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1 Introduction

In the past decade, high-order cellular neural networks (HCNNs) have attracted much
attention due to their wide range of applications in many fields such as signal and image
processing, pattern recognition, optimization, and many other subjects. There have been
extensive results on the problem of global stability of periodic solutions and anti-periodic
solutions of HCNNs in the literature (see [1-5]). Recently, some attention has been paid
to neural networks with time delay in the leakage (or ‘forgetting’) term (see [6—-15]). In
particular, Xu [16] considered the existence and exponential stability of the anti-periodic
solutions for the following HCNNs with time-varying delays in the leakage terms:

x(t) = —ci(Bxi(t - 5:0) + Y _ ag®)fi(xi(t - (1))

j=1

+ Z Z bij(t)g; (% (¢ — iu(8))) @i (x: (£ - Bin(2)))

j=1 =1

YN dile) fo o () (xi(t — u)) du /0 vt () hy (2 (¢ - u)) du

j=1 I=1

+ L), i=12,...,n (1.1)

in which # corresponds to the number of units in a neural network, x;(t) corresponds to
the state vector of the ith unit at the time ¢, ¢;(¢) represents the rate with which the ith
unit will reset its potential to the resting state in isolation when disconnected from the
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network and external inputs, a;(£), b;;(t) and dy(t) are the first- and second-order con-
nection weights of the neural network, §;(¢) > 0 corresponds to the time-varying leakage
delays, a;;(t) > 0, Byi(¢) = 0 and 7;(¢) > 0 correspond to the transmission delays, oy;(x)
and vy;(u) correspond to the transmission delay kernels, I;(f) denotes the external inputs
at time ¢, f;, g; and /; are the activation functions of signal transmission.

The initial conditions associated with system (1.1) are of the form
xi(s) :(pi(s)’ S (—OO, 0]:i: 1,2,...,m, (12)

where ¢;(-) denotes a real-valued bounded continuous function defined on (-0, 0].
Under some suitable conditions on coefficients of (1.1), the author in [16] derived
some new sufficient conditions ensuring that all solutions of system (1.1) converge ex-
ponentially to the anti-periodic solution, but the result leaves room for improvement
In fact, in the proof of Lemma 2.1, the expression x;(£) — x;(t — ft 5
was used, and the author replaced «x(#) by the right-hand side of equatlon (1.1). The
case that t — §;(t) < 0 is possible, so the integration f: 51 xf(u) du should be handled as
e 50 %1 (0) dut = ft 50 % () At + [y %i(u) du, for [ x( du can be replaced by the right-
hand side of equation (1.1), but for ft i x;(#) du cannot be replaced by the right-hand
side of equation (1.1). A similar error also occurs in Lemma 2.2 of [16]. For this reason, the
course of proof in Lemmas 2.1 and 2.2 is not true. Motivated by this, we shall give a new
proof to ensure the existence and exponential stability of the anti-periodic solutions for
system (1.1). Moreover, an example is also provided to illustrate the effectiveness of our
results.

Let u(£) : R — R be continuous in £. u(t) is said to be T-anti-periodic on R if
u(t+7T)=-u(t) forallteR.

Throughout this paper, for i,j,/ = 1,2,..., n, it will be assumed that c;, I;, a;, bji, dy; : R — R
and §;, T, oy, Biji : R — [0, +00) are bounded continuous functions, oy, vy : [0, +00) —
R are continuous functions, ¢; is bounded above and below by positive constants, §; is
a bounded continuous function, |oy;(t)|e“* and |vy(t)|e“* are integrable on [0, +00) for a

certain positive constant «, and
c(t+T)=cit), a;(t + T)fi(v) = —a;(t)fi(—v), (1.3)
bi(t + T)g(vi)gi(vi) = —biu(t)gi(—vj)gi(—vp), (14)

dj(t+T) ()i (vi(t — u)) du/ viu(u)hy (vit — u)) du
0 0

= —dy(2) ; cr,ﬂ(u)h,'(—v,'(t - u)) du/o vijl(u)hl(—vl(t — u)) du, 1.5)
5i(t + T) = 8,’(t), ‘E,'j(t + T) = '(ij(t), [l‘(t + T) = —Ii(t), (16)
a(t+T) = a(t), Bi(t+ T) = By(2), (L7)

where ¢,v € R, v; and v; are real-valued bounded continuous functions defined on R.
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For bounded continuous functions f, we set

