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Abstract

In this article, we consider several properties of Fibonacci sequences in arbitrary
groupoids (i.e., binary systems). Such sequences can be defined in a left-hand way
and a right-hand way. Thus, it becomes a question of interest to decide when these
two ways are equivalent, i.e., when they produce the same sequence for the same
inputs. The problem has a simple solution when the groupoid is flexible. The
Fibonacci sequences for several groupoids and for the class of groups as special
cases are also discussed.
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1 Introduction
In this article, we consider several properties of Fibonacci sequences in arbitrary group-

oids (i.e., binary systems). Such sequences can be defined in a left-hand way and a right-

hand way. Thus, it becomes a question of interest to decide when these two ways are

equivalent, i.e., when they produce the same sequence for the same inputs. The problem

has a simple solution when the groupoid is flexible. In order to construct sufficiently

large classes of flexible groupoids to make the results interesting, the notion of a group-

oid (X, *) wrapping around a groupoid (X, •) is employed to construct flexible groupoids

(X, □). Among other examples this leads to solving the problem indicated for the selec-

tive groupoids associated with certain digraphs, providing many flexible groupoids and

indicating that the general groupoid problem of deciding when a groupoid (X, *) is

wrapped around a groupoid (X, •) is of independent interest as well.

Given the usual Fibonacci-sequences [1,2] and other sequences of this type, one is

naturally interested in considering what may happen in more general circumstances.

Thus, one may consider what happens if one replaces the (positive) integers by the

modulo an integer n or what happens in even more general circumstances. The most

general circumstance we shall deal with is the situation where (X, *) is actually a

groupoid, i.e., the product operation * is a binary operation, where we assume no

restrictions a priori.

2 Fibonacci sequences in groupoids
Given a sequence <�0, �1, ..., �n, ... > of elements of X, it is a left-*-Fibonacci sequence

if �n+2 = �n+1 * �n for n ≥ 0, and a right-*-Fibonacci sequence if �n+2 = �n * �n+1 for n

≥ 0. Unless (X, *) is commutative, i.e., x * y = y * x for all x, y Î X, there is no reason

to assume that left-*-Fibonacci sequences are right-*-Fibonacci sequences and
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conversely. We shall begin with a collection of examples to note what if anything can

be concluded about such sequences.

Example 2.1. Let (X, *) be a left-zero-semigroup, i.e., x * y := x for any x, y Î X.

Then �2 = �1 * �0 = �1, �3 = �2 * �1 = �2 = �1, �4 = �3 * �2 = �3 = �1, ... for any �0,

�1 Î X. It follows that <�n >L = <�0, �1, �1, ... >. Similarly, �2 = �0 * �1 = �0, �3 = �1

* �2 = �1, �4 = �2 * �3 = �2 = �0, ... for any �0, �1 Î X. It follows that <�n >R = <�0,

�1, �0, �1, �0, �1, ... >. In particular, if we let �0 := 0, �1 := 1, then <�n >L = < 0, 1, 1,

1, 1, ... > and <�n >R = < 0, 1, 0, 1, 0, 1, ... >.

A groupoid (X, *) is said to be a leftoid if x * y = l(x), a function of x in X, for all x, y

Î X. We denote it by (X, *, l).

Proposition 2.2. Let (X, *, l) be a leftoid and let <�n >be a left-*-Fibonacci sequence

on X. Then <�n > = <�0, �1, l(�1), l
(2)(�1), ..., l

(n)(�1), ...>, where l
(n+1)(x) = l(ln(x)).

Proof. If <�n > is a left-*-Fibonacci sequence on X, then �2 = �1 * �0 = l(�1) and �3

= �2 * �1 = l(�2) = l(2)(�1). It follows that �k+1 = �k * �k-1 = 1(�k) = l(k) (�1). □
A groupoid (X, *) is said to be a rightoid if x * y = r(y), a function of y in X, for all x,

y Î X. We denote it by (X, *, r).

