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Abstract
In this article, we investigate the Hyers-Ulam stability of the following functional
equation

f (x + 2y) + f (x – 2y) = f (x + y) + f (x – y) + 3f (2y) – 6f (y)

on quasi-β-normed spaces.
MSC: 45J05; 34k30; 34K20

Keywords: additive mapping; quadratic mapping; quasi-β-normed spaces;
Hyers-Ulam stability

1 Introduction
The stability problem of functional equations originated from the following question of
Ulam [] concerning the stability of group homomorphisms:
Give a group (G,∗) and a metric group (G, ·,d) with the metric d(·, ·). Given ε > , does

there exists a δ >  such that if f :G →G satisfies d(f (x∗ y), f (x) · f (y)) < δ for all x, y ∈ G,
then there is a homomorphism g :G →G with d(f (x), g(x)) < ε for all x ∈G?
Hyers [] gave the first affirmative partial answer to the question of Ulam for Banach

spaces. Hyers’s theorem was generalized by Aoki [] for additive mappings and by Ras-
sias [] for linear mappings by considering an unbounded Cauchy difference. The study
of Rassias has provided a lot of influence on the development of what we called the gen-
eralized Hyers-Ulam-Rassias stability of functional equations. In , Rassias [] asked
whether such a theorem can also be proved for p ≥ . In , Gajda [] gave an affirmative
solution to this question when p > , but it was proved by Gajda [] and Rassias and Semrl
[] that one cannot prove an analogous theorem when p = . In , a generalization was
obtained by Gavruta [] who replaced the bound ε(‖x‖p + ‖y‖p) by a general control func-
tion φ(x, y). Beginning around , the stability problems of several functional equations
and approximate homomorphisms have extensively been investigated by many authors
and there are many interesting results concerning this problem [–].
The functional equation

f (x + y) + f (x – y) = f (x) + f (y) (.)
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is called the quadratic function equation. Function f (x) = ax satisfies (.). Every solution
of (.) is called a quadratic mapping. Skof [] solved the Hyers-Ulam stability problem
of the quadratic functional equation in Banach spaces. Kim and Rassias [] proved the
stability of the Euler-Lagrange quadratic mappings. Park [] considered the stability of
quadratic mappings on Banach modules. Moslehian et al. [] considered the approxima-
tion problem of quadratic functional equation on multi-normed spaces.
Hyers [] considered the stability of the additive functional equation

f (x + y) = f (x) + f (y). (.)

Function f (x) = dx satisfies (.). Every solution of (.) is called an additive mapping. The
Cauchy type additive functional equation and its generalized Hyers-Ulam ‘product-sum’
stability have been studied in [, ].
In this article, we consider a new functional equation

f (x + y) + f (x – y) = f (x + y) + f (x – y) + f (y) – f (y) (.)

deriving from the quadratic functional equation (.) and the additive functional equation
(.). It is not difficult to check that f (x) = ax + bx is a solution of (.).
The notion of quasi-β-normed space was introduced by Rassias and Kim []. This no-

tion is similar to quasi-normed space.We fix a real number β with  < β ≤  and letK =R

or C. Let X be a linear space over K. A quasi-β-norm ‖ · ‖ is a real-valued function on X
satisfying the following conditions:
() ‖x‖ ≥  for all x ∈ X and ‖x‖ =  if and only if x = .
() ‖λx‖ = |λ|β‖x‖ for all λ ∈K and all x ∈ X .
() There is a constant K ≥  such that ‖x + y‖ ≤ K(‖x‖ + ‖y‖) for all x, y ∈ X .

The pair (X,‖ · ‖) is called a quasi-β-normed space if ‖ · ‖ is a quasi-β-norm on X. The
smallest possible K is called the modulus of concavity of ‖ · ‖. A quasi-β-Banach space is
a complete quasi-β-normed space.
In the following, we recall some fundamental results in fixed point theory. Let X be a

set. A function d : X ×X → [,∞] is called a generalized metric on X if d satisfies
() d(x, y) =  if and only if x = y;
() d(x, y) = d(y,x) for all x, y ∈ X ;
() d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

We also recall the following theorem of Diaz and Margolis [].

