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Abstract
In this paper, we investigate the Hyers-Ulam stability of the additive-quadratic
functional equation
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1 Introduction
The concept of stability of a functional equation arises when one replaces a functional
equation by an inequality which acts as a perturbation of the equation. The first stability
problem concerning group homomorphisms was raised by Ulam [] in  and affirma-
tively solved by Hyers []. The result of Hyers was generalized by Aoki [] for approximate
additive mappings and by Rassias [] for approximate linear mappings by allowing the dif-
ference Cauchy equation ‖f (x+ y)– f (x)– f (y)‖ to be controlled by ε(‖x‖p +‖y‖p). In ,
a generalization of the Th.M. Rassias’ theoremwas obtained by Gǎvruta [], who replaced
ε(‖x‖p +‖y‖p) by a general control function ϕ(x, y). For more details about the results con-
cerning such problems, the reader is referred to [–].
The functional equation

f (x + y) + f (x – y) = f (x) + f (y) (.)

is related to a symmetric bi-additive mapping [, ]. It is natural that this equation is
called a quadratic functional equation. In particular, every solution of the quadratic equa-
tion (.) is said to be a quadratic mapping. It is well known that a mapping f between
real vector spaces is quadratic if and only if there exists a unique symmetric bi-additive
mapping B such that f (x) = B(x,x) for all x. The bi-additive mapping B is given by
B(x, y) = 

 (f (x + y) – f (x – y)). The Hyers-Ulam stability problem for the quadratic func-
tional equation was solved by Skof []. In [], Czerwik proved the Hyers-Ulam stability
of the function equation (.).
Eshaghi Gordji and Khodaei [] have established the general solution and investigated

theHyers-Ulam stability for amixed type of cubic, quadratic and additive functional equa-
tion

f (x + ky) + f (x – ky) = kf (x + y) + kf (x – y) + 
(
 – k

)
f (x) (.)
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in quasi-Banach spaces, where k is a nonzero integer with k �= ±. Obviously, the func-
tion f (x) = ax + bx + cx is a solution of the functional equation (.). Interesting new
results concerning mixed functional equations have recently been obtained by Najati et
al. [–], Jun and Kim [, ] as well as for the fuzzy stability of a mixed-type func-
tional equation by Park et al. [–].
The stability of the mixed functional equation
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=
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(.)

was investigated by Najati and Rassias [].
The theory of random normed spaces (RN-spaces) is important as a generalization of

the deterministic result of linear normed spaces and also in the study of random operator
equations. The RN-spaces may also provide us with the appropriate tools to study the
geometry of nuclear physics and have important application in quantum particle physics.
The Hyers-Ulam stability of different functional equations in random normed spaces and
RN-spaces has been recently studied in Alsina [], Eshaghi Gordji et al. [, ], Miheţ
and Radu [–], Miheţ, Saadati and Vaezpour [, ], and Saadati et al. []. Recently,
Zhang et al. [] investigated the intuitionistic random stability problems for the cubic
functional equation.
In this paper, we prove the Hyers-Ulam stability of the additive and quadratic functional

equation (.) in intuitionistic random spaces.

2 Preliminaries
We start our work with the following notion of intuitionistic random normed spaces. In
the sequel, we adopt the usual terminology, notations and conventions of the theory of
intuitionistic Menger probabilistic normed spaces as in [] and [–].
Ameasure distribution function is a function μ :R→ [, ], which is left continuous on

R, non-decreasing, inft∈R μ(t) =  and supt∈R μ(t) = .
We denote by D the family of all measure distribution functions, and by H a special

element of D defined by

H(t) =

⎧⎨
⎩, if t ≤ ,

, if t > .

If X is a nonempty set, then μ : X → D is called a probabilistic measure on X and μ(x) is
denoted by μx.
A non-measure distribution function is a function ν :R → [, ], which is right continu-

ous on R, non-increasing, inft∈R ν(t) =  and supt∈R ν(t) = .
We denote by B the family of all non-measure distribution functions, and by G a special

element of B defined by

G(t) =

⎧⎨
⎩, if t ≤ ,

, if t > .

If X is a nonempty set, then ν : X → B is called a probabilistic non-measure on X and ν(x)
is denoted by νx.
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Lemma . [, ] Consider the set L* and the operation ≤L* defined by

L* =
{
(x,x) ∈ [, ]× [, ] : x + x ≤ 

}
,

∀(x,x), (y, y) ∈ L*, (x,x) ≤L* (y, y) ⇐⇒ x ≤ y,x ≥ y.

Then (L*,≤L* ) is a complete lattice.

We denote the units by L* = (, ) and L* = (, ). Classically, for all x ∈ [, ], a tri-
angular norm ∗ = T on [,] is defined as an increasing, commutative, associative map-
ping T : [, ] –→ [, ] satisfying T(,x) =  ∗ x = x, and a triangular conorm S = � is
defined as an increasing, commutative, associative mapping S : [, ] → [, ] satisfying
S(,x) =  � x = x.
By use of the lattice (L*,≤L* ), these definitions can be straightforwardly extended.