= ol

fr= sup[f(t)|.
teR

In order to investigate the anti-periodic solution of HCNNS (1.1), we also give some usual
assumptions.
(H;) There exist nonnegative constants r s Lf s Llh, M]g and Mlh such that

i) 0| <Ellu-vl, g -gW)| <Lu—vl, b)) - )| < Liu—v]
and

g <M, i) <M},
where u,veR,j=1,2,...,n

(Hy) For all £ >0 and i € {1,2,...,n}, there exist positive constants &, &,...,&, and n*
such that ¢/ 8] <1, and

1

1-cfé;

~[ei®)(1=2¢}87) = |ci(®) = (1= 8/(®))ci(t - 8:(1)) |]

+Z‘“U +5+§

&i

1
+ ZZ‘blII(t ( +8+ ElMg +M +8+ é:ll’<lg)

j=1 [=1

+ZZ|d,'ﬂ(t)‘(/0 ‘aiﬂ(u)’Lf’du +5+§,/ |V;;1 ’duMh

j=1 =1

+M/ |a,ﬂu)|du/ |v,]1(u)|Lhdu 1*8"5)

<-n".
2 Preliminary lemmas and main results
Lemma 2.1 Let (H;) and (Hy) hold. Suppose that x(t) = (x1(£), %2(¢), ..., %,(t))T is a solution
of system (1.1) with the initial conditions

t
00 [ a@pe)ds| <62, tel-000Li=12..n 2
t-38;(t)
where
y = maxiZaU 0)‘ X:X:bljl|g1(0)|jw}g
j=1 I=1

+ZZd,,, / |0 ()| duh;(0) / |u,,l(u)|duMh+1+}. (2.2)

j=1 I=1
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Then
! Y
w0 [ aomds| <5 23)
£=5;(t) n
and
&%
it . 2.4
O] = 55 (24)

forallt>0,i=1,2,...,n.

Proof Suppose (2.3) holds. Then, for a given t>0andie,={1,2,...,n}, we have

lxi(t)] < -

/ t ci(8)x;(s)ds

—8;(t)

x;(t) — /ta o ci(s)x;(s) ds

< gil* +c¢/8; sup |xi(s)| for all £ € (00, 7]
n

se(—00,]

and

()] < sup |xi(s)|

se(-00,f]

< gil* +¢;8; sup |xi(s)’ for all £ € (—o0, 2],
n

s€(—00,t]

which combined with (H;) implies that (2.4) holds. Therefore, it suffices to prove (2.3).

We achieve this by way of contradiction. Let

Xi(t) = xi(t) - t ci(s)x;(s) ds.

£=5;(t)

Suppose that (2.3) does not hold. Then there exist iy € J,, and £, > 0 such that
|Xio(t*)| =&, 1* and (2.3) holds for all £ € (—o0, t,) and i € J,,. (2.5)
n
It follows that (2.4) holds for all ¢ € (o0, t,) and i € J,,. From (1.1), we have

d
EXZ'O (t)
= xj, (£) = [cig ()i (&) = (1= 87, (8)) cig (£ — 81 (8)) xig (£ — 81y (8)) ]
= _[Cio (t)xio (t) - (1 - 81/0 (t))cio (t - 8[0 (t))xlo (t - 8i0 (t))]

