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1 Introduction
A classical question in the theory of functional equations is the following: “When is it

true that a function which approximately satisfies a functional equation must be close

to an exact solution of the equation?”. If the problem accepts a solution, we say that

the equation is stable. The first stability problem concerning group homomorphisms

was raised by Ulam [1]. In the next year, Hyers [2] gave a positive answer to the above

question for additive groups under the assumption that the groups are Banach spaces.

In [3], Rassias proved a generalization of the Hyers’ theorem for additive mappings.

The result of Rassias has provided a lot of influence during the last three decades in

the development of a generalization of the Hyers-Ulam stability concept. Furthermore,

in 1994, a generalization of the Rassias’ theorem was obtained by Gǎvruta [4] by repla-

cing the bound �(||x||p + ||y||p) by a general control function �(x, y).

The stability problems of several functional equations have been extensively investi-

gated by a number of authors and there are many interesting results concerning this

problem [5-22].

Theorem 1.1. Let (X, d) be a complete generalized metric space and J: X ® X be a

strictly contractive mapping with Lipschitz constant L < 1. Then, for all x Î X, either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that

(a) d(Jnx, Jn+1x) < ∞ for all n0 ≥ n0;

(b) the sequence {Jnx} converges to a fixed point y* of J;

(c) y* is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0x, y) < ∞};
(d) d(y, y∗) ≤ 1

1 − L
d(y, Jy)for all y Î Y.
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In [20], Park proved the Hyers-Ulam stability of the following functional equation:

2f
(x + y

2

)
= f (x) + f (y) (1:1)

in fuzzy Banach spaces. In this article, using the fixed point alternative approach, we

prove the Hyers-Ulam stability of homomorphisms in C*-algebras and Lie C*-algebras

and also of derivations on C*-algebras and Lie C*-algebras for the Jensen Equation (1.1).

2 Stability of homomorphisms in C*-algebras
Throughout this section, assume that A is a C*-algebra with the norm ||.||A and that B

is a C*-algebra with the norm ||.||B.

For a given mapping f: A ® B, we define

Cμf (x, y) := 2μf
(x + y

2

)
− f (μx) − f (μy)

for all μ ∈ T1 := {ν ∈ C : |ν| = 1} and all x, y Î A. Note that a ℂ-linear mapping H:

A ® B is called a homomorphism in C*-algebras, if H satisfies H(xy) = H(x)H(y) and

H(x*) = H(x)* for all x Î A. Throughout this section, we prove the Hyers-Ulam stabi-

lity of homomorphisms in C*-algebras for the functional equation Cμf(x, y) = 0.

Theorem 2.1. Let f: A ® B be a mapping with f(0) = 0 for which there exists a func-

tion �: A2 ® [0, ∞) such that
∥∥Cμf (x, y)

∥∥
B ≤ ϕ(x, y), (2:2)

∥∥f (xy) − f (x)f (y)
∥∥
B ≤ ϕ(x, y), (2:3)

∥∥f (x∗) − f (x)∗
∥∥
B ≤ ϕ(x, x) (2:4)

for all μ ∈ T1and all x, y Î A. If there exists an L <
1
2
such that

ϕ(x, y) ≤ Lϕ(2x, 2y)
2

(2:5)

for all x, y Î A, then there exists a unique C*-algebra homomorphism H: A ® B such

that

∥∥f (x) − H(x)
∥∥
B ≤ ϕ(x, 0)

1 − L
. (2:6)

Proof. It follows from (2.5) that

lim
n→∞ 2nϕ

( x
2n

,
y
2n

)
= lim

n→∞ Lnϕ(x, y) = 0.

Consider the set X := {g: A ® B;g(0) = 0} and the generalized metric d in X defined

by

d(f , g) = inf{C ∈ R+ :
∥∥g(x) − h(x)

∥∥
B ≤ Cϕ(x, 0),∀x ∈ A}

It is easy to show that (X, d) is complete. Now, we consider a linear mapping J : A ®
A such that
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Jh(x) := 2h
( x
2

)

for all x Î A. By [[7], Theorem 3.1], d(Jg, Jh) ≤ Ld(g, h) for all g, h Î X. Letting μ = 1

and y = 0 in (2.2), we have
∥∥∥2f ( x

2

)
− f (x)

∥∥∥
B

≤ ϕ(x, 0) (2:7)

for all x Î A. It follows from (2.7) that d(f, Jf) ≤ 1. By Theorem 1.1, there exists a

mapping H: A ® B satisfying the following:

(1) H is a fixed point of J, that is,

H
( x

2

)
=
1
2
H(x) (2:8)

for all x Î A. The mapping H is a unique fixed point of J in the set Ω = {g Î X :

d(f, g) < ∞}. This implies that H is a unique mapping satisfying (2.8) such that there

exists C Î (0, ∞) satisfying ||f(x) - H(x)||B ≤ C�(x,0) for all x Î A.

