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Abstract
In this paper, we introduce a new bilinear model in the state space form. The
evolution of this model is linear-bilinear in the state of the system. The classical
Kalman filter and smoother are not applicable to this model, and therefore, we derive
a new Kalman filter and smoother for our model. The new algorithm depends on a
special linearization of the second-order term by making use of the best available
information about the state of the system. We also derive the expectation
maximization (EM) algorithm for the parameter identification of the model. A Monte
Carlo simulation is included to illustrate the efficiency of the proposed algorithm. An
application in which we fit a bilinear model to wind speed data taken from actual
measurements is included. We compare our model with a linear fit to illustrate the
superiority of the bilinear model.

Keywords: bilinear state space model; Kalman filter and smoother; maximum
likelihood estimate; EM algorithm

1 Introduction
Bilinear systems are a special type of nonlinear systems capable of representing a vari-
ety of important physical processes. They are used in many applications in real life such
as chemistry, biology, robotics, manufacturing, engineering, and economics [–] where
linear models are ineffective or inadequate. They have also been recently used to analyze
and forecast weather conditions [–].
Bilinear systems have three main advantages over linear ones: Firstly, they describe a

wider class of problems of practical importance. Secondly, they provide more flexible ap-
proximations to nonlinear systems than linear systems do. Thirdly, one can make use of
their rich geometric and algebraic structures, which promises to be a fruitful field of re-
search for scientists [] as well as practitioners.
Bilinear models were first introduced in the control theory literature in s []. So

far, the type of nonlinearity that is extensively treated and analyzed consists of bilinear in-
teraction between the states of the system and the system input [, , ]. Aside from their
practical importance, these systems are easier to handle because they are reducible to lin-
ear ones through the use of a certain Kronecker product. In this work, we treat the case
where the nonlinearity of the system consists of bilinear interaction between the states
of the system themselves. This means that our model will be able to handle evolutions
according to the Lotka-Volterra models [] or the Lorenz weather models [, , ], thus
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enabling a wider and more flexible application of such models. To the best of our knowl-
edge, no attempt has been made to treat such systems in the general setting presented
here.
The widespread use of bilinear models motivates the need to develop their parameter

identification algorithms. A lot of work exists in the literature which presents methods of
estimation and parameter identification of linear and nonlinear systems [–]. The two
most widely used techniques fall under the names of least square estimation and maxi-
mum likelihood estimation, respectively.
The maximum likelihood estimation is computed through the well-known EM algo-

rithm []. It is an iterative method that tries to improve a current estimate of the system
parameters by maximizing the underlying likelihood densities. The algorithm is useful in
a variety of incomplete data problems, where algorithms such as the Newton-Raphson
method may turn out to be more complicated. It consists of two steps called the Expecta-
tion step or the E-step and the Maximization step or the M-step; hence the name of the
algorithm. This namewas first coined by Dempster, Laird, and Rubin in their fundamental
paper []. In this paper, we develop the EM algorithm for our bilinear system. This will
necessitate also the development of a Kalman filter and smoother suitable for the nonlin-
ear system at hand. The direct development of the recursions for the nonlinear filters is
very complicated if not impossible altogether. Instead, we develop our recursions based
on a linearization of the quadratic term that uses themost current state estimate available.
The remainder of this article is arranged as follows. In Section , the bilinear state space

model problem is stated along with underlying assumptions. In Section , we derive the
bilinear Kalman filter and smoother. Section  estimates the unknown parameters in the
bilinear state space model via the EM algorithm. Section  presents a simulation example
that produces very satisfactory results. A real world example is given in Section .

2 The bilinear state spacemodel
In this section, we introduce a bilinear state space model and describe a generalization
of the Kalman filter and smoother to this model. Our model subsumes the well-known
Lorentz- model [] for weather forecast, and the Lotka-Volterra evolution equations
appear in many applications in chemistry, biology and control [, ]. Other types of bilin-
ear models were investigated in [, ], where bilinearity occurs because of the interaction
between the input and states of the system.
We will adopt the geometric notation as presented in [] where the matrix inner prod-

uct of two random vectors is defined by

〈x, y〉 = E
(
xyT

)
,

and

‖x‖ = E
(
xxT

)
= 〈x,x〉.