+ |:_Cio(t)xio (t=8i, (1)) + Z aioj (8 (%7 (£ = Tigs (£)))

j=1

+ Z Z bigji()gj (2 (¢ — ctiju(9))) @i (1 (¢ — Bigju(9)))

j=1 I=1
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YD digi®) /0 iojt () (%t — w)) du /0 Vigjt )y (x,(t — ) du

j=1 I=1

+ Iio (t):|

= —Cio ()i (£) — [ig (8) = (1= 87, (1)) i (£ = 81 (£)) Jociy (£ — 84 (£))

+ Y i ()i (i — i (1))

j=1

£ YD bigi0g (i (£ — tigjt®)) )i (£ = Bigjr(®)))

j=1 I=1

N digi(t) fo iojt () (x;(t — w)) du /0 Vo (W)hy (%1t — ) du

j=1 I=1

+Ii0(t)

t
= —C;y ()Xo (£) — ¢y (2) Cio (8)x;o (s) ds
t=8;, (£)

= [cio (&) = (1= 8}, () cig (£ — 84 (£)) |ip (£ — 81 (1))

+ Y i) (i — i (1))

=
£ YD bigi0g(xi( — igjt®)) )i (£ = Bigjt(®)))
=1 =1
+ Z Zdioﬂ(t) / ooyt (W) by (%;(£ — ) du/ Vigjt () hy (%, — 1)) du
j=1 =1 0 0
+ Iio (l’)

This, together with (2.5), the fact that (2.4) holds for ¢ € (o0, £,) and i € J,,, (H;) and (H),
yields

D~ |Xi0 (t*)|

Ly
= —Ciy (t*)|X10 (t*)| + Cj (t*) Cig (S)|xio (S)} ds
t*—sto ts)

+ |Ci0 (t) - (1 - 8;’0 (t*))cio (t* =38 (t*)) | |xz’0 (t* =8 (t*)) |

Z aioj(t*)ﬁ(x; (t* - Tioi(t*)))

+
j=1

+ Z Z bigji(t:)gi (% (£ — ctigy(£2)) )@ (1 (24 = Bigjn(t))) ’
j=1 =1

30D e [ oty ot~ ) [ it - 1) d
j=1 I=1 0 0

+ |1i0 (t*)|
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L
< =iy ()] X (8] + €4y (£2) ¢ |xio (s)| ds

Ly —‘Sio (t4

+ ’Cio (t*) - (1 - 8;0 (t*))cio (t* - 51‘0 (t*)) | ‘xio (t* = (Sio (t*)) |

+ 3 Naigi (€| ([ (%18 — Tipj (1)) = £0)] + [£0)])
j=1

+ ZZ|bloll(t*)| |g, x, = igji(ts) )) _gj(0)| + |g1'(0)|)1\/[}g

j=1 I=1

Y i) / ot @0)] ([ (8 = ) = By ()| + | (0)])

j=1 I=1

X./o |vi0ﬂ(u)’Mf’du+’Ii0(t*)|

So L*
—clo(t*)&o + € (8, 8 1 f ¥

IA

+ Jeio(82) — (1= 8] (22))cio (£ — 810 (8) | —

+ 3 i (€ (5 (2 = 7i0j(20) | + [£0)])

j=1

£ Y |Bign(t) [ (L (8 — cigu(t) | + |i(0)|) M}

j=1 I=1

+ZZ|dl0,[(t* / |0 10) | (L] |1 (& = w0)| + | 50) |) s / |viju (1) | MY dus

j=1 [=1
+ |Ilo(t*)|
4 + Eioz_*
=< —cip ()& o + iy (t)eiy 8o —— 1 T-co
’ Eio?;/_*
+ |Ci0 (t*) - (1 _Sl’o(t ))Clo( Sl()(t ))| —CT (3+
" gL '—*
+Z|ai0/(t*)‘l’{l 77+ + ZZ|b10/l(t )} et l
j=1 69 5 j=1 =1 8
gL oo
+ ZZ]dm,;(t )| / |igji ()| duL)! C”m ; /0 |viji ()| M} dus
j=1 =1 j i