Theorem . [] Let (X,d) be a complete generalized metric space and let J : X → X be a
strictly contractive mapping with Lipschitz constant  < L < . Then for each given element
x ∈ X, either

d
(
Jnx, Jn+x

)
= ∞

for all nonnegative integers n or there exists a nonnegative integer n such that
() d(Jnx, Jn+x) < ∞ for all n≥ n;
() the sequence {Jnx} converges to a fixed point y* of J ;
() y* is the unique fixed point of J in the set Y = {y ∈ X : d(Jnx, y) < ∞};
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() d(y, y*) ≤ 
–Ld(y, Jy) for all y ∈ Y .

In , Cadariu and Radu [, ] applied the fixed-point method to the investigation
of the Jensen functional equation. By using fixed point methods, the stability problems of
several functional equations have extensively been investigated by a number of authors
(see [–]).
In this article, we will consider the solution and the Hyers-Ulam stability of the func-

tional equation (.) on quasi-β-normed spaces using fixed point method.

2 Solution of (1.3)
We assume X and Y are real (or complex) linear spaces in this section.

Lemma. If an even function f : X → Y satisfies (.) for all x, y ∈ X, then f is a quadratic
mapping.

Proof Since f is even, f (–x) = f (x). Let x = y =  in (.), we have f () = . Let x =  in (.),
we have f (y) = f (y) and therefore

f (x + y) + f (x – y) = f (x + y) + f (x – y) + f (y) (.)

for all x, y ∈ X. Replace x by x in (.), we have

f (x + y) + f (x – y) = f (x + y) + f (x – y) + f (y) (.)

for all x, y ∈ X. Replace y and x by x and y in (.), respectively, we have

f (x + y) + f (x – y) = f (x + y) + f (x – y) + f (x) + f (y) (.)

for all x, y ∈ X since f is even and f (y) = f (y). It follows from (.) and (.) that

f (x + y) + f (x – y) = f (x) + f (y).

Hence f is a quadratic mapping. �

Lemma . If an odd function f : X → Y satisfies (.) for all x, y ∈ X, then f is an additive
mapping.

Proof Since f is odd, we have f (–x) = –f (x). Let x = y =  in (.) we have f () = . Let
x =  in (.), we have

f (y) = f (y) (.)

for all x, y ∈ X. Thus for all x, y ∈ X, we have

f (x + y) + f (x – y) = f (x + y) + f (x – y). (.)
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Replace x by x in (.), we have

f (x + y) + f (x – y) = f (x + y) + f (x – y). (.)

Replacing y and x by x and y in (.), respectively, we have

f (x + y) – f (x – y) = f (x + y) – f (x – y). (.)

It follows from (.) and (.) that

f (x – y) = f (x + y) + f (x – y). (.)

Replacing y by x – y in (.), we have

f (x + y) = f (x – y) + f (y) (.)

for all x, y ∈ X. Hence,

f (x – y) = f (x + y) + f (x – y) – f (y). (.)

Replacing y by –y in (.), we have

f (x + y) = f (x – y) + f (x + y) + f (y). (.)

By (.), (.), and (.), we have

f (x + y) – f (x – y) = f (y). (.)

Replacing y and x by x and y in (.), respectively, we have

f (x + y) + f (x – y) = f (x). (.)

It follows from (.) and (.) that

f (x + y) = f (x) + f (y)

for all x, y ∈ X. Hence, f : X → Y is an additive mapping. �

Theorem . A function f : X → Y satisfying (.) for all x, y ∈ X if and only if there exist
a symmetric bi-additive mapping B : X×X → X and an additive mapping A : X → Y such
that f (x) = B(x,x) +A(x) for all x ∈ X.

