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Abstract

In this article, we propose to determine some stability results for the functional
equation of cubic in random 2-normed spaces which seems to be a quite new and
interesting idea. Also, we define the notion of continuity, approximately and
conditional cubic mapping in random 2-normed spaces and prove some interesting
results.
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1 Introduction and preliminaries
In 1940, Ulam [1] proposed the following question concerning the stability of group

homomorphisms:

Let G1 be a group and let G2 be a metric group with the metric d(., .). Given � > 0,

does there exist a δ > 0 such that if a function h : G1 ® G2 satisfies the inequality d(h

(xy), h(x)h(y)) <δ for all x, y Î G1, then there exists a homomorphism H : G1 ® G1

with d(h(x), H(x)) <� for all x Î G1?

In next year, Hyers [2] answers the problem of Ulam under the assumption that the

groups are Banach spaces and then generalized by Aoki [3] and Rassias [4] for additive

mappings and linear mappings, respectively. Since then several stability problems for

various functional equations have been investigated in [5-12].

The stability problem for the cubic functional equation was proved by Jun and Kim

[5] for mappings f: X ® Y, where X is a real normed space and Y is a Banach space.

Later on, the problem of stability of cubic functional equation were discussed by many

mathematician.

An interesting and important generalization of the notion of a metric space was

introduced by Menger [13] under the name of statistical metric space, which is now

called a probabilistic metric space. An important family of probabilistic metric spaces

is that of probabilistic normed spaces. The theory of probabilistic normed spaces is

important as a generalization of deterministic results of linear normed spaces. The the-

ory of probabilistic normed spaces was initiated and developed in [14,15] and further it

was extended to random 2-normed spaces by Goleţ [16] using the concept of 2-norm

of Gahler [17]. For more details of probabilistic and random/fuzzy 2-normed space, we

refer to [18-22] and references therein.
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In this article, we establish Hyers-Ulam stability concerning the cubic functional

equations in random 2-normed spaces which is quite a new and interesting idea to

study with.

In this section, we recall some notations and basic definitions used in this article.

A distribution function is an element of Δ+, where Δ+ = {f : ℝ ® [0, 1]; f is left-con-

tinuous, nondecreasing, f(0) = 0 and f(+∞) = 1} and the subset D+ ⊆ Δ+ is the set D+ =

{f Î Δ+; l-f(+∞) = 1}. Here l-f(+∞) denotes the left limit of the function f at the point x.

The space Δ+ is partially ordered by the usual point-wise ordering of functions, i.e., f ≤

g if and only if f(x) ≤ g(x) for all x Î ℝ. For any a Î ℝ, Ha is a distribution function

defined by

Ha(x) =
{
0 if x ≤ a;
1 if x > a.

The set Δ, as well as its subsets, can be partially ordered by the usual pointwise

order: in this order, H0 is the maximal element in Δ+.

A triangle function is a binary operation on Δ+, namely a function τ : Δ+ × Δ+ ® Δ+

that is associative, commutative nondecreasing and which has ε0 as unit, that is, for all

f, g, h Î Δ+, we have:

(i) τ(τ(f, g), h) = τ(f, τ(g, h)),

(ii) τ(f, g) = τ(g, f),

(iii) τ(f, g) = τ(g, f) whenever f ≤ g,

(iv) τ(f, H0) = f.

A t-norm is a continuous mapping * : [0, 1] × [0, 1] ® [0, 1] such that ([0, 1], *) is

abelian monoid with unit one and c * d ≥ a * b if c ≥ a and d ≥ b for all a, b, c, d Î
[0, 1].

The concept of 2-normed space was first introduced in [17] and further studied in

[23-25].

Let X is a linear space of a dimension d, where 2 ≤ d < ∞. A 2-normed
on X is a function ∥., .∥ : X × X ® ℝ satisfying the following conditions,
for every x, y Î X (i) ∥x, y∥ = 0 if and only if x and y are linearly
dependent; (ii) ∥x, y∥ = ∥y, x∥; (iii) ∥ax, y∥ = |a|∥x, y∥, a Î ℝ; (iv) ∥x +
y, z∥ ≤ ∥x, z∥ + ∥y, z∥. In this case (X, ∥., . ∥) is called a 2-norm space.
Example 1.1. Take X = ℝ2 being equipped with the 2-norm ∥x, y∥ = the area of the

parallelogram spanned by the vectors x and y, which may be given explicitly by the for-

mula ∥∥x, y∥∥ =
∣∣x1y2 − x2y1

∣∣ , where x = (x1, x2), y = (y1, y2).