{Za;,w( Y bl
=1

j=1 [=1

+ Z‘Zdw, f | i ()| dueh;(0) / |vigji (1) | duM! +1;)}

j=1 [=1

sfhwmhnmmﬂ%m)a 57, 6)ci (8~ 30 0) [}
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+ Z|a101(t*)i +5+ g] + ZZ|blOﬂ(t* i +8+Mg

j=1 I=1
d; auh—5 [~ Mraut Y
+ZZI i (2:)] |o,-oﬂ<u>| ulf s | i) | M due g 4y
j=1 =1 j % 70 "
<—n*l*+y
n

=0.

This contradicts with D~|X;,(¢*)| > 0 and hence (2.3) is proved. This completes the
proof. g

Remark 2.1 In view of the boundedness of this solution in Lemma 2.1, from the theory
of functional differential equations with infinite delay in [17], it follows that the solution
of system (1.1) with initial conditions satisfying (2.1) can be defined on [0, +00).

Lemma 2.2 Suppose that (H;)-(Hy) are true. Let x*(t) = (x}(2),5(2),...,x:(2))T be the
solution of system (1.1) with initial value ¢* = ((pf(f),(pj(t),...,gojj(t))T, and let x(t) =
(x1(8), %2(2), ..., %,(£))T be the solution of system (1.1) with initial value ¢ = (¢1(2), p2(t),. ..,
()T, Then there exists a positive constant r such that

x(t) —x7() = 0(e™), i€)u

Proof In view of (Hy), using a similar argument as that in the proof of (2.7) in [16], we can

choose k > r > 0 and 1 > 0 such that ¢;(¢) > r, and

() = ) (1= 26887) - [0 — (1= 810)es(t - 8:0)]] ﬁgi
f rrl(t

+Z|a,,(t )|Lj e +5+$

j=1
+;;|bl,, t)|(Lg mzﬂ(t +8+§}Mg + MiePin® +5+El 1)
+ZZ|dyz(t |</ |Gi;z(u)|€mL,hd” +8+ / | vy ()| ]

j=1 I=1

1
+M / |J,]1(u)|du/ |1)L,[ u)|e Ll du +8+§>
<-1n, t>0,i€],. (2.6)

Let y(t) = x(¢) — x*(¢). Then
yi(®)

= —¢;(t)yi(t - 8:(1)) + Z ai () (fi (3 (t — 7 (®) + x5 (¢ — 7(®))) = £ (£ - 7(2))))

j-1

Page 7 of 14
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+ Z Z bij() (g (7 (¢ — ctii(2))

j=1 I=1

+x; (t=0u(®))) @ (vi(t = Biu(®)) + x5 (£ Biu(2)))

~g (% (£ - ()@ (%] (£ - Biu(®)))) ZZdl,,(t)

j=1 I=1

o]

X (/ U,-ﬂ(u)hj(yj(t —u)+ x}"(t - u)) du/ vlﬂ(u)hl(yl(t —u)+x;(t - u)) du
0 0

_ / oy (u)hj (x;-“(t —u)) du/ viit(w)hy (x (¢ — 1)) du), iel, 2.7)
0 0
which yields

d
EYi(t)
=rey (t) + €"yl(t)
— [ci®)eyi(t) — (1= 8](8))ci(t — 8:(2)) e Dy, (£ - 8:(2)) ]
= reyi(t) - [ci()eyi(t) — (1 - 8.(8))ci(t — 8:(8)) e 2Dy, (¢ - 8,(2)) ]

+e" 3 —ci(t)yi(t - 8:(2))

D a0~ 70) + 5 (6 - 7(0)) £ ¢ - )

j=1

)Y ba@)(g (it - @) + x5 (¢ - 2(0)))

j=1 I=1

x @iyt = Bi(®)) +x7 (¢ = Bi(0)) — g (& (£ — iu(®))) & (7 (£ = Bin(2))))