Proof If there exist an symmetric bi-additive mapping B : X × X → X and an additive
mapping A : X → Y satisfying f (x) = B(x,x) + A(x) for all x ∈ X, then it is not difficult to
check that

f (x + y) + f (x – y) = f (x + y) + f (x – y) + f (y) – f (y)
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for all x, y ∈ X. Conversely, let

fe(x) =
f (x) + f (–x)


,

fo(x) =
f (x) + f (–x)


.

Then

f (x) = fe(x) + fo(x)

for all x ∈ X. It is not difficult to check that fe and f satisfying (.). It follows from Lem-
mas . and . that fe and f are quadratic and additive mappings, respectively. Hence,
there exist a symmetric bi-additive mapping B : X ×X → X such that fe(x) = B(x,x) for all
x ∈ X. Let A(x) = fo(x). Then we have f (x) = B(x,x) +A(x) for all x ∈ X. �

3 The stability of functional equation (1.3)
Now we consider the stability of the functional equation (.) using fixed point method.
In this section, we always assume that X is a complex (or real) linear space and Y is a

quasi-β-Banach space with norm ‖ · ‖. Suppose K is the modulus of concavity of ‖ · ‖. For
a mapping f : X → Y , we define

Df (x, y) = f (x + y) + f (x – y) – f (x + y) – f (x – y) – f (y) + f (y)

for all x, y ∈ X.

Theorem . Suppose f : X → Y is an odd mapping and ϕ : X → [,∞) is a mapping. If
there exist a constant L ( < L < ) satisfying

∥∥Df (x, y)∥∥ ≤ ϕ(x, y), (.)

ϕ(x, y)≤ βLϕ(x, y) (.)

for all x, y ∈ X, then there is a unique additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥ ≤ 

β ( – L)
ϕ(,x) (.)

for all x ∈ X. The mapping A : X → Y is defined by

A(x) = lim
n→∞

f (nx)
n

. (.)

Proof Consider the set 	 = {g : X → Y } and define a generalized metric on 	 by

d(g,h) = inf
{
C : C ∈ R,C ≥ ,

∥∥g(x) – h(x)
∥∥ ≤ Cϕ(,x),x ∈ X

}
.

Then it is not difficult to check that (	,d) is complete. Consider the mapping 
 : 	 → 	

defined by


g(x) =


g(x). (.)
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For any C such that ‖g(x) – h(x)‖ ≤ Cϕ(,x) for all x ∈ X, we have

∥∥
g(x) –
h(x)
∥∥ =


β

∥∥g(x) – h(x)
∥∥ ≤ 

β
Cϕ(, x)≤ LCϕ(,x).

Hence d(
g,
h) ≤ LC and therefore d(
g,
h)≤ Ld(g,h). Let x =  in (.), we have

∥∥f (y) – f (y)
∥∥ ≤ ϕ(, y) (.)

for all y ∈ X. Let y = x in (.), we have

∥∥∥∥  f (x) – f (x)
∥∥∥∥ ≤ 

β
ϕ(,x) (.)

for x ∈ X. Thus d(f ,
f ) ≤ 
β . According to Theorem ., the sequence 
nf converges to

a unique fixed point A of 
 on the set Y = {g ∈ X : d(f , g) <∞}, i.e.,

A(x) = lim
n→∞
nf (x) = lim

n→∞
f (nx)
n

.

Also we have

A(x) = A(x)

for all x ∈ X. Since d(f ,A) ≤ 
β (–L) , we have

∥∥f (x) –A(x)
∥∥ ≤ 

β ( – L)
ϕ(,x)

for all x ∈ X and (.) holds true. For all x, y ∈ X, we have

∥∥DA(x, y)∥∥ = lim
n→∞

∥∥∥∥ 
n

Df
(
nx, ny

)∥∥∥∥ = lim
n→∞


nβ

∥∥Df (nx, ny)∥∥

≤ lim
n→∞


nβ

ϕ
(
nx, ny

) ≤ lim
n→∞

(βL)n

nβ
ϕ(x, y)

= lim
n→∞Lnϕ(x, y) = .