Recently, Goleţ [16] introduced the notion of random 2-normed space and further

studied by Mursaleen [26].

Let X be a linear space of a dimension greater than one, τ is a triangle function, and

F : X × X → �+ . Then ℱ is called a probabilistic 2-norm on X and (X,F , τ ) a prob-

abilistic 2-normed space if the following conditions are satisfied:

(i) Fx,y(t) = H0(t) if x and y are linearly dependent, where Fx,y(t) denotes the value

of Fx,y at t Î ℝ,

(ii) Fx,y �= H0 if x and y are linearly independent,
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(iii) Fx,y = Fy,x for every x, y in X,

(iv) Fαx,y(t) = Fx,y( t
|α| ) for every t > 0, a ≠ 0 and x, y Î X,

(v) Fx+y,z ≥ τ (Fx,z,Fy,z) whenever x, y, z Î X.

If (v) is replaced by

(v’) Fx+y,z(t1 + t2) ≥ Fx,z(t1) ∗ Fy,z(t2) , for all x, y, z Î X and t1, t2 ∈ R
+
0 , then triple

(X,F , ∗) is called a random 2-normed space (for short, RTN-space).

Example 1.2. Let (X, ∥., .∥) be a 2-normed space with ∥x, z∥ = ∥x1z2 - x2z1∥, x = (x1,

x2), z = (z1, z2) and a * b = ab for a, b Î [0, 1]. For all x Î X, t > 0 and nonzero z Î
X, consider

Fx,z(t) =
{ t

t+‖x,z‖ if t > 0
0 if t ≤ 0;

Then (X,F , ∗) is a random 2-normed space.

Remark 1.3. Note that every 2-normed space (X, ∥., .∥) can be made a random 2-

normed space in a natural way, by setting Fx,y(t) = H0(t − ∥∥x, y∥∥) , for every x, y Î X,

t > 0 and a * b = min{a, b}, a, b Î [0, 1].

2 Stability of cubic functional equation
In the present section, we define the notion of convergence, Cauchy sequence and

completeness in RTN-space and determine some stability results of the cubic func-

tional equation in RTN-space.

The functional equation

f (2x + y) + f (2x − y) = 2f (x + y) + 2f (x − y) + 12f (x) (1)

is called the cubic functional equation, since the function f(x) = cx3 is its solution.

Every solution of the cubic functional equation is said to be a cubic mapping.

We shall assume throughout this article that X and Y are linear spaces; (X,F , ∗) and

(Z,F ′, ∗) are random 2-normed spaces; and (Y,F , ∗) is a random 2-Banach space.

Let � be a function from X × X to Z. A mapping f : X ® Y is said to be �-approxi-

mately cubic function if

FEx,y ,z(t) ≥ F ′
ϕ(x,y),z(t), (2)

for all x, y Î X, t > 0 and nonzero z Î X, where

Ex,y = f (2x + y) + f (2x − y) − 2f (x + y) − 2f (x − y) − 12f (x).

We define:

We say that a sequence x = (xk) is convergent in (X,F , ∗) or simply ℱ-convergent to

ℓ if for every � > 0 and θ Î (0, 1) there exists k0 Î N such that Fxk−�,z(ε) > 1 − θ

whenever k ≥ k0 and nonzero z Î X. In this case we write F − lim
k→∞

xk = � and ℓ is

called the ℱ-limit of x = (xk).

A sequence x = (xk) is said to be Cauchy sequence in (X,F , ∗) or simply ℱ-Cauchy if

for every � > 0, θ > 0 and nonzero z Î X there exists a number N = N(�, z) such that

lim Fxn−xm ,z(ε) > 1 − θ for all n, m ≥ N. RTN-space (X,F , ∗) is said to be complete if
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every ℱ-Cauchy is ℱ-convergent. In this case (X,F , ∗) is called random 2-Banach

space.

Theorem 2.1. Suppose that a function � : X × X ® Z satisfies �(2x, 2y) = a�(x, y)
for all x, y Î X and a ≠ 0. Let f : X ® Y be a �-approximately cubic function. If for

some 0 <a < 8,

F ′
ϕ(2x,2y),z(t) ≥ F ′

αϕ(x,y),z(t), (3)

and lim
n→∞F ′

ϕ(2nx,2ny),z(8
nt) = 1 for all x, y Î X, t > 0 and nonzero z Î X. Then there

exists a unique cubic mapping C : X ® Y such that

FC(x)−f (x),z(t) ≥ F ′
ϕ(x,0),z((8 − α)t), (4)

for all x Î X, t > 0 and nonzero z Î X.