Definition . [] A triangular norm (t-norm) on L* is a mapping ϒ : (L*) –→ L* satis-
fying the following conditions:

(i) ∀x ∈ L*, ϒ(x, L* ) = x (boundary condition);
(ii) ∀(x, y) ∈ (L*), ϒ(x, y) = ϒ(y,x) (commutativity);
(iii) ∀(x, y, z) ∈ (L*), ϒ(x,ϒ(y, z)) = ϒ(ϒ(x, y), z) (associativity);
(iv) ∀(x,x′, y, y′) ∈ (L*), x≤L* x′, y≤L* y′ =⇒ ϒ(x, y)≤L* ϒ(x′, y′) (monotonicity).

If (L*,≤L* ,ϒ) is an Abelian topological monoid with unit L* , then ϒ is said to be a con-
tinuous t-norm.

Definition . [] A continuous t-normϒ on L* is said to be continuous t-representable
if there exist a continuous t-norm ∗ and a continuous t-conorm � on [,] such that

∀x = (x,x), y = (y, y) ∈ L*, ϒ(x, y) = (x ∗ y,x � y).

Typical examples of continuous t-representable are ϒ(a,b) = (ab,min{a + b, }) and
M(a,b) = (min{a,b},max{a,b}) for all a = (a,a), b = (b,b) ∈ L*.
Now, we define a sequence ϒn recursively by ϒ  = ϒ as

ϒn(x(),x(), . . . ,x(n+)) = ϒ
(
ϒn–(x(),x(), . . . ,x(n)),x(n+))

for all x(), . . . ,x(n+) ∈ L* and n≥ .
Recall that if ϒ is a t-norm and {x(n)} is a given sequence of numbers in L*, ϒn

i=x(i) is
defined recurrently by

ϒn
i=x

(i) =

⎧⎨
⎩x(), if n = ,

ϒ(ϒn–
i= x(i),x(n)), if n≥ ,

for all x(i) ∈ L*. ϒ∞
i=nx(i) is defined as ϒ∞

i=x(n+i).

A negator on L* is any decreasing mapping ℵ : L* –→ L* satisfying ℵ(L* ) = (L* ) and
ℵ(L* ) = (L* ). If ℵℵ(x) = x for all x ∈ L*, then ℵ is called an involutive negator. A nega-
tor on [,] is a decreasing mapping N : [, ] –→ [, ] satisfying N() =  and N() = .
Ns denotes the standard negator on [, ] defined by Ns(x) =  – x for all x ∈ [, ].
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Definition . []. Let μ and ν be measure and non-measure distribution functions
from X × (, +∞) to [, ] such that μx(t) + νx(t) ≤  for all x ∈ X and all t > . The triple
(X,�μ,ν ,ϒ) is said to be an intuitionistic random normed space (briefly IRN-space) if X is a
vector space, ϒ is a continuous t-representable, and �μ,ν : X× (, +∞) → L* is a mapping
such that the following conditions hold for all x, y ∈ X and all t, s ≥ :

(IRN) �μ,ν(x, ) = L* ;
(IRN) �μ,ν(x, t) = L* if and only if x = ;
(IRN) �μ,ν(αx, t) =�μ,ν(x, t

|α| ) for all α �= ;
(IRN) �μ,ν(x + y, t + s)≥L* ϒ(�μ,ν(x, t),�μ,ν(y, s)).

In this case, �μ,ν is called an intuitionistic random norm. Here, �μ,ν(x, t) = (μx(t),νx(t)).

Every normed space (X,‖ · ‖) defines an IRN-space (X,�μ,ν ,ϒ), where �μ,ν(x, t) =
( t
t+‖x‖ ,

‖x‖
t+‖x‖ ) for all t >  and ϒ(a,b) = (ab,min{a + b, }) for all a = (a,a), b =

(b,b) ∈ L*. This space is called the induced IRN-space.

Definition . Let (X,�μ,ν ,ϒ) be an IRN-space.
() A sequence {xn} in X is said to be convergent to x in X if, �μ,ν(xn – x, t)→ L* as

n→ ∞ for every t > .
() A sequence {xn} in X is called Cauchy if, for every ε >  and t > , there exists

n ∈N such that �μ,ν(xn – xm, t) ≥L* (Ns(ε), ε) for every m,n≥ n, where Ns is a
standard negator.

() An IRN-space (X,�μ,ν ,ϒ) is said to be complete if and only if every Cauchy
sequence in X is convergent to a point in X .

From now on, let X be a linear space and (Y ,�μ,ν ,ϒ) be a complete IRN-space.
For convenience, we use the following abbreviation for a given mapping f : X → Y :

	f (x, . . . ,xn) =
n∑
i=

f

(
xi –


n

n∑
j=

xj

)
–

n∑
i=

f (xi) + nf

(

n

n∑
i=

xi

)

for all x, . . . ,xn ∈ X, where n≥  is a fixed integer.

3 Results in intuitionistic random spaces
In the following theorem, we prove the Hyers-Ulam stability of the functional equation
(.) in IRN-spaces for quadratic mappings.