Hence,DA(x, y) =  for all x, y ∈ X. It follows fromLemma . thatA : X → Y is an additive
mapping. This completes the proof. �

Corollary . Suppose X is a normed linear space, β = , θ and r are nonnegative numbers
with r < , f : X → Y is an odd mapping and

∥∥Df (x, y)∥∥ ≤ θ
(‖x‖r + ‖y‖r + ‖x‖ r

 ‖y‖ r

)

for all x, y ∈ X. Then there is a unique additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥ ≤ θ‖x‖r

( – r–)

for all x ∈ X.

http://www.advancesindifferenceequations.com/content/2012/1/98
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Proof For all x, y ∈ X, let ϕ(x, y) = θ (‖x‖r +‖y‖r +‖x‖ r
 ‖y‖ r

 ). Then the results follows from
Theorem .. �

Similar to the proof of Theorem . and Corollary ., we have Theorem . and Corol-
lary . whose proofs are omitted.

Theorem . Suppose f : X → Y is an odd mapping, ϕ : X → [,∞) is a mapping and
there exist a constant L ( < L < ) such that

∥∥Df (x, y)∥∥ ≤ ϕ(x, y),

ϕ

(
x

,
y


)
≤ L

β
ϕ(x, y)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥ ≤ 

β ( – L)
ϕ(,x)

for all x ∈ X. The mapping A : X → Y is defined by

A(x) = lim
n→∞nf

(
x
n

)
.

Corollary . Suppose X is a normed linear space, β = , θ and r are nonnegative numbers
with r > , f : X → Y is an odd mapping and

∥∥Df (x, y)∥∥ ≤ θ
(‖x‖r + ‖y‖r + ‖x‖ r

 ‖y‖ r

)

for all x, y ∈ X. Then there is a unique additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥ ≤ θ‖x‖r

( – –r)
(.)

for all x ∈ X.

Theorem . Suppose f : X → Y is an even mapping with f () =  and ϕ : X → [,∞) is
a mapping. If there exists a constant L ( < L < ) such that

∥∥Df (x, y)∥∥ ≤ ϕ(x, y),

ϕ(x, y)≤ βLϕ(x, y)
(.)

for all x, y ∈ X, then there is a unique quadratic mapping Q : X → Y such that

∥∥f (x) –Q(x)
∥∥ ≤ 

β ( – L)
ϕ(,x) (.)

for all x ∈ X. The mapping Q : X → Y is defined by

Q(x) = lim
n→∞

f (nx)
n

for all x ∈ X.

http://www.advancesindifferenceequations.com/content/2012/1/98
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Proof Consider the 	 = {g : X → Y : g() = } and define a generalized metric on 	 by

d(g,h) = inf
{
C : C ∈ R,C ≥ ,

∥∥g(x) – h(x)
∥∥ ≤ Cϕ(,x),∀x ∈ X

}
.

Then it is easy to check that (	,d) is complete. Define 
 : 	 → 	 by 
g(x) = g(x)
 . If C is

a constant such that ‖g(x) – h(x)‖ ≤ Cϕ(,x) for all x ∈ X, then we have

∥∥
g(x) –
h(x)
∥∥ =


β

∥∥g(x) – h(x)
∥∥ ≤ 

β
Cϕ(, x)≤ LCϕ(,x),

i.e., d(
g,
h) ≤ LC, hence we have d(
g,
h) ≤ Ld(g,h). Let x =  in (.), we have

∥∥f (y) – f (y)
∥∥ ≤ ϕ(, y)

for all y ∈ X. Thus

∥∥∥∥ 

f (x) – f (x)

∥∥∥∥ ≤ 
β

ϕ(,x)

for all x ∈ X. Hence d(f ,
f )≤ 
β . By Theorem . there is a mapping Q : X → Y which is

the fixed point of 
 and satisfies

d(f ,Q)≤ 
 – L

d(
f , f ) ≤ 
β ( – L)

.