Proof. For convenience, let us fix y = 0 in (2). Then for all x Î X, t > 0 and nonzero

z Î X

F f (2x)
8 −f (x),z

(
t
16

)
≥ F ′

ϕ(x,0),z(t). (5)

Replacing x by 2nx in (5) and using (3), we obtain

F f (2n+1x)
8n+1 − f (2nx)

8n ,z

(
t

16(8n)

)
≥ F ′

ϕ(2nx,0),z(t) ≥ F ′
ϕ(x,0),z(t/α

n),

for all x Î X, t > 0 and nonzero z Î X; and for all n ≥ 0. By replacing t by ant, we

get

F f (2n+1x)
8n+1 − f (2nx)

8n ,z

(
αnt

16(8n)

)
≥ F ′

ϕ(x,0),z(t). (6)

It follows from
f (2nx)
8n

− f (x) =
n=1∑
k=0

(
f (2k+1x)
8k+1

− f (2kx)
8k

)
and (6) that

F f (2nx)
8n −f (x),z

(
n−1∑
k=0

αkt

16(8k)

)
≥

n−1∏
k=0

F
f (2k+1x)
8k+1 −

f (2kx)
8k

,z

(
αkt

16(8k)

)
≥ F ′

ϕ(x,0),z(t), (7)

for all x Î X, t > 0 and n > 0 where
∏n

j=1 aj = a1 ∗ a2 ∗ · · · ∗ an . By replacing x with

2mx in (7), we have

F f (2n+mx)
8n+m − f (2mx)

8m ,z

(
n−1∑
k=0

αkt

16(8)k+m

)
≥ F ′

ϕ(2mx,0),z(t) ≥ F ′
ϕ(x,0),z(t/α

m).

Thus

F f (2n+mx)
8n+m − f (2mx)

8m ,z

(
n+m−1∑
k=m

αkt

16(8)k

)
≥ F ′

ϕ(x,0),z(t),
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for all x Î X, t > 0, m > 0, n ≥ 0 and nonzero z Î X. Hence

F f (2n+mx)
8n+m − f (2mx)

8m ,z
(t) ≥ F ′

ϕ(x,0),z

⎛
⎝ t∑n+m−1

k=m
αk

16(8)k

⎞
⎠ , (8)

for all x Î X, t > 0 m ≥ 0, n ≥ 0 and nonzero z Î X. Since 0 <a < 8 and
∞∑
k=0

( α
8 )

k < ∞ , the Cauchy criterion for convergence shows that ( f (2
nx)

8n ) is a Cauchy

sequence in (Y,F , ∗) . Since (Y,F , ∗) is complete, this sequence converges to some

point C(x) Î Y. Fix x Î X and put m = 0 in (8) to obtain

F f (2nx)
8n −f (x),z

(t) ≥ F ′
ϕ(x,0),z

⎛
⎝ t∑n−1

k=0
αk

16(8)k

⎞
⎠ ,

for all t > 0, n > 0 and nonzero z Î X. Thus we obtain

FC(x)−f (x),z(t) ≥ F
C(x)− f (2nx)

8n ,z
(t/2) ∗ F f (2nx)

8n −f (x),z
(t/2) ≥ F ′

ϕ(x,0),z

⎛
⎝ t∑n−1

k=0
ak

8(8)k

⎞
⎠ ,

for large n. Taking the limit as n ® ∞ and using the definition of RTN-space, we get

FC(x)−f (x),z(t) ≥ F ′
ϕ(x,0),z((8 − α)t).