Theorem . Let ξ , ζ : Xn →D+ (ξ (x, . . . ,xn) is denoted by ξx,...,xn , ζ (x, . . . ,xn) is denoted
by ζx,...,xn and (ξx,...,xn (t), ζx,...,xn (t)) is denoted by �ξ ,ζ (x, . . . ,xn, t)) be mappings such that

lim
m→∞�ξ ,ζ

(
mx, . . . , mxn, mt

)
= L* (.)

for all x, . . . ,xn ∈ X and all t > , and

lim
m→∞ϒ∞

i=
(
Me

μ,ν
(
m+i–x, m+it

))
= L* (.)

http://www.advancesindifferenceequations.com/content/2012/1/152


Park et al. Advances in Difference Equations 2012, 2012:152 Page 5 of 15
http://www.advancesindifferenceequations.com/content/2012/1/152

for all x ∈ X and all t > . Suppose that an even mapping f : X → Y with f () =  satisfies
the inequality

�μ,ν
(
	f (x, . . . ,xn), t

) ≥L* �ξ ,ζ (x, . . . ,xn, t) (.)

for all x, . . . ,xn ∈ X and all t > . Then there exists a unique quadratic mapping Q : X → Y
such that

�μ,ν
(
f (x) –Q(x), t

) ≥L* ϒ∞
i=

(
Me

μ,ν
(
i–x, it

))
(.)

for all x ∈ X and all t > , where

Me
μ,ν(x, t) = ϒ

(
�ξ ,ζ

(
nx,nx, , . . . , , (n – )t

)
,

ϒ

(
ϒ

(
�ξ ,ζ

(
nx, , . . . , ,

n – 


t
)
,ϒ

(
�ξ ,ζ

(
,nx, . . . ,nx,

n – 


t
)
,

ϒ

(
�ξ ,ζ

(
nx, , . . . , ,

n – 


t
)
,�ξ ,ζ

(
nx, , . . . , ,

n – 
n

t
))))

,

ϒ

(
�ξ ,ζ

(
x, (n – )x, , . . . , ,

n – 


t
)
,ϒ

(
�ξ ,ζ

(
,nx, . . . ,nx,

n – 


t
)
,

ϒ

(
�ξ ,ζ

(
nx, , . . . , ,

(n – )


t
)
,�ξ ,ζ

(
nx, , . . . , ,

n – 
n

t
))))))

. (.)

Proof Letting x = nx and xi = nx (i = , . . . ,n) in (.) and using the evenness of f , we
get

�μ,ν
(
nf

(
x + (n – )x

)
+ f

(
(n – )(x – x)

)
+ (n – )f (x – x) – f (nx) – (n – )f (nx), t

)
≥L* �ξ ,ζ (nx,nx, . . . ,nx, t) (.)

for all x,x ∈ X and all t > . Interchanging x with x in (.) and using the evenness of
f , we get

�μ,ν
(
nf

(
(n – )x + x

)
+ f

(
(n – )(x – x)

)
+ (n – )f (x – x) – (n – )f (nx) – f (nx), t

)
≥L* �ξ ,ζ (nx,nx, . . . ,nx, t) (.)

for all x,x ∈ X and all t > . It follows from (.) and (.) that

�μ,ν
(
nf

(
(n – )x + x

)
+ nf

(
x + (n – )x

)
+ f

(
(n – )(x – x)

)
+ (n – )f (x – x)

– nf (nx) – nf (nx), t
)

≥L* ϒ

(
�ξ ,ζ

(
nx,nx, . . . ,nx,

t


)
,�ξ ,ζ

(
nx,nx, . . . ,nx,

t


))
(.)
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for all x,x ∈ X and all t > . Setting x = nx, x = –nx and xi =  (i = , . . . ,n) in (.)
and using the evenness of f , we get

�μ,ν
(
f
(
(n – )x + x

)
+ f

(
x + (n – )x

)
+ (n – )f (x – x) – f (nx) – f (nx), t

)
≥L* �ξ ,ζ (nx, –nx, , . . . , , t) (.)

for all x,x ∈ X and all t > . So it follows from (.) and (.) that

�μ,ν
(
f
(
(n – )(x – x)

)
– (n – )f (x – x), t

)
≥L* ϒ

(
�ξ ,ζ

(
nx, –nx, , . . . , ,

t
n

)
,ϒ

(
�ξ ,ζ

(
nx,nx, . . . ,nx,

t


)
,

�ξ ,ζ

(
nx,nx, . . . ,nx,

t


)))
(.)

for all x,x ∈ X and all t > . So

�μ,ν
(
f
(
(n – )x

)
– (n – )f (x), t

)
≥L* ϒ

(
�ξ ,ζ

(
,nx, . . . ,nx,

t


)
,ϒ

(
�ξ ,ζ

(
nx, , . . . , ,

t


)
,

�ξ ,ζ

(
nx, , . . . , ,

t
n

)))
(.)

for all x ∈ X and all t > . Putting x = nx and xi =  (i = , . . . ,n) in (.), we obtain