Note Q is defined by

Q(x) = lim
n→∞

f (nx)
n

for all x ∈ X. Similar to the proof of Theorem ., we have DQ(x, y) =  for all x, y ∈ X.
Since Q is also even, Q is a quadratic mapping. This completes the proof. �

Corollary . Suppose X is a normed linear space, β = , θ and r are nonnegative numbers
with r < , f : X → Y is an even mapping, f () =  and

∥∥Df (x, y)∥∥ ≤ θ
(‖x‖r + ‖y‖r + ‖x‖ r

 ‖y‖ r

)

for all x, y ∈ X. Then there is a unique quadratic mapping Q : X → Y such that

∥∥f (x) –Q(x)
∥∥ ≤ θ‖x‖r

( – r–)

for all x ∈ X.

Proof The proof is similar to that of Corollary . and we omit it. �

Similar to the proof of Theorem . and Corollary ., we have the following Theo-
rem . and Corollary ..

http://www.advancesindifferenceequations.com/content/2012/1/98
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Theorem . Suppose f : X → Y is an even mapping with f () =  and ϕ : X → [,∞) is
a mapping. If there exists a constant L ( < L < ) such that

∥∥Df (x, y)∥∥ ≤ ϕ(x, y),

ϕ

(
x

,
y


)
≤ L

β
ϕ(x, y)

for all x, y ∈ X, then there is a unique quadratic mapping Q : X → Y such that

∥∥f (x) –Q(x)
∥∥ ≤ 

β ( – L)
ϕ(,x)

for all x ∈ X. The mapping Q : X → Y is defined by

Q(x) = lim
n→∞nf

(
x
n

)

for all x ∈ X.

Corollary . Suppose X is a normed linear space, β = , θ and r are nonnegative numbers
with r > , f : X → Y is an even mapping, f () =  and

∥∥Df (x, y)∥∥ ≤ θ
(‖x‖r + ‖y‖r + ‖x‖ r

 ‖y‖ r

)

for all x, y ∈ X. Then there is a unique quadratic mapping Q : X → Y such that

∥∥f (x) –Q(x)
∥∥ ≤ θ‖x‖r

( – –r)

for all x ∈ X.

Theorem . Suppose f : X → Y is a mapping satisfying f () =  and ϕ : X → [,∞) is
a mapping. If there exists a constant L ( < L < ) such that

∥∥Df (x, y)∥∥ ≤ ϕ(x, y),

ϕ(x, y)≤ βLϕ(x, y)

for all x, y ∈ X, then there exist a unique additive mapping A : X → Y and a unique
quadratic mapping Q : X → Y such that

∥∥f (x) –A(x) –Q(x)
∥∥ ≤ K

β

(


β ( – L)
+


β ( – L)

)[
ϕ(,x) + ϕ(,–x)

]
(.)

for all x ∈ X.

Proof If we decompose f into the even and the odd parts by putting fe(x) = f (x)+f (–x)
 and

fo(x) = f (x)–f (–x)
 for all x ∈ X, then

f (x) = fe(x) + fo(x).

http://www.advancesindifferenceequations.com/content/2012/1/98
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Then if it is not difficult to check that

∥∥Dfe(x, y)∥∥ ≤ K
β

[
ϕ(x, y) + ϕ(–x, –y)

]

for all x, y ∈ X. Let

ψ(x, y) =
K
β

[
ϕ(x, y) + ϕ(–x, –y)

]

for all x, y ∈ X. Then ψ(x, y) ≤ βLψ(x, y) for all x, y ∈ X. It follows from Theorem .
that there is a unique quadratic mapping Q : X → Y such that

∥∥fe(x) –Q(x)
∥∥ ≤ 

β ( – L)
ψ(,x) (.)

for all x ∈ X. Similarly it follows from Theorem . that there is a unique additive mapping
A : X → Y such that

∥∥f(x) –A(x)
∥∥ ≤ 

β ( – L)
ψ(,x). (.)

