

Fn+ + Fn
α

=
αFn + Fn–
αFn+ + Fn

=
αn

αn+ =

α
.

Secondly, let x = 
β
= –

√
+
 be the initial condition of equation (). Then, by considering

Lemma (ii), we obtain

xn =
Fn + Fn–x
Fn+ + Fnx

=
Fn + Fn–

β

Fn+ + Fn
β

=
βFn + Fn–
βFn+ + Fn

=
βn

βn+ =

β
,

which is desired. �
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Theorem  The following statements hold:
(i) For x ∈R – ({ 

β
} ∪ {– Fm+

Fm }∞m=), all the solutions of equation () converge to –β ,
where β = –

√


 . That is, lim
n→∞xn = –β .

(ii) For y ∈R – ({α} ∪ { Fm+
Fm }∞m=), all the solutions of equation () converge to β , where

β = –
√


 . That is, lim
n→∞yn = β .

Proof To prove, we use the solutions of () and ().
(i) By using Theorem (i), we can write

lim
n→∞xn = lim

n→∞
Fn + Fn–x
Fn+ + Fnx

= lim
n→∞

 + Fn–
Fn x

Fn+
Fn + x

.

Thus, from (), we have

lim
n→∞xn =

 + 
α
x

α + x
=


α
= –β .

(ii) The proof can be seen easily in a similar manner to Theorem (i). �

Theorem  Let {xn}∞n= be the solution of (). Then, we have

lim
n→∞

n∏

i=

xi = F.

Proof For x = F, the result is trivial. If x �= F, by Theorem , then we can write

x =
F + F–x
F + Fx

,

x =
F + Fx
F + Fx

,

...

xn =
Fn + Fn–x
Fn+ + Fnx

.

By multiplying both sides of the above equalities, we obtain

n∏

i=

xi =
F + F–x
Fn+ + Fnx

=
x

Fn+ + Fnx
. ()

Letting n→ ∞, the last equality gives the following result

lim
n→∞

n∏

i=

xi = F.

Consequently, the proof is completed. �

The following theorem establishes that the Fibonacci numbers can be obtained by using
the solutions of ().
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Theorem  Let the initial condition of equation () be x = Fk
Fk+

, where Fk is the kth Fi-
bonacci number. For n > k +  and k,n ∈ Z

+, we have

Fn =
Fk+

xx · · ·xn–(k+) .

Proof Firstly, taking n – (k + ) instead of n in (), we obtain

n–(k+)∏

i=

xi =
x

Fn–k + Fn–(k+)x
. ()

Secondly, dividing both sides in () with x, we get

n–(k+)∏

i=

xi =


Fn–k + Fn–(k+)x
. ()

Finally, by considering Lemma (i), we obtain

xx · · ·xn–(k+) = 
Fn–k + Fn–(k+)x

=


Fn–k + Fn–(k+) Fk
Fk+

=
Fk+
Fn

,

from which the result follows. �

3 Conclusion
In this study, we mainly obtained the relationship between the solutions of Riccati dif-
ference equations (given in (), ()) and Fibonacci numbers. We also presented that the
nontrivial solutions of equations in () and () actually converge to –β and β , respectively,
so that β is conjugate to the golden ratio. We finally note that the results in this paper are
given in terms of Fibonacci numbers.
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