+ Z Zdl,, £) ( / o)y (vt — ) + (¢ — w)) du

j=1 I[=1

X / v,',»;(u)hl(yl(t —u)+ x5 (t— u)) du
0

_ / oyi(u)h; (xj.‘(t - u)) du/ vy (w)hy () (¢ = u)) du) }
0 0

= —(ci(t) = r) Yi(e) = (ci(8) = 1) / ci(s)e”yi(s) ds
t-3;(t)
—[ci(®) = (1= 8/®))ci (£ - 8:(8)) e ]e"yi(2 - 8:(2))

[Z O 0) + 56~ 500) -5 ¢~ )

j=1

3 Y ba@)(g (it - @) + % (¢ - a(0)))

j=1 I=1
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x gi(yi(t = Biu(0)) + x5 (£ Biu(t))) —gj(x}‘ (t = au(®)))g (] (£ - Biu(®))))

+ Y dy®) ( /0 oy () (yj (& — ) + 7 (¢ — ) du

j=1 I=1

x / vi,»;(u)hl(y;(t —u)+x;(t —u)du
0

[e¢]

_ / oyi(u)hj (x;.“(t - u)) du/ viit(w)hy (x (¢ — u)) du>i|, (2.8)
0 0

where

t

nm:a%m—/

t-8;(t

ci(s)ey(s)ds, ie],.
)

Denote

M= max[ sup |Y,(s)|}.

1si=nlge(—00,0]

There exists K > 0 such that

|Yi()| <M <K& forallt e (~00,0] and i € I,
We claim that

|Yi(t)| <K§; forallt>0andic],. (2.9)
Otherwise, there exist i € J, and 6 > 0 such that

|Yi(0)| =K& and |Yj(t)| <K& forallt e (-00,0)and;j €],

It follows that for ¢t € (—o0,0] and j € J,,,

/t_ . ci(s)e”y;(s) ds

t

|y (0)] < |ey(t) - / ¢i(s)e”y;(s) ds| +

£=8j(t) 8;(t)
<K&+ C;SJ-* sup €” |yj(s)| (2.10)
s€(—00,0]
and hence
7 rs I(§
elyt)| = sup €¥|yls)] = —2. (2.11)
se(~00,0] 1- ¢ 81'

Then, for the upper left derivative of |Y;(¢)|, from (2.6), (2.8), (2.11) and (H;), we have

0 < D7|Y(0)|

6

%MM—AA () yi(s) ds

<—(ci(0) - r)Yi(6) +
=8i(0)
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~[ci(0) = (1= 8/(0))ci(6 - 5:(0))e @] yi (6 - 5:(0))
+e’“[2ﬂv(9)(ﬁ(ﬁ(9—nj(e))+x}‘(9—fi;(9>))—ﬁ(x}‘(G—nj(G))))
j=1

£ 3 bi(0)(g((60 - cu(0)) + &7 (6 - u(0))) @ (726 - Bi(6))

j=1 I=1

% (6 = Bn(6))) = &(57 (6 - u(®)))ei (7 (6 — in(6))))

+ Z Z diu(6) ( / oy (w)hi (3O — u) + %70 — u)) du
j=1 [=1
X / v,ﬂ(u)hl(yl(e —u)+x/(0 - u)) du
0

_ /OO al»ﬂ(u)hj(x;‘(e - u)) du /w vi,»;(u)hl(x;‘(e - u)) du>i| ‘
0 0

K§;
= ~(a0) =) YO+ (e0) =) e
+]ci(0) = (1-8/(0))ci(6 - 8:(0)) e @ | e er@=4EN |y, (9 — 5,(0))|

+ 3 |ay®)|L7e IOy (0 - 7(0))|
j=1

£33 b)) (g1 (37(6 — () + 7 (6 — ()@ (e (6 — Bin(6))

j=1 I=1
+x7 (6 - Bi(9))) — gi(x (6 — 2u(0)))gi(y1(6 — Bi(0)) +x; (6 — Bi(9)))|
+ g% (6 — (0))) @ (31 (6 - Biu(6)) +x; (6 - Bu(6)))
- g% (0 — u(9)))ai(x (6 - Bu(9)))])