�μ,ν
(
f (nx) – f

(
(n – )x

)
– (n – )f (x), t

) ≥L* �ξ ,ζ (nx, , . . . , , t) (.)

for all x ∈ X and all t > . It follows from (.) and (.) that

�μ,ν
(
f (nx) – nf (x), t

)
≥L* ϒ

(
�ξ ,ζ

(
nx, , . . . , ,

t


)
,ϒ

(
�ξ ,ζ

(
,nx, . . . ,nx,

t


)
,

ϒ

(
�ξ ,ζ

(
nx, , . . . , ,

t


)
,�ξ ,ζ

(
nx, , . . . , ,

t
n

))))
(.)

for all x ∈ X and all t > . Letting x = –(n – )x in (.) and replacing x by x
n in the

obtained inequality, we get

�μ,ν
(
f
(
(n – )x

)
– f

(
(n – )x

)
– (n – )f (x), t

) ≥L* �ξ ,ζ
(
x, (n – )x, , . . . , , t

)
(.)

for all x ∈ X and all t > . It follows from (.) and (.) that

�μ,ν
(
f
(
(n – )x

)
– (n – )f (x), t

)
≥L* ϒ

(
�ξ ,ζ

(
x, (n – )x, , . . . , ,

t


)
,ϒ

(
�ξ ,ζ

(
,nx, . . . ,nx,

t


)
,

ϒ

(
�ξ ,ζ

(
nx, , . . . , ,

t


)
,�ξ ,ζ

(
nx, , . . . , ,

t
n

))))
(.)
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for all x ∈ X and all t > . Applying (.) and (.), we get

�μ,ν
(
f (nx) – f

(
(n – )x

)
– (n – )f (x), t

)
≥L* ϒ

(
ϒ

(
�ξ ,ζ

(
nx, , . . . , ,

t


)
,ϒ

(
�ξ ,ζ

(
,nx, . . . ,nx,

t


)
,

ϒ

(
�ξ ,ζ

(
nx, , . . . , ,

t


)
,�ξ ,ζ

(
nx, , . . . , ,

t
n

))))
,

ϒ

(
�ξ ,ζ

(
x, (n – )x, , . . . , ,

t


)
,ϒ

(
�ξ ,ζ

(
,nx, . . . ,nx,

t


)
,

ϒ

(
�ξ ,ζ

(
nx, , . . . , ,

t


)
,�ξ ,ζ

(
nx, , . . . , ,

t
n

)))))
(.)

for all x ∈ X and all t > . Setting x = x = nx and xi =  (i = , . . . ,n) in (.), we obtain

�μ,ν
(
f
(
(n – )x

)
+ (n – )f (x) – f (nx), t

) ≥L* �ξ ,ζ (nx,nx, , . . . , , t) (.)

for all x ∈ X and all t > . It follows from (.) and (.) that

�μ,ν
(
f (x) – f (x), t

)
≥L* ϒ

(
�ξ ,ζ

(
nx,nx, , . . . , , (n – )t

)
,

ϒ

(
ϒ

(
�ξ ,ζ

(
nx, , . . . , ,

n – 


t
)
,ϒ

(
�ξ ,ζ

(
,nx, . . . ,nx,

n – 


t
)
,

ϒ

(
�ξ ,ζ

(
nx, , . . . , ,

n – 


t
)
,�ξ ,ζ

(
nx, , . . . , ,

n – 
n

t
))))

,

ϒ

(
�ξ ,ζ

(
x, (n – )x, , . . . , ,

n – 


t
)
,ϒ

(
�ξ ,ζ

(
,nx, . . . ,nx,

n – 


t
)
,

ϒ

(
�ξ ,ζ

(
nx, , . . . , ,

n – 


t
)
,�ξ ,ζ

(
nx, , . . . , ,

n – 
n

t
))))))

for all x ∈ X and all t > . It follows from (.) that

�μ,ν

(
f (x)


– f (x), t
)

≥L* Me
μ,ν

(
x, t

) ≥L* Me
μ,ν(x, t) (.)

for all x ∈ X and all t > , which implies that

�μ,ν

(
f (k+x)
(k+)

–
f (kx)
k

, t
)

≥L* Me
μ,ν

(
kx, (k+)t

)
(.)

for all x ∈ X, all t >  and all k ∈ N. It follows from (.) and (IRN) that

�μ,ν

(
f (x)


– f (x), t
)

≥L* ϒ

(
�μ,ν

(
f (x)


–
f (x)


,
t


)
,�μ,ν

(
f (x)


– f (x),
t


))

≥L* ϒ
(
Me

μ,ν
(
x, t

)
,Me

μ,ν(x, t)
)

≥L* ϒ
(
Me

μ,ν
(
x, t

)
,Me

μ,ν(x, t)
)
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and

�μ,ν

(
f (x)


– f (x), t
)

≥L* ϒ

(
�μ,ν

(
f (x)


–
f (x)


,
t


)
,�μ,ν

(
f (x)


– f (x),
t


))

≥L* ϒ

(
ϒ

(
�μ,ν

(
f (x)