Proposition 2.2’. Let (X, *, r) be a rightoid and let <�n >be a right-*-Fibonacci

sequence on X. Then <�n > = <�0, �1, r (�0), r(�0), r
(2)(�0), r

(2) (�1), r
(3) (�0), r(3)(�), ...,

r(n) (�0), r
(n)(�1), ... where r(n+1)(x) = r(rn(x)).

In particular, if l (r, resp.) is a constant map in Proposition 2.2 (or Proposition 2.2’,

resp.), say l(�0) = l(�1) = a for some x Î X, then <�n > = <�0, �1, a, a, ... >.

Theorem 2.3. Let <�n >L and <�n >R be the left-*-Fibonacci and the right-*-Fibonacci

sequences generated by �0 and �1. Then <�n >L = <�n >R if and only if �n * (�n-1 * �n)

= (�n*�n-1) * �n for any n ≥ 1.

Proof. If <�n >L = <�n >R, then �0*�1 = �2 = �1*�0 and hence (�1*�0)*�1 = �2*�1 =

�3 = �1*�2 = �1*(�0*�1). Similarly (�2*�1)*�2 = �3*�2 = �4 = �2*�3 = �2* (�1* �2). By

induction on n, we obtain �n * (�n-1 * �n) = (�n * �n-1) * �n for any n ≥ 1.

If we assume that �n * (�n-1 * �n) = (�n * �n-1) * �n for any n ≥ 1, then �n * �n+1 =

�n * (�n-1 * �n) = (�n * �n-1) * �n = �n+1 * �n for any n ≥ 1. □
A groupoid (X, *) is said to be flexible if (x * y) * x = x * (y * x) for any x, y Î X.

Proposition 2.4. Let X := R be the set of all real numbers and let A, B Î R. Then

any groupoid (X, *) of the types x*y := A + B(x + y) or x*y := Bx + (1 - B)y for any x, y

Î X is flexible.

Proof. Define a binary operation “*” on X by x * y := A + Bx + Cy for any x, y Î X,

where A, B, C Î X. Assume that (X, *) is flexible. Then (x * y) * x = x * (y * x) for any

x, y Î X. It follows that A + B(x + y) + Cx = A + Bx + C(y * x). It follows that

AB + B(B − 1)x = AC + C(C − 1)x (1)

for any x Î X. If we let x := 0 in (1), then we obtain AB = AC. If A ≠ 0, then B = C

and x * y = A + B(x + y). If A = 0, then it follows from (1) that

B(B − 1)x = C(C − 1)x (2)

for any x Î X. If we let x := 1 in (2), then we obtain B(B - 1) = C(C - 1) and hence

C =
1 ± √

1 + 4B(B − 1)
2

=
{
B
1 − B,
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i.e., x * y = Bx + By or x * y = Bx + (1 - B)y. This proves the proposition. □
Proposition 2.5. Let (X, *) be a flexible groupoid. Then (X, *) is commutative if and

only if <�0, �1, ... >L = <�0, �1, ... >R for any �0, �1 Î X.

Proof. Given �0, �1 Î X, �0 * �1 = �1 * �0 = �2 since (X, *) is commutative. Since

(X, *) is flexible, we obtain

ϕ2 ∗ ϕ1 = (ϕ1 ∗ ϕ0) ∗ ϕ1

= ϕ1 ∗ (ϕ0 ∗ ϕ1)

= ϕ1 ∗ ϕ2 = ϕ3

By induction on n, we obtain

ϕn ∗ ϕn−1 = (ϕn−1 ∗ ϕn−2) ∗ ϕn−1

= ϕn−1 ∗ (ϕn−2 ∗ ϕn−1)

= ϕn−1 ∗ ϕn

Hence <�0, �1, ... >L = <�0, �1, ... >R. The converse is trivial, we omit the proof. □
Example 2.6. Let X := R be the set of all real numbers and let x * y := -(x + y) for

any x, y Î X. Consider aright-*-Fibonacci sequence <�n >R, where �0, �1 Î X. Since �2

= �0* �1 = -(�0 + �1), �3 = �1 * �2 = -[�1 + �2] = -[�1-(�0 + �1)] = �0, �4 = �2 * �3 =

�1, ..., we obtain <�n >R = <�0, �1, -(�0 + �1), �0, �1, -(�0 + �1), �0, �1, -(�0 + �1), �0,

�1, ... > and �n+3 = �n (n = 0, 1, 2, ...). Since (X, *) is commutative and flexible, by Pro-

position 2.5, <�n >L = <�n >R.