We know that

〈x, y〉 = cov(x, y) + E(x)E(y)T .
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Given a sequence Y = {y, y, . . . , yt} of random vectors, the conditional expectation E(x|Y )
with respect to this inner product is interpreted geometrically as the orthogonal pro-
jection of the vector x in the space spanned by the vectors of Y . In particular, if x
is uncorrelated with the elements of Y and if it has zero mean, then x is orthogonal
to the subspace generated by Y and E(x|Y ) = . We will also use the projection nota-
tion

πtx := πY x := E(x|Y ).

It is characterized by

〈x – πtx, z〉 = ,

for all z ∈ M(Y ); the closed subspace of L of all random vectors z which can be written
as measurable functions of the elements of Y [].
To introduce the model, let us first define the bilinear function a : Rn × R

n → R
n(n+)



by

a(x, y) = (xy,xy, . . . ,xyn,xy,xy, . . . ,xyn, . . . ,xnyn)T ,

where a(·, ·) is similar to the Kronecker product function except that there is no repetition
of the entries. Consider the bilinear state space model given by

xk+ = Axk + Bzk +wk , ()

yk = Cxk + vk , k = , , . . . ,N , ()

where xk ∈ R
n is the state vector, yk ∈ R

p is the measurement vector, and zk = a(xk ,xk) is
the bilinear term given by

zk = a(xk ,xk) =
(
x ,xx, . . . ,xxn,x


,xx, . . . ,xxn, . . . ,x


n
)T .

The matrices are of appropriate dimensions, i.e., A ∈ R
n×n, B ∈ R

n× n(n+)
 and C ∈ R

p×p.
The uncorrelated noise corruption signals wk and vk are, as usual, assumed to be white
having Gaussian distribution with zero mean and covariances Q and R, respectively,
i.e.,

wk ∼N(,Q), vk ∼N(,R),

〈wk ,wl〉 =Qδkl, 〈vk , vl〉 = Rδkl

and

〈wk , vl〉 = .

Lemma  〈wk , zl〉 = , 〈vk , zl〉 = , l ≤ k.

http://www.advancesindifferenceequations.com/content/2012/1/176
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Proof Let l ≤ k. Then since xl , wk are uncorrelated and E{wk} = , wk ⊥ xl . This means
that E{wk|xl} = . Hence,

〈wk , zl〉 = E
{
E
{
wka(xl,xl)|xl

}}
= E

{
E{wk|xl}a(xl,xl)

}
= .

The second equation can be shown in exactly the same way. �

The Taylor polynomial expansion of the form a(x,x) at the point x can be written as
follows (with z = a(x,x)):

z = z + z′(x)(x – x) +


H(x,x)(x – x), ()

where z′(x) is the n(n+)
 × n gradient of a(x,x) given by

z′(x) =
[

∂xixj
∂xl

]
i,j,l=,,...,m

,

andH(x,x) is given by

H(x,x) =

⎡⎢⎢⎢⎢⎣
(x – x)TD

(x – x)TD
...

(x – x)TDm

⎤⎥⎥⎥⎥⎦ ,

withDk being thematrix of second-order derivatives of the entries of a(x,x) andm = n(n+)
 .

That is,

Dk =

⎡⎢⎢⎢⎢⎢⎢⎣

∂z′k
∂x

∂z′k
∂x

· · · ∂z′kn
∂x

∂z′k
∂x

∂z′k
∂x

· · · ∂z′kn
∂x

...
...

...
...

∂z′k
∂xn

∂z′k
∂xn · · · ∂z′kn

∂xn

⎤⎥⎥⎥⎥⎥⎥⎦ , where k = , , . . . ,m.

To illustrate, suppose n = , then

z′(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x  
x x 
x  x
 x 
 x x
  x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and

D =

⎡⎢⎣  
  
  

⎤⎥⎦ , D =

⎡⎢⎣  
  
  

⎤⎥⎦ , D =

⎡⎢⎣  
  
  

⎤⎥⎦ ,

D =

⎡⎢⎣  
  
  

⎤⎥⎦ , D =

⎡⎢⎣  
  
  

⎤⎥⎦ , D =

⎡⎢⎣  
  
  

⎤⎥⎦ .