–
f (x)


,
t


)
,�μ,ν

(
f (x)


–
f (x)


,
t


))
,

�μ,ν

(
f (x)


– f (x),
t


))

≥L* ϒ
(
ϒ

(
Me

μ,ν
(
x, t

)
,Me

μ,ν
(
x, t

))
,Me

μ,ν(x, t)
)

≥L* ϒ
(
ϒ

(
Me

μ,ν
(
x, t

)
,Me

μ,ν
(
x, t

))
,Me

μ,ν(x, t)
)

= ϒ
(
Me

μ,ν(x, t),ϒ
(
Me

μ,ν
(
x, t

)
,Me

μ,ν
(
x, t

)))
= ϒ

(
ϒ

(
Me

μ,ν(x, t),M
e
μ,ν

(
x, t

))
,Me

μ,ν
(
x, t

))

for all x ∈ X and all t > . Thus

�μ,ν

(
f (mx)
m

– f (x), t
)

≥L* ϒm
i=

(
Me

μ,ν
(
i–x, it

))
(.)

for all x ∈ X and all t > . In order to prove the convergence of the sequence { f (mx)
m }, we

replace x with m′x in (.) to find that

�μ,ν

(
f (m+m′x)
(m+m′) –

f (m′x)
m′ , t

)
≥L* ϒm

i=
(
Me

μ,ν
(
m

′+i–x, m
′+it

))
(.)

for all x ∈ X and all t > . Since the right-hand side of the inequality (.) tends to L*
as m′ and m tend to infinity, the sequence { f (mx)

m } is a Cauchy sequence. Therefore, one
can define the mapping Q : X → Y by Q(x) := limm→∞ 

m f (
mx) for all x ∈ X. Now, if we

replace x, . . . ,xn with mx, . . . , mxn in (.) respectively, then

�μ,ν

(
	f (mx, . . . , mxn)

m
, t

)
≥L* �ξ ,ζ

(
mx, . . . , mxn, mt

)
(.)

for all x, . . . ,xn ∈ X and all t > . By lettingm → ∞ in (.), we find that �μ,ν(	Q(x, . . . ,
xn), t) = L* for all t > , which implies 	Q(x, . . . ,xn) = . Thus Q satisfies (.). Hence the
mapping Q : X → Y is quadratic.
To prove (.), take the limit asm → ∞ in (.).
Finally, to prove the uniqueness of the quadratic mapping Q subject to (.), let us

assume that there exists a quadratic mapping Q′ which satisfies (.). Since Q(mx) =
mQ(x) and Q′(mx) = mQ′(x) for all x ∈ X and m ∈ N, from (.) and (.) it follows
that

�μ,ν
(
Q(x) –Q′(x), t

)
= �μ,ν

(
Q

(
mx

)
–Q′(mx), mt)

http://www.advancesindifferenceequations.com/content/2012/1/152
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≥L* ϒ
(
�μ,ν

(
Q

(
mx

)
– f

(
mx

)
, m–t

)
,�μ,ν

(
f
(
mx

)
–Q′(mx), m–t

))
≥L* ϒ

(
ϒ∞

i=
(
Me

μ,ν
(
m+i–x, m+it

))
,ϒ∞

i=
(
Me

μ,ν
(
m+i–x, m+it

)))
(.)

for all x ∈ X and all t > . By lettingm → ∞ in (.), we find that Q =Q′. �

Corollary . Let (X,�μ′ ,ν′ ,ϒ) be an IRN-space and let (Y ,�μ,ν ,ϒ) be a complete IRN-
space. If f : X → Y is a mapping such that

�μ,ν
(
	f (x, . . . ,xn), t

) ≥L* �μ′ ,ν′ (x + · · · + xn, t)

for all x, . . . ,xn ∈ X and all t > , and

lim
m→∞ϒ∞

i=
(
Me

μ′ ,ν′
(
m+i–x, m+it

))
= L*

for all x ∈ X and all t > , then there exists a unique quadratic mapping Q : X → Y such
that

�μ,ν
(
f (x) –Q(x), t

) ≥L* ϒ∞
i=

(
Me

μ′ ,ν′
(
i–x, it

))
for all x ∈ X and all t > , where

Me
μ′ ,ν′ (x, t) = ϒ

(
�μ′ ,ν′

(
x,
n – 
n

t
)
,ϒ

(
ϒ

(
�μ′ ,ν′

(
x,
n – 
n

t
)
,ϒ

(
�μ′ ,ν′

(
x,


n

t
)
,

ϒ

(
�μ′ ,ν′

(
x,
n – 
n

t
)
,�μ′ ,ν′

(
x,
n – 
n

t
))))

,ϒ
(

�μ′ ,ν′
(
x,
n – 
n

t
)
,

ϒ

(
�μ′ ,ν′

(
x,


n

t
)
,ϒ

(
�μ′ ,ν′

(
x,
(n – )
n

t
)
,�μ′ ,ν′

(
x,
n – 
n

t
))))))

.