(2) d(Jnf, H) ® 0 as n ® ∞. This implies the equality

lim
n→∞ 2nf

( x
2n

)
= H(x) (2:9)

for all x Î A.

(3) d(f ,H) ≤ d(f , Jf )
1 − L

, which implies the inequality d(f ,H) ≤ 1
1 − L

. This implies that

the inequality (2.6) holds. It follows from (2.2) and (2.9) that
∥∥∥2H (x + y

2

)
− H(x) − H(y)

∥∥∥
B
= lim

n→∞

∥∥∥2n+1f (x + y
2n+1

)
− 2nf

( x
2n

)
− 2nf

( y
2n

)∥∥∥
B

≤ lim
n→∞2nϕ

( x
2n

,
y
2n

)
≤ lim

n→∞ Lnϕ(x, y) = 0

for all x, y Î A. So 2H
(x + y

2

)
= H(x) +H(y) for all x, y Î X. Therefore, the mapping

H: A ® B is Jensen additive.

Letting y = x in (2.2), we get μf(x) = f(μx) for all μ ∈ T1 and all x Î A So, we get

∥∥μH(x) − H(μx)
∥∥
B = lim

n→∞

∥∥∥2nμf ( x
2n

)
− 2nf

(μx
2n

)∥∥∥
B
= 0.

So, μH(x) = H(μx) for all μ ∈ T1 and all x Î A Thus one can show that the mapping

H: A ® B is ℂ-linear. It follows from (2.3) that

∥∥H(xy) − H(x)H(y)
∥∥
B = lim

n→∞ 4n
∥∥∥f ( xy

4n

)
− f

( x
2n

)
f
( y
2n

)∥∥∥
B

≤ lim
n→∞ 4nϕ

( x
2n

,
y
2n

)
≤ lim

n→∞ (2L)nϕ(x, y) = 0

for all x Î A. Furthermore, By (2.4), we have

∥∥H(x∗) − H(x)∗
∥∥
B = lim

n→∞ 2n
∥∥∥∥f

(
x∗

2n

)
− f

( x
2n

)∗∥∥∥∥
B

≤ lim
n→∞ 2nϕ

( x
2n

,
y
2n

)
≤ lim

n→∞ Lnϕ(x, y) = 0
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for all x Î A. Thus H: A ® B is a C*-algebra homomorphism satisfying (2.6), as

desired.

Corollary 2.1. Let 0 <r < 1 and θ be nonnegative real numbers and f: A ® B be a

mapping with f(0) = 0 such that
∥∥∥2μf

(x + y
2

)
− f (μx) − f (μy)

∥∥∥
B

≤ θ(‖x‖rA +
∥∥y∥∥rA),∥∥f (xy) − f (x)f (y)

∥∥
B ≤ θ(‖x‖rA +

∥∥y∥∥rA)∥∥f (x∗) − f (x)∗
∥∥
B ≤ 2θ ‖x‖rA

(2:10)

for all μ ∈ T1and all x, y Î A. Then the limit H(x) = limn→∞2nf
( x

2n

)
exists for all x

Î A and H: A ® B is a unique C*-algebra homomorphism such that

∥∥f (x) − H(x)
∥∥
B ≤ 2θ ‖x‖rA

2 − 2r
(2:11)

for all x Î A.

Proof. The proof follows from Theorem 2.1, if we take ϕ(x, y) = θ(‖x‖rA +
∥∥y∥∥rA) for all

x, y Î A. In fact, if we choose L = 2r-1, then we get the desired result.

Theorem 2.2. Let f: A ® B be a mapping with f(0) = 0 for which there exists a func-

tion �: A2 ® [0, ∞) satisfying (2.2), (2.3), and (2.4). If there exists an L < 1 such that

ϕ(x, y) ≤ 2Lϕ
( x

2
,
y

2

)
for all x, y Î A, then there exists a unique C*-algebra homomorph-

ism H: A ® B such that

∥∥f (x) − H(x)
∥∥
B ≤ Lϕ(x, 0)

1 − L
. (2:12)

for all x Î A.