Hence

∥∥f (x) –Q(x) –A(x)
∥∥ ≤ K

(


β ( – L)
+


β ( – L)

)
ψ(,x)

=
K

β

(


β ( – L)
+


β ( – L)

)[
ϕ(,x) + ϕ(,–x)

]

for all x ∈ X. This completes the proof. �

Corollary . Suppose X is a normed linear space, β = , θ , and r are nonnegative numbers
with r < , f : X → Y is a mapping and

∥∥Df (x, y)∥∥ ≤ θ
(‖x‖r + ‖y‖r + ‖x‖ r

 ‖y‖ r

)

for all x, y ∈ X. Then there exist a unique additive mapping A : X → Y and a unique
quadratic mapping Q : X → Y such that

∥∥f (x) –A(x) –Q(x)
∥∥ ≤ K


θ‖x‖r

( – r–)

for all x ∈ X.

The proofs of Theorem . and Corollary . are similar to that of Theorem . and
Corollary . and we omit them.

Theorem . Suppose f : X → Y is a mapping satisfying f () =  and ϕ : X → [,∞) is
a mapping. If there exists a constant L ( < L < ) such that

∥∥Df (x, y)∥∥ ≤ ϕ(x, y),

http://www.advancesindifferenceequations.com/content/2012/1/98
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ϕ

(
x

,
y


)
≤ L

β
ϕ(x, y)

for all x, y ∈ X, then there exist a unique additive mapping A : X → Y and a unique
quadratic mapping Q : X → Y such that

∥∥f (x) –A(x) –Q(x)
∥∥ <

K

β

(


β ( – L)
+


β ( – L)

)[
ϕ(,x) + ϕ(,–x)

]

for all x ∈ X.

Corollary . Suppose X is a normed linear space, β = , θ and r are nonnegative numbers
with r > , f : X → Y is a mapping and

∥∥Df (x, y)∥∥ ≤ θ
(‖x‖r + ‖y‖r + ‖x‖ r

 ‖y‖ r

)

for all x, y ∈ X. Then there exist a unique additive mapping A : X → Y and a unique
quadratic mapping Q : X → Y such that

∥∥f (x) –A(x) –Q(x)
∥∥ ≤ K


θ‖x‖r

( – –r)

for all x ∈ X.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors carried out the proof. All authors conceived of the study, and participated in its design and coordination. All
authors read and approved the final manuscript.

Acknowledgements
The authors would like to express their sincere thanks to the referees for giving useful suggestions for the improvement
of this article. This study was supported in part by the NSF of China (10971117), the NSF of Shandong Province
(ZR2012AM024) and the Postdoctoral Science Foundation of Shandong Province of China (201003044).

Received: 9 April 2012 Accepted: 21 June 2012 Published: 2 July 2012

References
1. Ulam, SM: A Collection of Mathematical Problems. Interscience Publishers, New York (1960)
2. Hyers, DH: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222-224 (1941)
3. Aoki, T: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2, 64-66 (1950)
4. Rassias, ThM: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297-300 (1978)
5. Rassias, ThM (ed.): Functional Equations, Inequalities and Applications. Kluwer Academic, Dordrecht (2003)
6. Gajda, Z: On stability of additive mappings. Int. J. Math. Math. Sci. 14, 431-434 (1991)
7. Rassias, ThM, Semrl, P: On the behaviour of mappings which do not satisfy Hyers-Ulam stability. Proc. Am. Math. Soc.

114, 989-993 (1992)
8. Gavruta, P: A generalization of the Hyers-ULam-Rassias stability of approximately additive mappings. J. Math. Anal.

Appl. 184, 431-436 (1994)
9. Skof, F: Local properties and approximations of operators. Rend. Semin. Mat. Fis. Milano 53, 113-129 (1983)
10. Kim, H-M, Rassias, JM: Generalization of Ulam stability problem for Euler-Lagrange quadratic mappings. J. Math. Anal.