Note, for example, that the Lorentz-model (with n = ) takes the form () with A = –I
and

B =

⎡⎢⎣     
     
     

⎤⎥⎦ .

3 A bilinear Kalman filter and smoother
In this section, we will develop a Kalman filter and smoother for the bilinear system ()
and ().

3.1 A bilinear Kalman filter
Given a sequence of measurements Yt = {y, y, . . . , yt}, let

xtk = E(xk|Yt) := Et(xk),

Pt
k =

∥∥xk – xtk
∥∥,

ztk = Et(zk),

Ṗt
k =

〈
xk – xtk , zk – ztk

〉
,

P̈t
k =

∥∥zk – ztk
∥∥.

When x = xk , equation () becomes

z = z + z′(x)(xk – x) +


H(xk ,x)(xk – x). ()

In order to compute equation (), we approximate the second-degree termH(xk ,x) by
using the most current available state estimation for xk ; that is,
• In the case of prediction, we take

xk ≈ xk–k , soH(xk ,x) ≈H
(
xk–k ,x

)
.

By setting x = xk–k , equation () becomes

zk ≈ zk–k + z′(xk–k
)(
xk – xk–k

)
+


H
(
xk–k ,xk–k

)(
xk – xk–k

)
.

• In the case of filtering, we take

xk ≈ xk–k , soH(xk ,x) ≈H
(
xk–k ,x

)
.

http://www.advancesindifferenceequations.com/content/2012/1/176
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By setting x = xkk , equation () becomes

zk ≈ zkk + z′(xkk)(xk – xkk
)
+


H
(
xk–k ,xkk

)(
xk – xkk

)
.

• In the case of smoothing, we take

xk ≈ xk+k , soH(xk ,x)≈H
(
xk+k ,x

)
.

By setting x = xk+k , equation () becomes

zk ≈ zk+k + z′(xk+k
)(
xk – xk+k

)
+


H
(
xk+k ,xk+k

)(
xk – xk+k

)
.

In summary, we have the following linearization:

zk ≈ ztk +Vt
k
(
xk – xtk

)
, ()

where

Vt
k = z′(xtk) + 


H
(
xt±
k ,xtk

)
.

We also define

Pt
k,k =

〈
xk – xtk ,xk – xtk

〉
, ()

Ṗt
k,k =

〈
xk – xtk , zk – ztk

〉
, ()

P̈t
k,k =

〈
zk – ztk , zk – ztk

〉
. ()

Theorem  For the bilinear state space model defined by () and (), we have

xkk+ = Axkk + Bzkk , ()

Pk
k+ = APk

kA
T +AṖk

kB
T + B

(
Ṗk
k
)TAT + BP̈k

kB
T +Q, ()

with

xk+k+ = xkk+ +Kk+
[
yk –Cxkk+

]
,

Pk+
k+ = [I –Kk+C]Pk

k+,

Ṗk+
k+ = Pk+

k+
[
Vk+
k+

]T ,
P̈k+
k+ = Vk+

k+ Ṗ
k+
k+,

Kk+ = Pk
k+C

T[CPk
k+C

T + R
]–,

and

Vk+
k+ = z′(xk+k+

)
+


H
(
xkk+,x

k+
k+

)
, k = , . . . ,N .

http://www.advancesindifferenceequations.com/content/2012/1/176


Al-Mazrooei et al. Advances in Difference Equations 2012, 2012:176 Page 7 of 19
http://www.advancesindifferenceequations.com/content/2012/1/176

Proof Equation () is obtained by applying the conditional expectation Ek(·) to ():

xkk+ = Ek(xk+)

= Ek(Axk + Bzk +wk)

= AEk(xk) + BEk(zk) + Ek(wk)

= Axkk + Bzkk .