Replace x and y by 2nx and 2ny, respectively, in (2), we have

F E2nx,2ny
8n ,z

(t) ≥ F ′
ϕ(2nx,2ny),z(8

nt),

for all x, y Î X, t > 0 and nonzero z Î X. Since

lim
n→∞F ′

ϕ(2nx,2ny),z(8
nt) = 1,

we observe that C fulfills (1). To Prove the uniqueness of the cubic function C,

assume that there exists a cubic function D : X ® Y which satisfies (4). For fix x Î X,

clearly C(2nx) = 8nC(x) and D(2nx) = 8nD(x) for all n Î N. It follows from (4) that

FC(x)−D(x),z(t) = FC(2nx)
8n −D(2nx)

8n ,z
(t) ≥ FC(2nx)

8n − f (2nx)
8n ,z

(
t
2

)
∗ F f (2nx)

8n −D(2nx)
8n ,z

(
t
2

)

≥ F ′
ϕ(2nx,0),z

(
8n(8 − α)t

2

)
≥ F ′

ϕ(x,0),z

(
8n(8 − α)t

2αn

)
.

Therefore

F ′
ϕ(x,0),z

(
8n(8 − α)t

2αn

)
= 1.

Thus FC(x)−D(x),z(t) = 1 for all x Î X, t > 0 and nonzero z Î X. Hence C(x) = D(x).

Example 2.2. Let X be a Hilbert space and Z be a normed space. By ℱ and F ′ , we
denote the random 2-norms given as in Example 1.1 on X and Z, respectively. Let � :

X × X ® Z be defined by �(x, y) = 8(∥x∥2 + ∥y∥2)zο, where zο is a fixed unit vector in

Z. Define f : X ® X by f(x) = ∥x∥2x + ∥x∥2xο for some unit vector xο Î X. Then
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FEx,y ,z(t) =
t

t + 8‖x, z‖2 + 2
∥∥y, z∥∥2 ≥ t

t + 8‖x, z‖2 + 8
∥∥y, z∥∥2 = F ′

ϕ(x,y),z(t).

Also

F ′
ϕ(2x,0),z(t) =

t

t + 32‖x, z‖2 = F ′
4ϕ(x,0),z(t).

Thus,

lim
n→∞F ′

ϕ(2nx,2ny),z(8
nt) = lim

n→∞
8nt

8nt + 8(4n)(‖x, z‖2 + ∥∥y, z∥∥2) = 1.

Hence, conditions of Theorem 2.1 for a = 4 are fulfilled. Therefore, there is a unique

cubic mapping C : X ® X such that FC(x)−f (x),z(t) ≥ F ′
ϕ(x,0),z(4t) for all x Î X, t > 0

and nonzero z Î X.

By a modification in the proof of Theorem 2.1, one can easily prove the following:

Theorem 2.3. Suppose that a function � : X × X ® Z satisfies ϕ(x/2, y/2) = 1
α
ϕ(x, y)

for all x, y Î X and a ≠ 0. Let f : X ® Y be a �-approximately cubic function. If for

some a > 8

F ′
ϕ(x/2,y/2),z(t) ≥ F ′

ϕ(x,y),z(αt)

and lim
n→∞F ′

8nϕ(2−nx,2−ny),z(t) = 1 for all x, y Î X, t > 0 and nonzero z Î X. Then there

exists a unique cubic mapping C : X ® Y such that

FC(x)−f (x),z(t) ≥ F ′
ϕ(x,0),z((α − 8)t),

for all x Î X, t > 0 and nonzero z Î X.

3 Continuity in random 2-normed spaces
In this section, we establish some interesting results of continuous approximately cubic

mappings.

Let f : ℝ ® X be a function, where ℝ is endowed with the Euclidean topology and X

is an random 2-normed space equipped with random 2-norm ℱ. Then, f is said to be

random 2-continuous or simply ℱ-continuous at a point sο Î ℝ if for all � > 0 and all 0

<a < 1 there exists δ > 0 such that

Ff (sx)−f (s◦x),z(ε) ≥ α,

for each s with 0 < |s - sο| <δ and nonzero z Î X.

A mapping f : X ® Y is said to be (p, q)-approximately cubic function if, for some p,

q and some zο Î Z,

FEx,y ,z(t) ≥ F ′
(‖x‖p+‖y‖q)z◦,z

(t),

for all x, y Î X, t > 0 and nonzero z Î X.

Theorem 3.2. Let X be a normed space and let f : X ® Y be a (p, q)-approximately

cubic function. If p, q < 3, there exists a unique cubic mapping C : X ® Y such that

Alotaibi and Mohiuddine Advances in Difference Equations 2012, 2012:39
http://www.advancesindifferenceequations.com/content/2012/1/39

Page 6 of 10



FC(x)−f (x),z(t) ≥ F ′
‖x‖pz◦,z((8 − 2p)t), (9)

for all x Î X, t > 0 and nonzero z Î X. Furthermore, if for some x Î X and all n Î
N, the mapping g : ℝ ® Y defined by g(s) = f(2nsx) is ℱ-continuous. Then the mapping

s ↦ C(sx) from ℝ to Y is ℱ-continuous; in this case, C(rx) = r3C(x) for all r Î ℝ.