+ Z Z|dij,(e)|e’0(

j=1 =1

/(; i) (3,0 — w) + %7 (0 — u)) du

X / vi}-l(u)hl(yl(e —u)+x/(0 - u)) du
0

- /0 a,ﬂ(u)h,-(x;‘ (- u)) du/(; vlﬂ(u)hl(yl(e —u)+x5(0 - u)) du

o]
+

/ oi(uw)h; (xj‘(@ - u)) du/ ulﬂ(u)hl(yl(e —u) +x;(6 - u)) du
0 0
- / a,ﬂ(u)h/(x;(G - u)) du/ v,ﬂ(u)hl(x}k(G - u)) du
0 0
%'l crst

1- +8+ll

+ci(0) — (1 8(0))ci (6 — 8:(0)) e D] e O=3OD) |y, (9 — 5,(0)) |

<—(ci(0) = )| Yi(0)| + (ci(0) - 1)

n
+ D lay @)L ey (6 - 7))

Jj=1
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+ Z Z|blll Lg rett(0) gr(0—e (60 )|y (9 05111(9)) |MJZ§

j=1 I=1
+Mlgerﬂiﬂ(8 (OB (0) |yl(9 ﬂt}l(e))|Lg)

+ Z Z‘d,,l(é’ (/ |oij1(u)’e’”L;’e’(9’”) |yj(0 - u)’ dufo |vijl(u)| duMlh

j=1 [=1
+M/h/0 ‘Ui/z(u)}d”/ |vii(ae) e L€ |y (6 - u)’du)

< —[(ci(®) =) (1 - 2¢]87) — |ci(0)e™ P — (1~ 8/(8))ci(6 — m:())|] ﬁz@i

L7

n
) 1
+ Z|ai/(9)|Lfe"’1(9) . c%stj
j=1 7 %

1 1
g ra; g & B0 g
+§ :2 |biu(6) (L el > 5 KEM) + Mie P >1_ +8+K51L1)
5% o

j=1 I=1

+ZZ|¢,7,(9)|< / Joi1(a0)|e” L} du———K; / |viji(u) | dudl
1 J

j=1 I=1

+Mf |al,1(u)|du/ |v,,l u)|e”‘Lhdu 1 K“;‘,)
¢'5;

1
= {—[(Cl(e) — 7')(1 - 26:8:) - |Ci(9)€rai(9) - (1 - 8;(9))Cl(9 — 81(9))“ma
- . £ rti(0) 1 )
+/Z—1:|al](0)|Lje 1 I—C;Sf'é:]
DB e B )
j=1 I=1
+ZZ|d,,,(9)|< / |o,ﬂ(u)|emLhdu +5+ / |viju(u) | dudl
j=1 I=1
rurh 1
+M / |a,,1 u)}du/ |vl}1 u)|e L du *8*5 K
<-nK

<0,

which is a contradiction. This proves (2.9), which produces

e K&
yi(o)]e T
or
() = 21 (0)] < — 2o
1- lni

forall £ > 0 and i € J,,. The proof of Lemma 2.2 is completed. d
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Remark 2.2 If x*(¢) = (xi‘(t),xé(t),...,x;’;(t))T is the T-anti-periodic solution of system
(1.1), it follows from Lemma 2.2 that x*(¢) is globally exponentially stable.

Theorem 2.1 Suppose that (H;) and (H,) are satisfied. Then system (1.1) has exactly one
T -anti-periodic solution x*(t). Moreover, x*(t) is globally exponentially stable.

Proof The proof proceeds in the same way as in Theorem 3.1 in [16]. g

3 Example and remark
In this section, some examples and remarks are provided to demonstrate the effectiveness
of our results.