Proof. We consider the linear mapping J: A ® A such that Jg(x) =
1
2
g(2x) for all x Î A.

It follows from (2.7) that
∥∥∥∥f (x) − 1

2
f (2x)

∥∥∥∥ ≤ ϕ(2x, 0)
2

≤ Lϕ(x, 0)

for all x Î X. Hence d(f, Jf) ≤ L. By Theorem 1.1, there exists a mapping H: A ® B

satisfying the following:

(1) H is a fixed point of J, that is,

H(2x) = 2H(x) (2:13)

for all x Î A. The mapping H is a unique fixed point of J in the set Ω = {g Î X: d(f,

g) < ∞}. This implies that H is a unique mapping satisfying (2.13) such that there exists

C Î (0, ∞) satisfying ||f(x) - H(x)||B ≤ C�(x,0) for all x Î A.

(2) d(Jnf, H) ® 0 as n ® ∞. This implies the equality limn→∞
f (2nx)
2n

= H(x) for all

x Î A.

(3) d(f ,H) ≤ d(f , Jf )
1 − L

, which implies the inequality d(f ,H) ≤ 1
1 − L

. which implies

that the inequality (2.12). The rest of the proof is similar to the proof of Theorem 2.1.
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Corollary 2.2. Let r > 1 and θ be nonnegative real numbers and f: A ® B be a map-

ping satisfying f(0) = 0 and (2.10). Then the limit H(x) = limn→∞
f (2nx)
2n

exists for all

x Î A and H: A ® B is a unique C*-algebra homomorphism such that

∥∥f (x) − H(x)
∥∥
B ≤ 2θ ‖x‖rA

2r − 2
(2:14)

for all x Î A.

Proof. The proof follows from Theorem 2.2 if we take ϕ(x, y) = θ(‖x‖rA +
∥∥y∥∥rA) for all

x, y Î A. In fact, if we choose L = 21-r, then we get the desired result.

3 Stability of derivations on C*-algebras
Throughout this section, assume that A is a C*-algebra with the norm ||.|A. Note that a

ℂ-linear mapping δ: A ® A is called a derivation on A if δ satisfies δ(xy) = δ(x)y +

xδ(y) for all x, y Î A.

Throughout this section, using the fixed point alternative approach, We prove the

Hyers-Ulam stability of derivations on C*-algebras for the functional equation (1.1).

Theorem 3.1. Let f: A ® A be a mapping with f(0) = 0 for which there exists a func-

tion �: A2 ® [0, ∞) such that
∥∥∥2μf

(x + y
2

)
− f (μx) − f (μy)

∥∥∥
A

≤ ϕ(x, y) (3:15)

∥∥f (xy) − f (x)y − xf (y)
∥∥
A ≤ ϕ(x, y) (3:16)

for all μ ∈ T1and all x, y Î A. If there exists an L <
1
2
such that

ϕ(x, y) ≤ Lϕ(2x, 2y)
2

for all x, y Î A, then there exists a unique derivation δ: A ® A

such that

∥∥f (x) − δ(x)
∥∥
A ≤ ϕ(x, 0)

1 − L
. (3:17)

Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a unique

ℂ-linear mapping δ: A ® A satisfying (3.17). The mapping δ: A ® A is given by

δ(x) = lim
n→∞ 2nf

( x
2n

)

for all x Î A. It follows from (3.2) that

∥∥δ(xy) − δ(x)y − xδ(y)
∥∥
B = lim

n→∞ 4n
∥∥∥f ( xy

4n

)
− f

( x
2n

) y
2n

− x
2n

f
( y
2n

)∥∥∥
B

≤ lim
n→∞ 4nϕ

( x
2n

,
y
2n

)
≤ lim

n→∞ (2L)nϕ(x, y) = 0

for all x, y Î A. So

δ(xy) − δ(x)y − xδ(y)

for all x, y Î A. Thus δ: A ® A is a derivation satisfying (3.17).

Corollary 3.1. Let 0 <r < 1 and θ be nonnegative real numbers and f: A ® A be a

mapping with f(0) = 0 such that
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∥∥∥2μf
(x + y

2

)
− f (μx) − f (μy)

∥∥∥
A

≤ θ(‖x‖rA +
∥∥y∥∥rA), (3:18)

∥∥f (xy) − f (x)y − xf (y)
∥∥
A ≤ θ(‖x‖rA +

∥∥y∥∥rA) (3:19)

for all μ ∈ T1and all x, y Î A. Then the limit H(x) = limn→∞2nf
( x

2n

)
exists for all

x Î A and δ: A ® A is a unique derivation such that

∥∥f (x) − δ(x)
∥∥ ≤ 2θ ‖x‖rA

2 − 2r
(3:20)

for all x Î A.