Proof. Suppose that a function � : X × X ® Z satisfies �(x, y) = (∥x∥p+∥y∥q)zο. Exis-
tence and uniqueness of the cubic mapping C satisfying (9) are deduced from Theorem

2.1. Note that for each x Î X, t Î ℝ and n Î N, we have

F
C(x)− f (2nx)

8n ,z
(t) = FC(2nx)−f (2nx),z(8nt) ≥ F ′

2np‖x‖pz◦,z(8
n(8−2p)t) = F ′

‖x‖pz◦,z

(
8n(8 − 2p)t

2np

)
. (10)

Fix x Î X and sο Î ℝ. Given � > 0 and 0 <a < 1. From (10) follows that

F
C(sx)− f (2nsx)

8n ,z
(t) ≥ F ′

‖x‖pz◦,z

(
8n(8 − 2p)t

|s|p2np
)

≥ F ′
‖x‖pz◦,z

(
8n(8 − 2p)t

(1 + |s◦|)p2np
)
,

for all |s - sο| < 1 and s Î ℝ. Since lim
n→∞

8n(8−2p)t
(1+|s◦|)p2np = ∞ , there exists nο Î N such that

F
C(sx)− f (2n◦ sx)

8n◦ ,z

( ε

3

)
≥ α,

for all |s - sο| < 1 and s Î ℝ. By the ℱ-continuity of the mapping t → f (2n◦ tx) , there

exists δ < 1 such that for each s with 0 < |s - sο| <δ, we have

F f (2n◦ sx)
8n◦ − f (2n◦ s◦x)

8n◦ ,z

( ε

3

)
≥ α.

It follows that

FC(sx)−C(s◦x),z(ε)

≥ F
C(sx)− f (2n◦ sx)

8n◦ ,z

( ε

3

)
∗ F f (2n◦ sx)

8n◦ − f (2n◦ s◦x)
8n◦ ,z

( ε

3

)
∗ F

C(s◦x)− f (2n◦ s◦x)
8n◦ ,z

( ε

3

)
≥ α,

for each s with 0 < |s - sο| <δ. Hence, the mapping s ↦ C(sx) is ℱ-continuous.

Now, we use the ℱ-continuity of s ↦ C(sx) to establish that C(r◦x) = r3◦C(x) for all rο
Î ℝ. For each r, ℚ is a dense subset of ℝ, we have C(rx) = r3C(x). Fix rο Î ℝ and t > 0.

Then, for 0 <a < 1 there exists δ > 0 such that

FC(rx)−C(r◦x),z(t/3) ≥ α,

for each r Î ℝ and 0 < |r - rο| <δ. Choose a rational number r with 0 < |r - rο| <δ

and
∣∣r3 − r3◦

∣∣ < 1 − α. Then

FC(r◦x)−r3◦C(x),z(t) ≥ FC(r◦x)−C(rx),z(t/3) ∗ FC(rx)−r3C(x),z(t/3) ∗ Fr3C(x)−r3◦C(x),z(t/3)

≥ α ∗ 1 ∗ FC(x),z(t/3(1 − α)).

Thus FC(r◦x)−r3◦C(x),z(t) = 1 . Hence, we conclude that C(r◦x) = r3◦C(x) .
Remark 3.2. We can also prove Theorem 3.1 for the case when p, q > 3. In this case,

there exists a unique cubic mapping C : X ® Y such that

FC(x)−f (x),z(t) ≥ F ′
‖x‖pz◦,z((2

p − 8)t) for all x Î X, t > 0 and nonzero z Î X.
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4 Approximately and conditional cubic mapping in random 2-normed spaces
In this section, we obtain completeness in RTN-space through the existence of some

solution of a stability problem for cubic functional equation.

A mapping f : N∪{0} ® X is said to be approximately cubic if for each a Î (0, 1)

there exists some na Î N such that FE(n,m),z(1) ≥ α , for all n ≥ 2m ≥ na and nonzero

z Î X.

By a conditional cubic mapping, we mean a mapping f : N ∪ {0} ® X such that (1)

holds whenever x ≥ 2y.