Proof Let�ξ ,ζ (x, . . . ,xn, t) = �μ′ ,ν′ (x + · · ·+xn, t). Then the corollary follows immediately
from Theorem .. �

Now, we prove the Hyers-Ulam stability of the functional equation (.) in IRN-spaces
for additive mappings.

Theorem . Let ξ , ζ : Xn →D+ be mappings such that

lim
m→∞�ξ ,ζ

(
mx, . . . , mxn, mt

)
= L* (.)

for all x, . . . ,xn ∈ X and all t > , and

lim
m→∞ϒ∞

i=
(
Mo

μ,ν
(
m+i–x, m–t

))
= L* (.)

for all x ∈ X and all t > . Suppose that an odd mapping f : X → Y satisfies (.) for all
x, . . . ,xn ∈ X and all t > . Then there exists a unique additive mapping A : X → Y such
that

�μ,ν
(
f (x) –A(x), t

) ≥L* ϒ∞
i=

(
Mo

μ,ν
(
i–x, t

))
(.)

http://www.advancesindifferenceequations.com/content/2012/1/152
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for all x ∈ X and all t > , where

Mo
μ,ν(x, t) = ϒ

(
�ξ ,ζ

(
x, , . . . , ,

t


)
,ϒ

(
�ξ ,ζ

(
x,x, , . . . , ,

t
n

)
,

ϒ

(
�ξ ,ζ

(
x, –x, . . . , –x,

t


)
,�ξ ,ζ

(
–x,x, . . . ,x,

t


))))
.

Proof Letting x = nx and xi = nx′
 (i = , . . . ,n) in (.) and using the oddness of f , we get

�μ,ν
(
nf

(
x + (n – )x′


)
+ f

(
(n – )

(
x – x′


))

– (n – )f
(
x – x′


)
– f (nx) – (n – )f

(
nx′


)
, t

)
≥L* �ξ ,ζ

(
nx,nx′

, . . . ,nx
′
, t

)
(.)

for all x,x′
 ∈ X and all t > . Interchanging x with x′

 in (.) and using the oddness of
f , we get

�μ,ν
(
nf

(
(n – )x + x′


)
– f

(
(n – )

(
x – x′


))

+ (n – )f
(
x – x′


)
– (n – )f (nx) – f

(
nx′


)
, t

)
≥L* �ξ ,ζ

(
nx′

,nx, . . . ,nx, t
)

(.)

for all x,x′
 ∈ X and all t > . It follows from (.) and (.) that

�μ,ν
(
nf

(
x + (n – )x′


)
– nf

(
(n – )x + x′


)

+ f
(
(n – )

(
x – x′


))
– (n – )f

(
x – x′


)

+ (n – )f (nx) – (n – )f
(
nx′


)
, t

)
≥L* ϒ

(
�ξ ,ζ

(
nx,nx′

, . . . ,nx
′
,
t


)
,�ξ ,ζ

(
nx′

,nx, . . . ,nx,
t


))
(.)

for all x,x′
 ∈ X and all t > . Setting x = nx, x = –nx′

 and xi =  (i = , . . . ,n) in (.) and
using the oddness of f , we get

�μ,ν
(
f
(
(n – )x + x′


)
– f

(
x + (n – )x′


)
+ f

(
x – x′


)
– f (nx) + f

(
nx′


)
, t

)
≥L* �ξ ,ζ

(
nx, –nx′

, , . . . , , t
)

(.)

for all x,x′
 ∈ X and all t > . It follows from (.) and (.) that

�μ,ν
(
f
(
(n – )

(
x – x′


))

+ f
(
x – x′


)
– f (nx) + f

(
nx′


)
, t

)
≥L* ϒ

(
�ξ ,ζ

(
nx, –nx′

, , . . . , ,
t
n

)
,ϒ

(
�ξ ,ζ

(
nx,nx′

, . . . ,nx
′
,
t


)
,

�ξ ,ζ

(
nx′

,nx, . . . ,nx,
t


)))
(.)

http://www.advancesindifferenceequations.com/content/2012/1/152
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for all x,x′
 ∈ X and all t > . Putting x = n(x – x′

) and xi =  (i = , . . . ,n) in (.), we
obtain

�μ,ν
(
f
(
n
(
x – x′


))
– f

(
(n – )

(
x – x′


))

– f
((
x – x′


))
, t

)
≥L* �ξ ,ζ

(
nx, –nx′

, , . . . , , t
)

(.)

for all x,x′
 ∈ X and all t > . It follows from (.) and (.) that

�μ,ν
(
f
(
n
(
x – x′


))
– f (nx) + f

(
nx′


)
, t

)
≥L* ϒ

(
�ξ ,ζ

(
nx, –nx′

, , . . . , ,
t


)
,ϒ

(
�ξ ,ζ

(
nx, –nx′

, , . . . , ,
t
n

)
,

ϒ

(
�ξ ,ζ

(
nx,nx′

, . . . ,nx
′
,
t


)
,�ξ ,ζ

(
nx′

,nx, . . . ,nx,
t


))))
(.)