Proposition 2.7. Let (X, *) be a groupoid satisfying the following condition:

(x ∗ y) ∗ x = x ∗ (y ∗ x) = y (3)

for any x, y Î X. Then <�n >L = <�n >R if �0 * �1 = �1 * �0.

Proof. Straightforward. □
Proposition 2.8. The linear groupoid (R, *), with x * y := A - (x + y), ∀x, y Î R,

where A Î R, is the only linear groupoid satisfying the condition (3).

Proof. By Proposition 2.4, we consider two cases: x * y := A + B(x + y) or x * y := Bx

+ (1- B)y where A, B Î R. Assume that x * y := A + B(x + y). Since y = (x * y) * x, we

have

y = (x ∗ y) ∗ x

= A + B(x ∗ y + x)

= A + B(A + B(x + y) + x)

= A(B + 1) + B(B + 1)x + B2y

It follows that B2 = 1, B(B + 1) = 0, A(B + 1) = 0. If B = 1, then 0 = B(B + 1) = 2, a

contradiction. If B = -1, then A is arbitrary. Hence x * y = A - (x + y). Assume that x *

y := Bx + (1 - B)y. Since y = (x * y) * x, we have

y = (x ∗ y) ∗ x

= [Bx + (1 − B)y] ∗ x

= B[Bx + (1 − B)y] + (1 − B)x

= (B2 − B + 1)x + B(1 − B)y
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It follows that B2 - B + 1 = 0, B(1 - B) = 1 which leads to B =
1 ± √

3i
2

�∈ R , a

contradiction.

This proves the proposition. □

3 Flexibility in Bin(X)
Given groupoids (X, *) and (X, •), we consider (X, *) to be wrapped around (X, •) if for

all x, y, z Î X, (x • y) * z = z * (y • x). If (X, *) and (X, •) are both commutative group-

oids, then (x • y) * z = z * (x • y) = z * (y • x) and (x * y) • z = z • (x * y) for all x, y, z

Î X, i.e., (X, *) and (X, •) are wrapped around each other.

Example 3.1. Let X := R be the set of all real numbers and let x * y := x2 y2, x • y :=

x-y for all x, y Î X. Then (x • y) * z = (x - y) * z = (x - y)2z2 = z * (y • x) for all x, y, z

Î X, i.e., (X, *) is wrapped around (X, •). On the other hand, (x * y) • z = x2y2 - z and

z • (y * x) = z- y2x2 so that (X, •) is not wrapped around (X, *).

The notion of the semigroup (Bin(X), □) was introduced by Kim and Neggers [3].

They showed that (Bin(X), □) is a semigroup, i.e., the operation □ as defined in general

is associative. Furthermore, the left-zero semigroup is an identity for this operation.

Proposition 3.2. Let (X, *) be wrapped around (X, •). If we define (X, □) := (X, *)□(X,
•), i.e., x□y := (x * y) • (y * x) for all x, y Î X, then (X, □) is flexible.
Proof. Given x, y, z Î X, since (X, *) is wrapped around (X, •), we obtain (X, *) be

wrapped around (X, •)

(x�y)�x = [(x�y) ∗ x] ∗ [x ∗ (x�y)]

= [{(x ∗ y) • (y ∗ x)} ∗ x] • [x ∗ {(x ∗ y) • (y ∗ x)}]
= [x ∗ {(y ∗ x) • (x ∗ y)}] • [{(y ∗ x) • (x ∗ y)} ∗ x]

= [x ∗ (y�x)] • [(y�x) ∗ x]

= x�(y�x),

proving the proposition. □
Example 3.3. Note that in the situation of Example 3.1, we have x□y = (x * y) • (y *

x) = x2y2 - y2x2 = 0 for all x, y Î X, i.e., (X, □) = (X, *)□(X, •) is a trivial groupoid (X,

□, t) where t = 0 and x□y = 0 for all x, y Î X.