Example 3.1 Consider the following HCNNs with time-varying delays in the leakage
terms:

x(t) = -1. le( 1000 cos?t) + & 51ntf1(x1( 1) + % sin® tfy (%o (£ — 1))
+ =5 sin tg?(x (£ - 1)) + =5 sintgy (%1 (¢ — 1))ga (%2 (¢ - 1))
+ =5 sin tg3(x2(¢ - 1))
+ 35 s1ntf0 e “hy(x:(t - u))du fo e “hy( xz(t u))du +sint,
x5(¢) = 1. 5x2(t - m cos? t) + 3¢ Sin Stha(t-1) + 1 sm 3th(xy(t - 1))
+ ﬁ sin® £g2 (x1 (£ — 1)) + =5 sin 3 b (o1 (£ — 1))g2(x2(t -1))
+ 55 sm tg3(xo(t — 1))
+ % sin tfo e “hy(x(t - u))du fo e “hy (oo (t —u)) du + 2sint,

where

filx) = (le + cosx) gi(x) = h;(x) = | arctanx| + cos x,

Ci(t) =15, Ii(t) =isin t, i=1,2,

1 1 1
61(t) = 82(¢) = cos’t, ay (£) = — sint, ap(t) = —sint,
1) = 82(2) 1000 1(t) 2 12(2) 36

1 . 1 . 1 .
an(t) = 36 sin® t, an(t) = Z sin® ¢, b (t) = bua(t) = bin(2) = 72 sint,

1 . 1 1 .
b1 (t) = ba1a(t) = bago(2) = 7 sin’ ¢, dna(2) = smt doia(t) = 30 sin’ t.

Note that

=1 L5=1"=2, Mf=M?=%+1, i=12.

1

Therefore,

1

—[Ci(t)(l — 26:5;) — |C,'(t) — (1 — 8;(t))c,'(t - Sl(t)) |] W

+Z|al/(t)| +8+

&i

+ZZ|blll(t)|< +8+§/Mg '1 +8+El l)

j=1 I=1
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n n o) 1 00
+ZZ|diﬂ(f)|</o |Ulil(“)|Lfld”m51/0 |vii (1) | duy

j=1 I=1

" [o¢] [o¢] 4 1
+M; / |m,1(u)|du/ |v,~jl(u)|L, duW§j>
0 0 —G9

2 1
<—|15x(1-2x15x -15x X
[ ( 1,000) 1,000] 1-15x 2

1,000
(1 1 1
+{-+- )| X ——
4 4 1-15x ——

1,000
1 T 1
+3X —x2x2x|—+1 X ——————

72 2 1—1.5Xm
1 T 1
+—Xx2x2x|[=+1 X —————
80 2 1—1.5><m

<-02, t>0,6=1i=12,
which implies that system (3.1) satisfies all the conditions in Theorem 2.1. Hence, system

(3.1) has exactly one = -anti-periodic solution. Moreover, the 7 -anti-periodic solution is
globally exponentially stable.

Remark 3.1 Since

cos’t<0

1
t—8(t)=t-
1,000

)

is possible for some ¢ > 0, i = 1,2, one can find that the results in [16] and the references
therein cannot be applicable to prove that all solutions of HRNNSs (3.1) converge exponen-

tially to the anti-periodic solution. In this present paper, the expression
t
xi(t) — xi(t - Si(t)) = / x;(u) du
£-8;(t)

has not been used in the proof of Theorem 2.1. In particular, by introducing two new

transformations

Xi(t) = x;(t) - t ci(s)x;(s) ds

t-8;(t)

and
t
Yi(t) = eyl - / ) ds, i€
t-5;(t)

we employ a novel proof to establish some criteria to guarantee the global exponential
stability of the anti-periodic solution for HRNNs with leakage delays. Moreover, we also
find that Theorem 3.1 of [16] holds under the following additional conditions:

t-8;(t)>0 forallt>0,ie],.
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This implies that the results of this paper are new and complement the corresponding
ones in [16].
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