It can be easily verified that for each conditional cubic mapping f : N ∪ {0} ® X, we

have f(2n) = 23nf(1).

Theorem 4.1. Let (X,F , ∗) be a RTN-space such that for each approximately cubic

mapping f : N ∪ {0} ® X, there exists a conditional cubic mapping C : N ∪ {0} ® X,

such that

lim
n→∞FC(n)−f (n),z(1) = 1,

for nonzero z Î X. Then (X,F , ∗) is a random 2-Banach space.

Proof. Let (xn) be a Cauchy sequence in a RTN-space. By induction on k, we can

find a strictly increasing sequence (nk) of natural numbers such that

Fxn−xm,z

(
1

(10k)3

)
≥ 1 − 1

k
,

for each n, m ≥ nk and nonzero z Î X. Let yk = xnk and define f : N ∪ {0} ® X by f(k)

= k3yk. Let a Î (0, 1). and find some nο Î N such that 1 − 1
n◦

> α . One can easily

verified that

FEk,j,z(1) ≥ Fy2k+j−yk+j ,z

(
1

20k3

)
∗ Fy2k+j−yk−j ,z

(
1

20k3

)
∗ Fy2k+j−yk,z

(
1

40k3

)

∗ Fy2k−j−yk,z

(
1

80k3

)
∗ Fy2k+j−y2k−j ,z

(
1

120k2j

)
∗ Fyk−j−yk+j,z

(
1

60k2j

)

∗ Fy2k+j−yk+j,z

(
1

60kj2

)
∗ Fy2k−j−yk−j ,z

(
1

60kj2

)

∗ Fy2k+j−y2k−j,z

(
1

10j3

)
∗ Fyk−j−yk+j,z

(
1

20j3

)
,

for each k ≥ 2j, and nonzero z Î X. Then

Fy2k+j−yk+j,z

(
1

20k3

)
≥ Fy2k+j−yk+j,z

(
1

20(k + j)3

)
≥ Fy2k+j−yk+j,z

(
1

103(k + j)3

)
≥ α,
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for j >nο and nonzero z Î X. Since k − j ≥ k
2

and k - j ≥ j, we have

Fy2k+j−yk−j,z

(
1

20k3

)
≥ Fy2k+j−yk−j ,z

(
1

103(k − j)3

)
≥ α,

Fyk−j−yk+j,z

(
1

60k2j

)
≥ Fyk−j−yk+j,z

(
1

103(k − j)3

)
≥ α,

Fy2k−j−yk−j,z

(
1

60kj2

)
≥ Fy2k−j−yk−j ,z

(
1

103(k − j)3

)
≥ α,

Fyk−j−yk+j,z

(
1

20j3

)
≥ Fy2k−j−yk−j ,z

(
1

103(k − j)3

)
≥ α.

Clearly

Fy2k+j−yk,z

(
1

40k3

)
≥ Fy2k+j−yk,z

(
1

103k3

)
≥ α,Fy2k−j−yk,z

(
1

80k3

)
≥ Fy2k−j−yk,z

(
1

103k3

)
≥ α,

and Fy2k+j−yk+j,z

(
1

60kj2

)
≥ Fy2k+j−yk+j ,z

(
1

103(k + j)3

)
≥ α.

The inequalities 2k - j ≥ j and 2k - j >k imply

Fy2k+j−y2k−j,z

(
1

120k2j

)
≥ Fy2k+j−y2k−j,z

(
1

120(2k − j)3

)
≥ Fy2k+j−y2k−j ,z

(
1

103(2k − j)3

)
≥ α

Fy2k+j−y2k−j,z

(
1

10j3

)
≥ Fy2k+j−y2k−j ,z

(
1

10(2k − j)3

)
≥ Fy2k+j−y2k−j,z

(
1

103(2k − j)3

)
≥ α.

Therefore FEk,j,z(1) ≥ α . This shows that f is approximately cubic type mapping. By

our assumption, there exists a conditional cubic mapping C : N ∪ {0} ® X, such that

lim
k→∞

FC(k)−f (k),z(1) = 1 . In particular, lim
k→∞

FC(2k)−f (2k),z(1) = 1 . This means that

lim
k→∞

FC(1)−y2k,z

(
1
23k

)
= 1

Hence the subsequence (y2k) converges to y = C(1). Therefore, the Cauchy sequence

(xn) also converges to y.
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