Example 3.4. In Example 3.1, if we define (X, ∇) := (X, •)□(X, *), i.e., x∇y := (x • y) *

(y • x) for all x, y Î X, then x∇y = (x - y)4 and hence (x∇y)Δx = ((x - y)4 - x)4 = (x - (y

- x)4)4 = x∇(y∇x). Hence (X, ∇) is a flexible groupoid. Note that (X, ∇) is not a semi-

group, since 0∇(0∇z) = z16 ≠ z4 = (0∇0)∇z. Obviously, x∇y = y∇x for all x, y Î X. By

applying Proposition 2.5, we obtain <�0, �1, ... >L = <�0, �1, ... >R for any �0, �1 Î (X,

∇).
We obtain a Fibonacci-∇-sequence in the groupoid (X, ∇) discussed in Example 3.4

as follows:

Example 3.5. Consider a groupoid (X, ∇) in Example 3.4. Since x∇y = (x - y)4, given

�0, �1 Î X, we have �2 = �0 ∇ �1 = �1∇�0 = (�1 - �0)
4, and �3 = �2∇�1 = (�2 - �1)

4 =

[(�1 - �0)
4 - �1]

4. In this fashion, we have �4 = [[(�1 - �0)
4 - �1]

4 - (�1 - �0)
4]4. In par-

ticular, if we let �0 = �1 = 1, then �2 = 0, �3 = �4 = 1, �5 = 0, �6 = �7 = 1, �8 = 0, ....

Hence < 1, 1, 0, 1, 1, 0, 1, 1, 0, ... > is a Fibonacci-∇-sequence in (X, ∇).
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4 Limits of *-Fibonacci sequences
In this section, we discuss the limit of left(right)-*-Fibonacci sequences in a real group-

oid (R, *).

Proposition 4.1. Define a binary operation * on R by x ∗ y :=
1
2
(x + y)for any x, y Î

R. If <�n >is a *-Fibonacci sequence on (R, *), then limn→∞ϕn =
1
3
(ϕ0 + 2ϕ1) .

Proof. Since x ∗ y =
1
2
(x + y) = y ∗ x for any x, y Î R, <�n >L = <�n >R for any �0, �1

Î R.

It can be seen that ϕ2 =
1
2
(ϕ0 + ϕ1),ϕ3 =

1
22

(ϕ0 + 3ϕ1) . We let

ϕ3 =
1
22

(A3ϕ0 + B3ϕ1) . Since

ϕ4 = ϕ2 ∗ ϕ3

=
1
2

[
ϕ0 + ϕ1

2
+
1
4
(ϕ0 + 3ϕ1)

]

=
1
23

[3ϕ0 + 5ϕ1],

we let it by ϕ4 =
1
23

[A4ϕ0 + B4ϕ1]. In this fashion, if we let

ϕn+2 :=
1

2n+1
[An+2ϕ0 + Bn+2ϕ1], we have

ϕn+2 =
1
2
[ϕn + ϕn+1]

=
1
2

[
Anϕ0 + Bnϕ1

2n−1
+
An+1ϕ0 + Bn+1ϕ1

2n

]

=
1

2n+1
[(2An + An+1)ϕ0 + (2Bn + Bn+1)ϕ1]

It follows that

An+2 = 2An + An+1,A3 = 1,A4 = 3

Bn+2 = 2Bn + Bn+1,B3 = 3,B4 = 5

so that the evolution for Ak is < 1, 3, 5, 11, 21, 43, 85, ... > = < A3, A4, A5, ... > and

the evolution for Bk is < 3, 5, 11, 21, 43, 85, ... > so that Bk = Ak+1. If we wish to solve

explicitly for Ak, we note that the corresponding characteristic equation is r2 - r - 2 =