To obtain the error recursion (), we proceed as follows:

Pk
k+ =

∥∥xk+ – xkk+
∥∥ = ∥∥(I – πk)xk+

∥∥
=
∥∥(I – πk)(Axk + Bzk +wk)

∥∥
=
∥∥A(xk – xkk

)
+ B

(
zk – zkk

)
+wk

∥∥
= A

∥∥xk – xkk
∥∥AT + B

∥∥zk – zkk
∥∥BT +A

〈
xk – xkk , zk – zkk

〉
BT

+ B
〈
zk – zkk ,xk – xkk

〉
AT +A

〈
xk – xkk ,wk

〉
+
〈
wk ,xk – xkk

〉
AT

+ B
〈
zk – zkk ,wk

〉
+
〈
wk , zk – zkk

〉
BT + ‖wk‖

= APk
kA

T +AṖk
kB

T + B
(
Ṗk
k
)TAT + BP̈k

kB
T +Q.

Now, when t = k, we derive the filtering steps. Let

ρk = yk – Ek–(yk) = (I – πk–)yk

= (I – πk–)(Cxk + vk) = yk –Cxk–k

= C
(
xk – xk–k

)
+ vk , k = , . . . ,N .

Then, the mean of the innovations is given by

Ek–(ρk) = πk–(I – πk–)yk = ,

and the variance

�k+ = ‖ρk+‖

=
∥∥C(

xk+ – xkk+
)
+ vk+

∥∥
= C

∥∥xk+ – xkk+
∥∥CT + ‖vk+‖

= CPk
k+C

T + R.

Also,

〈ρk+, yk〉 =
〈
yk+ – ykk+, yk

〉
=
〈
(I – πk)yk+, yk

〉
=
〈
yk+, (I – πk)yk

〉
= ,

http://www.advancesindifferenceequations.com/content/2012/1/176
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which means that the innovations are orthogonal to the past measurements. On the other
hand,

〈xk+,ρk+〉 =
〈
xk+,C

(
xk+ – xkk+

)
+ vk+

〉
=
〈
xk+,xk+ – xkk+

〉
CT

=
〈
xk+, (I – πk)xk+

〉
CT

=
〈
(I – πk)xk+, (I – πk)xk+

〉
CT

=
∥∥(I – πk)xk+

∥∥CT

= Pk
k+C

T .

From these results, we conclude that xk+ and ρk+ have a Gaussian joint distribution con-
ditional on Yk . That is,{(

xk+
ρk+

)∣∣∣{yt}k
}

∼N

{(
xkk+


)
,

(
Pk
k+ Pk

k+C
T

CPk
k+ �k+

)}
.

Now, since Yk , ρk+ are orthogonal,

xk+k+ = πk+(xk+) = π{Yk ,ρk+}(xk+)

= πYk (xk+) + πρk+ (xk+)

= Ek(xk+) + 〈xk+,ρk+〉�–
k+ρk+

= xkk+ + Pk
k+C

T[CPk
k+C

T + R
]–

ρk+

= xkk+ +Kk+
[
yk+ –Cxkk+

]
,

where

Kk+ = Pk
k+C

T[CPk
k+C

T + R
]– = Pk

k+C
T�–

k+

represents the Kalman gain.
Next, we derive the recursion for Pk+

k+. Since xk+ – xkk+ = (xk+ – xk+k+) +πρk+ (xk+ – xkk+)
is an orthogonal decomposition,

Pk+
k+ =

∥∥xk+ – xk+k+
∥∥

=
∥∥xk+ – xkk+

∥∥ – ∥∥πρk+

(
xk+ – xkk+

)∥∥
= Pk

k+ –
∥∥〈xk+ – xkk+,ρk+

〉
�–

k+ρk+
∥∥

= Pk
k+ –

∥∥Pk
k+C

T�–
k+ρk+

∥∥
= Pk

k+ – Pk
k+C

T�–
k+‖ρk+‖�–

k+CP
k
k+

= Pk
k+ – Pk

k+C
T�–

k+CP
k
k+

= Pk
k+ –Kk+CPk

k+

= [I –Kk+C]Pk
k+.
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The equation for Ṗk+
k+ is obtained as follows:

Ṗk+
k+ =

〈
xk+ – xk+k+, zk+ – zk+k+

〉
=
〈
xk+ – xk+k+,V

k+
k+

(
xk+ – xk+k+

)〉
=
〈
xk+ – xk+k+,xk+ – xk+k+

〉[
Vk+
k+

]T
= Pk+

k+
[
Vk+
k+

]T .
Finally, for P̈k+

k+ we have

P̈k+
k+ =

〈
zk+ – zk+k+, zk+ – zk+k+

〉
= Vk+

k+
〈
xk+ – xk+k+,xk+ – xk+k+

〉[
Vk+
k+

]T
= Vk+

k+ P
k+
k+

[
Vk+
k+

]T
= Vk+

k+ Ṗ
k+
k+.

This completes the proof. �

We summarize the bilinear Kalman filter as follows:

xk–k = Axk–k– + Bzk–k–,

Pk–
k = APk–

k–A
T +AṖk–

k–B
T + B

(
Ṗk–
k–

)TAT + BP̈k–
k–B

T +Q,

xkk = xk–k +Kk
[
yk –Cxk–k

]
, ()

Pk
k = [I –KkC]Pk–

k , ()

Ṗk
k = Pk

k
[
Vk
k
]T ,

P̈k
k = Vk

k Ṗ
k
k ,

Kk = Pk–
k CT[CPk–

k CT + R
]–,

and

Vk
k = z′(xkk) + 


H
(
xk–k ,xkk

)
, k = , . . . ,N .

Also, note that the bilinear Kalman filter algorithm is a generalization of the Kalman filter
for the linear case which is given in [].

3.2 A bilinear Kalman smoother
In this subsection, we will develop a Kalman smoother for the bilinear system () and ().
We will use the following notation:

PN
k,k =

〈
xk – xNk ,xk – xNk

〉
,

ṖN
k,k =

〈
xk – xNk , zk – zNk

〉
,

P̈N
k,k =

〈
zk – zNk , zk – zNk

〉
.

http://www.advancesindifferenceequations.com/content/2012/1/176
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Lemma  Let

εk+ = {vk+, . . . , vN ,wk+, . . . ,wN }. ()

Then for  ≤ k ≤ N –  and with the approximation (),

L{ym}N = L
{{ym}k ,xk+ – xkk+, εk+

}
, ()

where L{·} denotes the subspace spanned by {·}.

Proof Recall that

zm = zNm +VN
m
(
xm – xNm

)
,

that is,

(
zm – zNm

) ∈ L
{
xm – xNm

}
.

Since

ym – yNm = C
(
xm – xNm

)
+ vm,

L{ym}N = L
{{ym}N–

 , yN
}

= L
{{ym}N–

 , yN – yN–
N

}
= L

{{ym}N–
 ,xN – xN–

N , vN
}
.

Similarly, since

ym+ – yNm+ = CA
(
xm+ – xNm+

)
+CB

(
zm+ – zNm+

)
+Cwm+ + vm+,

L{ym}N = L
{{ym}N–

 , yN
}

= L
{{ym}N–

 , yN – yN–
N

}
= L

{{ym}N–
 ,xN– – xN–

N– , vN–, zN– – zN–
N– ,wN–, vN

}
= L

{{ym}N–
 ,xN– – xN–

N– , vN–, vN ,wN–
}
.

Continuing in this manner, we get (). �

We state the bilinear Kalman smoother in the following theorem.

Theorem  Consider the bilinear state space model () and () with xNN and PN
N as given

in () and (). Then for k =N – , . . . , , we have

xNk = xkk + Jk
(
xNk+ – xkk+

)
, ()

PN
k = Pk

k – JkPk
k+J

T
k , ()

http://www.advancesindifferenceequations.com/content/2012/1/176
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where

Jk =
[
Pk
kA

T + Ṗk
kB

T][Pk
k+

]–.
Proof Noting themutual orthogonality of {y}k , {xk+ –xkk+} and εk+ and the orthogonality
of xk and εk+,

xNk = πNxk = πkxk + π(xk+–xkk+)
xk

= xkk +
〈
xk ,xk+ – xkk+

〉∥∥xk+ – xkk+
∥∥–(xk+ – xkk+

)
= xkk +

〈
xk ,xk+ – xkk+

〉[
Pk
k+

]–(xk+ – xkk+
)
.