Proof. The proof follows from Theorem 3.1 if we take ϕ(x, y) = θ(‖x‖rA +
∥∥y∥∥rA) for all

x, y Î A. In fact, if we choose L = 2r-1, then we get the desired result.

Theorem 3.2. Let f: A ® A be a mapping with f(0) = 0 for which there exists a func-

tion �: A2 ® [0, ∞) satisfying (3.15) and (3.2). If there exists an L < 1 such that

ϕ(x, y) ≤ 2Lϕ
( x

2
,
y

2

)
for all x, y Î A, then there exists a unique derivation δ: A ® A

such that

∥∥f (x) − δ(x)
∥∥
A ≤ Lϕ(x, 0)

1 − L
. (3:21)

Proof. The proof is similar to the proofs of Theorems 2.2 and 3.1.

Corollary 3.2. Let r > 1 and θ be nonnegative real numbers and f: A ® A be a map-

ping satisfying f(0) = 0, (3.4) and (3.5). Then the limit H(x) = limn→∞
f (2nx)
2n

exists for

all x Î A and δ: A ® A is a unique derivation such that

∥∥f (x) − δ(x)
∥∥
A ≤ 2θ ‖x‖rA

2r − 2
(3:22)

for all x Î A.

Proof. The proof follows from Theorem 3.2 if we take ϕ(x, y) = θ(‖x‖rA +
∥∥y∥∥rA) for all

x, y Î A. In fact, if we choose L = 21-r, then we get the desired result.

4 Stability of homomorphisms in Lie C*-algebras

A C*-algebra C, endowed with the Lie product [x, y] :=
xy − yx

2
on C, is called a Lie

C*-algebra (see, [17-19]).

Definition 4.1. Let A and B be Lie C*-algebras, A ℂ-linear mapping H: A ® B is

called a Lie C*-algebra homomorphism if

H([x, y]) = [H(x),H(y)] =
H(x)H(y) − H(y)H(x)

2
for all x, y Î A.

Throughout this section, assume that A is a Lie C*-algebra with the norm ||.||A and

B is a Lie C*-algebra with the norm ||.||B.

We prove the Hyers-Ulam stability of homomorphisms in Lie C*-algebras for the

functional Equation (1.1).

Theorem 4.1. Let f: A ® B be a mapping with f(0) = 0 for which there exists a func-

tion �: A2 ® [0, ∞) satisfying (2.2) such that
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∥∥f ([x, y]) − [f (x), f (y)]
∥∥
B ≤ ϕ(x, y) (4:23)

for all x, y Î A. If there exists an L <
1
2
such that ϕ(x, y) ≤ L

2
ϕ(2x, 2y) for all x, y Î

A, then there exists a unique Lie C*-algebra homomorphism H: A ® B satisfying (2.6).

Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a unique

ℂ-linear mapping H: A ® B satisfying (2.6). The mapping H: A ® B is given by

H(x) = limn→∞2nf
( x

2n

)
for all x Î A. It follows from (4.23) that

∥∥H([x, y]) − [H(x),H(y)]
∥∥
B = lim

n→∞ 4n
∥∥∥∥f

(
[x, y]
4n

)
−

[
f
( x
2n

)
, f

( y
2n

)]∥∥∥∥
B

≤ lim
n→∞ 4nϕ

( x
2n

,
y
2n

)
= 0

for all x, y Î A. So H([x, y]) = [H(x), H(y)] for all x, y Î A. Thus H: A ® B is a Lie

C*-algebra homomorphism satisfying (2.6), as desired.

Corollary 4.1. Let 0 <r < 1 and θ be nonnegative real numbers, and let f: A ® B be a

mapping satisfying f(0) = 0 such that
∥∥Cμf (x, y)

∥∥
B ≤ θ(‖x‖rA +

∥∥y∥∥rA), (4:24)

∥∥f ([x, y]) − [f (x), f (y)]
∥∥
B ≤ θ(‖x‖rA +

∥∥y∥∥rA) (4:25)

for all μ ∈ T1and all x, y Î A. Then there exists a unique Lie C*-algebra homomorph-

ism H: A ® B satisfying (2.11).