0 with roots r = 2 or r = -1, i.e., Ak+3 = a2k + b(-1)k, a + b = 1 when k = 0, and 2a -

b = 3 when k = 1 so that α =
4
3
,β = −1

3
. Hence Ak+3 =

1
3
[2k+2 + (−1)k+1] and

Bk+3 = Ak+4 =
1
3
[2k+3 + (−1)k+2] . It follows that

ϕn+3 =
1

2k+2

[
1
3
(2k+2 + (−1)k+1)ϕ0 +

1
3
(2k+3 + (−1)k+2)ϕ1

]

=
1
3

[{
1 +

(−1)k+1

2k+2

}
ϕ0 +

{
2 +

(−1)k+2

2k+2

}
ϕ1

]

This shows that limn→∞ϕn =
1
3
(ϕ0 + 2ϕ1) , proving the proposition.
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Proposition 4.2. Define a binary operation * on R by x * y := Ax + (1 - A)y, 0 <A <

1, for any x, y Î R. If <�n >L is a left-*-Fibonacci sequence on (R, *), then

limn→∞ϕn =
1

2 − A
[(1 − A)ϕ0 + ϕ1] .

Proof. Given �0, �1 Î R, we consider <�n >L. Since �2 = �1 * �0 = A�1 + (1 - A)�0
and �3 = �2*�1 = (A2-A + 1)�1 + A(1-A)�0, ..., if we assume that �n := An�1 + Bn �0(n

≥ 2), then

ϕn+2 = ϕn+1 ∗ ϕn

= (An+1ϕ1 + Bn+1ϕ0) ∗ (Anϕ1 + Bnϕ0)

= A(An+1ϕ1 + Bn+1ϕ0) + (1 − A)(Anϕ1 + Bnϕ0)

It follows that

An+2 = AAn+1 + (1 − A)An,

Bn+2 = ABn+1 + (1 − A)Bn

Hence we obtain the characteristic equation r2 - Ar - (1 - A) = 0 with roots r = 1 or

r = A - 1. Thus An+2 = a(A - 1)n+2 + b for some a, b Î R. Since A = A2 = a(A - 1)2 +

b and A2 - A + 1 = A3 = a(A - 1)3 + b, we obtain α =
1

A − 2
and β =

1
2 − A

so that

An+2 =
(A − 1)n+2

A − 2
. For Bn+2 we obtain the same characteristic equation r2 - Ar - (1 -

A) = 0 with roots r = 1 or r = A - 1. Hence Bn+2 = g(A - 1)n+2 + δ for some g, δ Î R.

Since 1 - A = B2 = g(A - 1)2 + b, A(1 - A) = B3 = g(A - 1)3 + δ, we obtain

γ − 1
2 − A

, δ =
1 − A
2 − A

so that Bn+2 =
1

2 − A
[(A − 1)n+2 + (1 − A)]. Since 0 <A < 1,

limn®∞(A - 1)n+2 = 0. It follows that
limn→∞ϕn+2 = limn→∞(An+2ϕ1+Bn+2ϕ0) = (limn→∞An+2)ϕ1+(limn→∞Bn+2)ϕ0 =
1

2 − A
[ϕ1 + (1 − A)ϕ0]

, proving

the proposition. □

Note that if A =
1
2
in Proposition 4.2, then limn→∞ϕn =

1
3
(ϕ0 + 2ϕ1) as in Proposi-

tion 4.1. Note that (R, *) in Proposition 4.2 is neither a semigroup nor commutative

and we may consider a right-*-Fibonacci sequence <�n >R on (R, *).