for all x,x′
 ∈ X and all t > . Replacing x and x′

 by
x
n and –x

n in (.), respectively, we
obtain

�μ,ν
(
f (x) – f (x), t

)
≥L* ϒ

(
�ξ ,ζ

(
x, , . . . , ,

t


)
,ϒ

(
�ξ ,ζ

(
x,x, , . . . , ,

t
n

)
,

ϒ

(
�ξ ,ζ

(
x, –x, . . . , –x,

t


)
,�ξ ,ζ

(
–x,x, . . . ,x,

t


))))

for all x ∈ X and all t > . Therefore,

�μ,ν

(
f (x)


– f (x), t
)

≥L* Mo
μ,ν(x, t)≥L* Mo

μ,ν(x, t) (.)

for all x ∈ X and all t > , which implies that

�μ,ν

(
f (k+x)
k+

–
f (kx)
k

, t
)

≥L* Mo
μ,ν

(
kx, k+t

)
(.)

for all x ∈ X, t >  and k ∈N. It follows from (.) and (IRN) that

�μ,ν

(
f (x)


– f (x), t
)

≥L* ϒ

(
�μ,ν

(
f (x)


–
f (x)


,
t


)
,�μ,ν

(
f (x)


– f (x),
t


))

≥L* ϒ
(
Mo

μ,ν(x, t),M

μ,ν(x, t)

) ≥L* ϒ
(
Mo

μ,ν(x, t),M
o
μ,ν(x, t)

)
and

�μ,ν

(
f (x)


– f (x), t
)

≥L* ϒ

(
�μ,ν

(
f (x)


–
f (x)


,
t


)
,�μ,ν

(
f (x)


– f (x),
t


))
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≥L* ϒ

(
ϒ

(
�μ,ν

(
f (x)


–
f (x)


,
t


)
,�μ,ν

(
f (x)


–
f (x)


,
t


))
,

�μ,ν

(
f (x)


– f (x),
t


))

≥L* ϒ
(
ϒ

(
Mo

μ,ν
(
x, t

)
,Mo

μ,ν(x, t)
)
,Mo

μ,ν(x, t)
)

≥L* ϒ
(
ϒ

(
Mo

μ,ν
(
x, t

)
,Mo

μ,ν(x, t)
)
,Mo

μ,ν(x, t)
)

= ϒ
(
Mo

μ,ν(x, t),ϒ
(
Mo

μ,ν(x, t),M
o
μ,ν

(
x, t

)))
= ϒ

(
ϒ

(
Mo

μ,ν(x, t),M
o
μ,ν(x, t)

)
,Mo

μ,ν
(
x, t

))

for all x ∈ X and all t > . Thus

�μ,ν

(
f (mx)
m

– f (x), t
)

≥L* ϒm
i=

(
Mo

μ,ν
(
i–x, t

))
(.)

for all x ∈ X and all t > . In order to prove the convergence of the sequence { f (mx)
m }, we

replace x with m′x in (.) to find that

�μ,ν

(
f (m+m′x)
m+m′ –

f (m′x)
m′ , t

)
≥L* ϒm

i=
(
Mo

μ,ν
(
m

′+i–x, m
′
t
))

(.)

for all x ∈ X and all t > . Since the right-hand side of the inequality (.) tends to L*
as m′ and m tend to infinity, the sequence { f (mx)

m } is a Cauchy sequence. Therefore, one
can define the mapping A : X → Y by A(x) := limm→∞ 

m f (
mx) for all x ∈ X. Now, if we

replace x, . . . ,xn with mx, . . . , mxn in (.) respectively, then

�μ,ν

(
	f (mx, . . . , mxn)

m
, t

)
≥L* �ξ ,ζ

(
mx, . . . , mxn, mt

)
(.)

for all x, . . . ,xn ∈ X and all t > . By lettingm → ∞ in (.), we find that �μ,ν(	A(x, . . . ,
xn), t) = L* for all t > , which implies 	A(x, . . . ,xn) = . Thus A satisfies (.). Hence the
mapping A : X → Y is additive. To prove (.), take the limit asm→ ∞ in (.).
The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let (X,�μ′ ,ν′ ,ϒ) be an IRN-space and let (Y ,�μ,ν ,ϒ) be a complete IRN-
space. If f : X → Y is a mapping such that

�μ,ν
(
	f (x, . . . ,xn), t

) ≥L* �μ′ ,ν′ (x + · · · + xn, t)

for all x, . . . ,xn ∈ X and all t > , and

lim
m→∞ϒ∞

i=
(
Mo

μ′ ,ν′
(
m+i–x, m–t

))
= L*

for all x ∈ X and all t > , then there exists a unique additive mapping A : X → Y such that

�μ,ν
(
f (x) –A(x), t

) ≥L* ϒ∞
i=

(
Mo

μ′ ,ν′
(
i–x, t

))

http://www.advancesindifferenceequations.com/content/2012/1/152
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for all x ∈ X and all t > , where

Mo
μ′ ,ν′ (x, t) = ϒ

(
�μ′ ,ν′

(
x,

t


)
,ϒ

(
�μ′ ,ν′

(
x,

t
n

)
,

ϒ

(
�μ′ ,ν′

(
x,

t
( – n)

)
,�μ′ ,ν′

(
x,

t
(n – )

))))
.