Now,

〈
xk ,xk+ – xkk+

〉
=
〈
xk ,Axk + Bzk +wk – xkk+

〉
=
〈
xk ,A

(
xk – xkk

)
+ B

(
zk – zkk

)〉
=
〈
xk – xkk ,xk – xkk

〉
AT +

〈
xk – xkk , zk – zkk

〉
BT

= Pk
kA

T + Ṗk
kB

T .

Thus,

xNk = xkk +
[
Pk
kA

T + Ṗk
kB

T][Pk
k+

]–(xk+ – xkk+
)

= xkk + Jk
(
xk+ – xkk+

)
.

Equation () now follows by taking the projection πN again of both sides and noting that
k ≤ N . To derive (), we compute

PN
k =

∥∥xk – xNk
∥∥ = ∥∥xk – xkk – Jk

(
xk+ – xkk+

)∥∥
=
∥∥xk – xkk

∥∥ – 〈
xk – xkk ,xk+ – xkk+

〉
JTk – Jk

〈
xk+ – xkk+,xk – xkk

〉
+ JkPk

k+J
T
k

= Pk
k –

〈
( – πk)xk ,xk+

〉
JTk – Jk

〈
xk+, ( – πk)xk

〉
+ JkPk

k+J
T
k

= Pk
k –

〈
( – πk)xk ,Axk + Bzk

〉
JTk – Jk

〈
Axk + Bzk , ( – πk)xk

〉
+ JkPk

k+J
T
k

= Pk
k –

(
Pk
kA

T + Ṗk
kB

T)JTk – Jk
(
APk

k + BṖk
k
)
+ JkPk

k+J
T
k

= Pk
k – JkPk

k+J
T
k – JkPk

k+J
T
k + JkPk

k+J
T
k = Pk

k – JkPk
k+J

T
k ,

which completes the proof. �

The next theorem states the bilinear lag-one recursions.

Theorem  Consider the bilinear state space model () and (). Then

PN
k+,k = APN

k + B
(
ṖN
k
)T ,

ṖN
k+,k = PN

k+,k
[
VN
k
]T .
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Proof Using the definitions in () and (),

PN
k+,k =

〈
xk+ – xNk+,xk – xNk

〉
=
〈
( – πN )xk+, ( – πN )xk

〉
=
〈
xk+, ( – πN )xk

〉
=
〈
Axk + Bzk +wk , ( – πN )xk

〉
= A

〈
xk , ( – πN )xk

〉
+ B

〈
zk , ( – πN )xk

〉
= APN

k + B
(
ṖN
k
)T .

Also,

ṖN
k+,k =

〈
xk+ – xNk+, zk – zNk

〉
=
〈
xk+ – xNk+,V

N
k
(
xk – xNk

)〉
=
〈
xk+ – xNk+,xk – xNk

〉[
VN
k
]T

= PN
k+,k

[
VN
k
]T . �

4 The bilinear EM algorithm
The unknown parameter set θ = {A,B,C,Q,R,V ,μ} is estimated by the EM algorithm that
iteratively updates the current estimate θ (i) of θ bymaximizing the log-likelihood function

logL(θ ,XN ,YN )

= argmin
θ

{
log f(x –μ) +

N∑
k=

log
(
fw(xk –Axk– – Bzk–)× fv(yk –Cxk)

)}
, ()

where
• f(·) represents the n-variate normal density of the initial state x with mean μ and
the covariance matrix V .

• fv(·) represents the p-variate normal density with zero mean and the covariance
matrix R.

• fw(·) represents the n-variate normal density function with zero mean and the
covariance matrix Q.