Proof. The proof follows from Theorem 4.1 by taking ϕ(x, y) = θ(‖x‖rA +
∥∥y∥∥rA) for all

x, y Î A. Then L = 2r-1 and we get the desired result.

Theorem 4.2. Let f: A ® B be a mapping with f(0) = 0 for which there exists a func-

tion �: A2 ® [0, ∞) satisfying (2.2) and (4.23). If there exists an L < 1 such that

ϕ(x, y) ≤ 2Lϕ
( x

2
,
y

2

)
for all x, y Î A, then there exists a unique Lie C*-algebra homo-

morphism H: A ® B satisfying (2.12).

Corollary 4.2. Let r > 1 and θ be nonnegative real numbers, and let f: A ® B be a

mapping satisfying f(0) = 0, (4.2) and (4.3). Then there exists a unique Lie C*-algebra

homomorphism H: A ® B satisfying (2.14).

Proof. The proof follows from Theorem 4.2 by taking ϕ(x, y) = θ(‖x‖rA +
∥∥y∥∥rA) for all

x, y Î A. Then L = 21-r and we get the desired result.

5 Stability of Lie derivations on C*-algebras
Definition 5.1. Lat A be a Lie C*-algebras, A ℂ-linear mapping δ: A ® A is called a

Lie derivation if δ([x, y]) = [δ(x),y] + [x, δ(y)] for all x, y Î A.

Throughout this section, assume that A is a Lie C*-algebra with the norm ||.||A. In

this section, we prove the Hyers-Ulam stability of derivations on Lie C*-algebras for

the functional Equation (1.1).

Theorem 5.1. Let f: A ® B be a mapping with f(0) = 0 for which there exists a func-

tion �: A2 ® [0, ∞) satisfying (3.15) such that
∥∥f ([x, y]) − [f (x), y] − [x, f (y)]

∥∥
B ≤ ϕ(x, y) (5:26)
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for all x, y Î A. If there exists an L <
1
2
such that ϕ(x, y) ≤ L

2
ϕ(2x, 2y) for all x, y Î

A, then there exists a unique Lie derivation δ: A ® A satisfying (3.17).

Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a unique

ℂ-linear mapping δ: A ® A satisfying (3.17). The mapping δ: A ® A is given by

δ(x) = limn→∞2nf
( x

2n

)
for all x Î A. It follows from (5.26) that

∥∥δ([x, y]) − [δ(x), y] − [x, δ(y)]
∥∥
A = lim

n→∞4n
∥∥∥∥f

(
[x, y]
4n

)
−

[
f
( x
2n

)
,
y
2n

]
−

[ x
2n

, f
( y
2n

)]∥∥∥∥
A

≤ lim
n→∞4nϕ

( x
2n

,
y
2n

)
≤ lim

n→∞ (2L)nϕ(x, y) = 0

for all x, y Î A. So δ([x, y]) = [δ(x),y] + [x, δ(y)] for all x, y Î A. Thus δ: A ® A is a

Lie derivation satisfying (3.17), as desired.

Corollary 5.1. Let 0 <r < 1 and θ be nonnegative real numbers, and let f: A ® B be a

mapping satisfying f(0) = 0 and (3.4) such that
∥∥f ([x, y]) − [f (x), y] − [x, f (y)]

∥∥
B ≤ θ(‖x‖rA +

∥∥y∥∥rA) (5:27)

for all x, y Î A. Then there exists a unique Lie derivation δ: A ® A satisfying (3.20).

Proof. The proof follows from Theorem 5.1 by taking ϕ(x, y) = θ(‖x‖rA +
∥∥y∥∥rA) for all

x, y Î A. Then L = 2r-1 and we get the desired result.

Theorem 5.2. Let f: A ® B be a mapping with f(0) = 0 for which there exists a func-

tion �: A2 ® [0, ∞) satisfying (3.15) and (5.26). If there exists an L < 1 such that

ϕ(x, y) ≤ 2Lϕ
( x

2
,
y

2

)
for all x, y Î A, then there exists a unique Lie derivation δ: A ®

A satisfying (3.21).

Corollary 5.2. Let r > 1 and θ be nonnegative real numbers, and let f: A ® B be a

mapping satisfying f(0) = 0, (3.4) and (5.27). Then there exists a unique Lie derivation

δ: A ® A satisfying (3.22).

Proof. The proof follows from Theorem 5.2 by taking ϕ(x, y) = θ(‖x‖rA +
∥∥y∥∥rA) for all

x, y Î A. Then L = 21-r and we get the desired result.
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