The main result of this paper is the following:

Theorem . Let ξ , ζ : Xn →D+ be mappings satisfying (.) and (.) for all x, . . . ,xn,
x ∈ X and all t > . Suppose that a mapping f : X → Y with f () =  satisfies (.) for
all x, . . . ,xn ∈ X and all t > . Then there exist an additive mapping A : X → Y and a
quadratic mapping Q : X → Y satisfying (.) and

�μ,ν
(
f (x) –A(x) –Q(x), t

)
≥L* ϒ

(
ϒ

(
ϒ∞

i=
(
Me

μ,ν
(
i–x, i–t

))
,ϒ∞

i=
(
Me

μ,ν
(
–i–x, i–t

)))
,

ϒ

(
ϒ∞

i=

(
Mo

μ,ν

(
i–x,

t


))
,ϒ∞

i=

(
Mo

μ,ν

(
–i–x,

t


))))
. (.)

Proof Let fe(x) = 
 (f (x) + f (–x)) for all x ∈ X. Then fe() = , fe(–x) = fe(x) and

�μ,ν
(
	fe(x, . . . ,xn), t

)
= �μ,ν

(
	f (x, . . . ,xn) +	f (–x, . . . , –xn)


, t

)

≥L* ϒ
(
�μ,ν

(
	f (x, . . . ,xn), t

)
,�μ,ν

(
	f (–x, . . . , –xn), t

))
≥L* ϒ

(
�ξ ,ζ (x, . . . ,xn, t),�ξ ,ζ (–x, . . . , –xn, t)

)
for all x, . . . ,xn ∈ X and all t > . By Theorem ., there exists a quadratic mapping Q :
X → Y such that

�μ,ν
(
fe(x) –Q(x), t

) ≥L* ϒ
(
ϒ∞

i=
(
Me

μ,ν
(
i–x, it

))
,ϒ∞

i=
(
Me

μ,ν
(
–i–x, it

)))
(.)

for all x ∈ X and all t > .
On the other hand, let fo(x) = 

 (f (x) – f (–x)) for all x ∈ X. Then fo() = , fo(–x) = –fo(x).
By Theorem ., there exists an additive mapping A : X → Y such that

�μ,ν
(
fo(x) –A(x), t

) ≥L* ϒ
(
ϒ∞

i=
(
Mo

μ,ν
(
i–x, t

))
,ϒ∞

i=
(
Mo

μ,ν
(
–i–x, t

)))
(.)

for all x ∈ X and all t > . Hence (.) follows from (.) and (.). �

Corollary . Let (X,�μ′ ,ν′ ,ϒ) be an IRN-space and let (Y ,�μ,ν ,ϒ) be a complete IRN-
space. If f : X → Y is a mapping such that

�μ,ν
(
	f (x, . . . ,xn), t

) ≥L* �μ′ ,ν′ (x + · · · + xn, t)

for all x, . . . ,xn ∈ X and all t > , and

lim
m→∞ϒ∞

i=
(
Mo

μ′ ,ν′
(
m+i–x, m–t

))
= L*
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for all x ∈ X and all t > , then there exist an additive mapping A : X → Y and a quadratic
mapping Q : X → Y such that

�μ,ν
(
f (x) –A(x) –Q(x), t

)
≥L* ϒ

(
ϒ

(
ϒ∞

i=
(
Me

μ′ ,ν′
(
i–x, i–t

))
,ϒ∞

i=
(
Me

μ′ ,ν′
(
–i–x, i–t

)))
,

ϒ

(
ϒ∞

i=

(
Mo

μ′ ,ν′

(
i–x,

t


))
,ϒ∞

i=

(
Mo

μ′ ,ν′

(
–i–x,

t


))))

for all x ∈ X and all t > .

Now, we give an example to validate the result of quadratic mappings as follows:

Example Let (X,‖ · ‖) be a Banach space, (X,�μ,ν ,M) an IRN-space in which

�μ,ν(x, t) =
(

t
t + ‖x‖ ,

‖x‖
t + ‖x‖

)

and let (Y ,�μ,ν ,M) be a complete IRN-space for all x ∈ X. Define a mapping f : X → Y by
f (x) = x + x, where x is a unit vector in X. A straightforward computation shows that,
for all t > ,

�μ,ν
(
	f (x, . . . ,xn), t

) ≥L* �μ,ν(x + · · · + xn, t)

and

lim
m→∞M∞

i=
(
Me

μ,ν
(
m+i–x, m+it

))
= lim

m→∞ lim
k→∞

Mk
i=

(
Me

μ,ν
(
x, m+t

))
= lim

m→∞
(
Me

μ,ν
(
x, m+t

))
= L* .

Therefore, all the conditions of Theorem . hold, and so there exists a unique quadratic
mapping Q : X → Y such that �μ,ν(f (x) –Q(x), t)≥L* Me

μ,ν(x, t).
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