The conditional expectation step (E-step) finds the missing data, i.e., XN , given the ob-
served data and current estimated parameters, and then substitutes these expectations
for the missing data. Specifically, let θ (i – ) be the current estimate of the parameter θ ,
then the E-step finds the conditional expectation E{·} of the complete-data log-likelihood
given θ (i – ):

q
(
θ |θ (i – )

)
= E

{
logL(θ ,XN ,YN )|YN , θ (i – )

}
. ()

The M-step determines θ (i) by maximizing the expected complete-data log-likelihood

q
(
θ (i)|θ (i – )

) ≥ q
(
θ |θ (i – )

)
, ∀θ .

The following theorem accomplishes the expectation step.
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Theorem  For the bilinear state space model () and (),

q
(
θ (i)|θ (i – )

)
= –



log |V | – 


Tr
{
V–(	 – x̂μT – μ̂xT +μμT)}

–
N

log |Q| – 


Tr
{
Q–(
 –�AT –�BT –A�T

+AAT – B�T + B�BT)}
–
N

log |R| – 


Tr
{
R–(δ –�CT –C�T +CCT)} + const,

where

	 = EN
(
xxT

)
, x̂ = EN (x),


 =
N∑
k=

(
xNk

(
xNk

)T + PN
k
)
, � =

N∑
k=

(
xNk

(
xNk–

)T + PN
k,k–

)
,

� =
N∑
k=

(
xNk

(
zNk–

)T + ṖN
k,k–

)
,  =

N∑
k=

(
xNk–

(
xNk–

)T + PN
k–

)
,

� =
N∑
k=

EN
(
xk–zTk–

)
, � =

N–∑
k=

(
zNk

(
zNk

)T + P̈N
k
)
,

� =
N∑
k=

xNk y
T
k , δ =

N∑
k=

‖yk‖.

Proof Since the system is Markovian, we may use Bayes’ rule successively to get

p(θ ,XN ,YN ) = p(y, . . . , yN ,x, . . . ,xN ) ()

= p(x)
N∏
k=

p(yk|xk)
N–∏
k=

p(xk+|xk). ()

From the assumptions on x, wk , and vk , the density functions p(x), p(yk|xk), and
p(xk+|xk) are given by

p(x) =


(π ) n |V | 
exp

{
–


(x –μ)TV–(x –μ)

}
,

p(xk+|xk) = 
(π ) n |Q| 

exp

{
–


(xk+ –Axk – Bzk)TQ–(xk+ –Axk – Bzk)

}
,

and

p(yk|xk) = 
(π ) n |R| 

exp

{
–


(yk –Cxk)TR–(yk –Cxk)

}
.

Now, substituting these densities in () and taking the logarithm of both sides, we get

L(θ ,XN ,YN ) = –


log |V | – 


(x –μ)TV–(x –μ)
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–
N

log |Q| – 



N–∑
k=

(xk+ –Axk – Bzk)TQ–(xk+ –Axk – Bzk)

–
N

log |R| – 



N∑
k=

(yk –Cxk)TR–(yk –Cxk) + const.

The result follows upon taking the expectation conditional on YN , making use of

EN
(
xTAy

)
= Tr

[
AEN

(
xyT

)]
,

EN
(
xkzTk

)
= ,

EN
(
xk+zTk

)
= BEN

(
zkzTk

)
,

and simplifying. The middle equality follows from the fact that odd moments of Gaussian
random variables vanish. �

The computation of 
, , � , � and � given a current estimate θ (i) of θ involves the
use of the bilinear Kalman filter and smoother introduced in Sections . and .. For this
purpose, we introduce


 =
N∑
k=

Et
(
xkxTk

)
=

N∑
k=

(
xtk
(
xtk
)T + Pt

k
)
,

 =
N∑
k=

(
xtk–

(
xtk–

)T + Pt
k–

)
, � =

N∑
k=

(
xtk
(
xtk–

)T + Pt
k,k–

)
,

� =
N∑
k=

(
xtk
(
ztk–

)T + Ṗt
k,k–

)
, � =

N–∑
k=

(
ztk
(
ztk
)T + P̈t

k
)
.

The next step of the EM algorithm is to maximize the function q(θ (i)|θ (i – )) with re-
spect to θ .