5 Fibonacci sequences in a group
In this section, we discuss *-Fibonacci sequence in groups.

Example 5.1. Suppose that X = S4 is a symmetric group of order 4 and suppose that

�0 = (13), �1 = (12). We wish to determine <�n >L. Since �2 = �1�0 = (12)(13) = (123),

�3 = �2 �1 = (123)(13) = (12), �4 = �3�2 = (12)(123), ..., we obtain <�n >L = < (13),

(12), (123), (12), (13), (132), (23), (13), (123), (12), (13), ... >, i.e., it is periodic of per-

iod 6.

Proposition 5.2. Let (X, •, e) be a group and let �0, �1 be elements of X such that

�0•�1 = �1 • �0. If <�n >L is a left-•-Fibonacci sequence in (X, •, e) generated by �0 and

�1, then ϕk+2 = ϕ
Fk+2
1 ϕ

Fk+1
0 . In particular, if �0 = �1, then ϕk+2 = ϕ

Fk+3
1 where Fk is the kth

Fibonacci number.
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Proof. Let �0, �1 be elements of X such that �0 • �1 = �1• �0. Since <�n >L is a left-

•-Fibonacci sequence in (X, •, e) generated by �0 and �1, we have

ϕ3 = ϕ2
1ϕ0,ϕ4 = ϕ3

1ϕ2
0 ,ϕ5 = ϕ5

1ϕ5
0 = ϕ

F3
1 ϕ

F4
0 ,ϕ6 = ϕ8

1ϕ5
0 = ϕ

F6
1 ϕ

F4
0 and ϕ7 = ϕ

F7
1 ϕ

F6
0 . If we

assume that ϕk = ϕ
Fk
1 ϕ

Fk−1
0 and ϕk+1 = ϕ

Fk+1
1 ϕ

Fk
0 , then

ϕk+2 = ϕk+1ϕk = ϕk+1
1 ϕ

Fk
0 ϕ

Fk
1 ϕ

Fk−1
0 = ϕ

Fk+2
1 ϕ

Fk+1
0 . In particular, if �0 = �1, then

ϕk+2 = ϕ
Fk+2
1 ϕ

Fk+1
0 = ϕ

Fk+3
1 . □

Proposition 5.3. Let (X, •, e) be a group and let �0, �1 be elements of X such that

�0•�1 = �1 • �0. If <�n >L is a full left-•-Fibonacci sequence in (X, •, e) generated by �0

and �1, then ϕ−(2k) = ϕ
Fk+1
0 ϕ

−F2k
1 and ϕ−(2k+1) = ϕ

−F2(k+1)
0 ϕ

F2k+1
1 .

Proof. Since �1 = �0 �-1, we have ϕ−1 = ϕ−1
0 ϕ1 . It follows from �0 = �-1 �-2 that

ϕ−2 = ϕ2
0ϕ−1

1 . In this fashion, since �0•�1 = �1•�0, we obtain ϕ−3 = ϕ
−F4
0 ϕ

F3
1 and

ϕ−4 = ϕ
F5
0 ϕ

−F4
1 . By induction, assume that ϕ−(2k) = ϕ

Fk+1
0 ϕ

−F2k
1 and

ϕ−(2k+1) = ϕ
−F2(k+1)
0 ϕ

F2k+1
1 . Then we obtain

ϕ−(2k+2) = [ϕ−(2k+1)]−1ϕ−2k

= ϕ
F2k+2
0 ϕ

−F2k+1
1 ϕ

F2k+1
0 ϕ

−F2k
1

= ϕ
F2k+2+F2k+1
0 ϕ

−(F2k+1+F2k)
1

= ϕ
F2k+3
0 ϕ

−F2k+2
1 ,

and

ϕ−(2k+3) = [ϕ−(2k+2)]−1ϕ−(2k+1)

=
[
ϕ
F2k+3
0 ϕ

−F2k+2
1

]−1
ϕ

−F2k+2
0 ϕ

F2k+1
1

= ϕ
F2k+2+F2k+1
0 ϕ

−(F2k+2+F2k+3)
1

= ϕ
F2k+4
0 ϕ

−F2k+3
1 ,

proving the proposition. □
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