Appl. 336, 277-296 (2007)
11. Park, C: On the Hyers-Ulam-Rassias stability of generalized quadratic mapping in Banach modules. J. Math. Anal. Appl.

291(1), 214-223 (2004)
12. Moslehian, MS, Nikodem, K, Popa, D: Asymptotic aspect of the quadratic functional equation in multi-normed

spaces. J. Math. Anal. Appl. 355, 717-724 (2009)
13. Czerwik, S: On the stability of the quadratic mapping in normed spaces. Abh. Math. Semin. Univ. Hamb. 62, 59-64

(1992)
14. Jung, S-M: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm

Harbor (2001)

http://www.advancesindifferenceequations.com/content/2012/1/98


Liguang and Jing Advances in Difference Equations 2012, 2012:98 Page 12 of 12
http://www.advancesindifferenceequations.com/content/2012/1/98

15. Czerwik, S: Functional Equations and Inequalities in Several Variables. World Scientific, Singapore (2002)
16. Park, W-G, Bae, J-H: On a bi-quadratic functional equation and its stability. Nonlinear Anal. 62(4), 643-654 (2005)
17. Najati, A, Moghimi, MB: Stability of a functional equation deriving from quadratic and additive functions in

quasi-Banach spaces. J. Math. Anal. Appl. 337(1), 399-415 (2008)
18. Park, C: The Hyers-Ulam stability of a functional equation deriving from quadratic and cubic functions in

quasi-β -normed spaces. Bull. Sci. Math. 132, 87-96 (2008)
19. Najati, A, Moradlou, F: Stability of quadratic functional equation in quasi-Banach space. Bull. Korean Math. Soc. 45(3),

587-600 (2008)
20. Rassias, JM, Kim, H-M: Generalized Hyers-Ulam stability for additive functional equations in quasi-β -normed spaces.

J. Math. Anal. Appl. 356, 302-309 (2009)
21. Rassias, MJ: Generalised Hyers-Ulam product-sum stability of a Cauchy type additive functional equation. Eur. J. Pure

Appl. Math. 4(1), 50-58 (2011)
22. Rassias, MJ: Product-sum stability of an Euler-Lagrange functional equation. J. Nonlinear Sci. Appl. 3(4), 265-271

(2010)
23. Diaz, JB, Margolis, B: A fixed point theorem of the alternative, for contractions on a generalized complete metric

space. Bull. Am. Math. Soc. 74, 305-309 (1968)
24. Cadariu, I, Radu, V: Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 4(1), 1-7

(2003)
25. Cadariu, I, Radu, V: On the stability of the Cauchy functional equation: a fixed point approach. In: Iteration Theory

(ECIT 02). Grazer Mathematische Berichte, vol. 346, pp. 43-52. Karl-Franzens-Universitat Graz, Graz, Austria (2004)
26. Jung, S-M, Rassias, JM: A fixed points approach to the stability of a functional equation of the spiral of Theodorus.

Fixed Point Theory Appl. 2008, Article ID 945010 (2008)
27. Park, C, An, JS: Stability of the Cauchy-Jensen functional equation in C*-algebras: a fixed point approach. Fixed Point

Theory Appl. 2008, Article ID 872190 (2008)
28. Park, C, Rassias, JM: Stability of the Jensen-type functional equation in C*-algebras: a fixed point approach. Abstr.

Appl. Anal. 2009, Article ID 360432 (2009)

doi:10.1186/1687-1847-2012-98
Cite this article as: Liguang and Jing: On the stability of a functional equation deriving from additive and quadratic
functions. Advances in Difference Equations 2012 2012:98.

http://www.advancesindifferenceequations.com/content/2012/1/98

	On the stability of a functional equation deriving from additive and quadratic functions
	Abstract
	MSC
	Keywords

	Introduction
	Solution of (1.3)
	The stability of functional equation (1.3)
	Competing interests
	Authors' contributions
	Acknowledgements
	References