Theorem  The maximizer of q(θ (i)|θ (i – )) is obtained for the parameter vector θ given
by

μ = x̂, V = 	, A = �–, ()

B = ��–, Q =

N

(

 –�T–� –��–�T), ()

C = �–, R =N–{δ –�–�T}. ()

Proof Let

q(μ,V ) = –


log |V | – 


Tr
{
V–(	 – x̂μT – μ̂xT +μμT)},

q(A,B,Q) = –
N

log |Q| – 


Tr
{
Q–(
 –�AT –�BT –A�T

+AAT – B�T + B�BT)},
q(C,R) = –

N

log |R| – 


Tr
{
R–(δ –�CT –C�T +CCT)}.
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Then

q
(
θ (i)|θ (i – )

)
= q(μ,V ) + q(A,B,Q) + q(C,R) + const,

which means that q(θ (i), θ (i – )) is maximized by separately minimizing q, q, q. This
is done by setting the partial derivative of q with respect to each parameter equal to zero
(i.e., ∂q

∂x = ) and solving the resulting system of equations. �

The EM algorithm for a bilinear state space model is summarized as follows.

Bilinear EM algorithm
. Initialize the EM algorithm by choosing initial values of θ ().
. Calculate the incomplete-data likelihood, logL(Yn; θ ).
. Execute the E-step by using the bilinear Kalman filter and smoother in ()-() and

()-(), respectively.
. Execute the M-step using ()-() and update the estimates of θ using (M-step) to

obtain θ (i).
. Repeat Steps  to  until convergence.

5 Simulation results
A , Monte Carlo simulation is performed to illustrate the utility of the bilinear algo-
rithm. The observed data are generated according to the second-order bilinear state space
model

xk+ =

[
. .
–. .

]
xk +

[
  
  

]
zk +wk , k = , . . . , ,, ()

yk =
[
 

]
xk + vk , ()

where wk and vk are independent identically distributed (i.i.d.) Gaussian noises such that

wk ∼N(,.× I),

vk ∼N(,.).

In all simulations, the number of iterations for the EM algorithm is fixed and its value set
to J = .
Figure  shows a sample of realizations of the input noise wk , and Figure  shows the

output noise vk , respectively. Figure  compares the observed output signals and the esti-
mated output signal. The average estimates of the parameters are

A =

[
. .

–. .

]
, B =

[
. . 

 –. .

]
,

C =
[
–. .

]
.

The mean square error (MSE) is defined as

EN =

N

N∑
k=

(yk –Cxk|k–),

http://www.advancesindifferenceequations.com/content/2012/1/176
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Figure 1 Input noise.

Figure 2 Output noise.

Figure 3 Observed and estimated output signals.

and its value for , run for different values of cov(R) and cov(Q) is kept constant, which
is shown in Table .

6 Application to wind speed
In this section, we apply the proposed bilinear algorithm to the daily averaged wind speed
data for Arar, a city located in the north eastern region of the kingdom of Saudi Arabia for
a period of  

 years as shown in Figure . It should be noted that all the calculations are
carried out on normalized time series data.
To estimate the dimension of the state in the state space model, we apply the stochastic

subspace system identification algorithm described in []. This is done by constructing
the singular value diagram of the block Hankel matrix for the normalized wind speed

http://www.advancesindifferenceequations.com/content/2012/1/176
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Table 1 Comparison of the mean square errors

cov(R) Linear MSE [3] Bilinear MSE

0.01 0.39988 0.049985
0.02 0.58788 0.080165
0.04 0.97789 0.104683

Figure 4 Wind speed data.

Figure 5 SVD for wind speed.

data as shown in Figure . That is, the dimension of the state equals the number of the
significant singular values; here n = . For clarity, we compare the observed wind speed
values with the estimated ones using a linear model [] with our proposed algorithm for
a period of  days as shown in Figure . The estimated parameters for the linear state
space model are

A =

[
. .
. .

]
, C =

[
. .

]
,

and for the bilinear state space model, they are

A =

[
. .
. .

]
, C =

[
. .

]
,

B =

[
 . –.

. . .

]
.
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Figure 6 Estimated wind speed.

The MSE for the estimated wind speed data using the linear EM algorithm is ., and
. for the bilinear EM algorithm.
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