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Abstract
In this paper, we prove the existence and uniqueness of solutions for a system of
fractional differential equations with Riemann-Liouville integral boundary conditions
of different order. Our results are based on the nonlinear alternative of Leray-Schauder
type and Banach’s fixed-point theorem. An illustrative example is also presented.
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1 Introduction
In this paper, we investigate a boundary value problem of first-order fractional differential
equations with Riemann-Liouville integral boundary conditions of different order given
by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cDα
+u(t) = f (t,u(t), v(t)), t ∈ [, ],

cDβ
+v(t) = g(t,u(t), v(t)), t ∈ [, ],

u() = γ Ipu(η) = γ
∫ η


(η–s)p–

�(p) u(s)ds,  < η < ,

v() = δIqv(ζ ) = δ
∫ ζ


(ζ–s)q–

�(q) v(s)ds,  < ζ < ,

(.)

where cDα
+, cD

β
+ denote the Caputo fractional derivatives,  < α,β ≤ , f , g ∈ C([, ] ×

R
,R), and p,q,γ , δ ∈R.
Fractional differential equations have recently been addressed by several researchers for

a variety of problems. Fractional differential equations arise in many engineering and sci-
entific disciplines as the mathematical modeling of systems and processes in the fields of
physics, chemistry, aerodynamics, electrodynamics of complex medium, polymer rheol-
ogy, economics, control theory, signal and image processing, biophysics, blood flow phe-
nomena, etc. [–]. Fractional-order differential equations are also regarded as a better
tool for the description of hereditary properties of various materials and processes than
the corresponding integer order differential equations. With this advantage, fractional-
order models becomemore realistic and practical than the classical integer-order models,
in which such effects are not taken into account. For some recent development on the
topic, see [–], and the references therein. The study of a coupled system of fractional
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order is also very significant because this kind of system can often occur in applications.
The reader is referred to the papers [–], and the references cited therein.
This paper is organized as follows: In Sect. , we present some basic materials needed

to prove our main results. In Sect. , we prove the existence and uniqueness of solutions
for the system (.) by applying some standard fixed-point principles.

2 Preliminaries
Let us introduce the space X = {u(t)|u(t) ∈ C([, ])} endowed with the norm ‖u‖ =
max{|u(t)|, t ∈ [, ]}. Obviously, (X,‖ · ‖) is a Banach space. Also, let Y = {v(t)|v(t) ∈
C([, ])} endowed with the norm ‖v‖ = max{|v(t)|, t ∈ [, ]}. The product space (X ×
Y ,‖(u, v)‖) is also a Banach space with norm ‖(u, v)‖ = ‖u‖ + ‖v‖.
For the convenience of the readers, we now present some useful definitions and funda-

mental facts of fractional calculus [, ].

Definition . For at least n-times continuously differentiable function g : [,∞) → R,
the Caputo derivative of fractional order q is defined as

cDqg(t) =


�(n – q)

∫ t


(t – s)n–q–g(n)(s)ds, n –  < q < n,n = [q] + ,

where [q] denotes the integer part of the real number q.

Definition . The Riemann-Liouville fractional integral of order q is defined as

Iqg(t) =


�(q)

∫ t



g(s)
(t – s)–q

ds, q > ,

provided the integral exists.

The following lemmas gives some properties of Riemann-Liouville fractional integrals
and Caputo fractional derivative [].

Lemma . Let p,q ≥ , f ∈ L[a,b]. Then IpIqf (t) = Ip+qf (t) and cDqIqf (t) = f (t), for all
t ∈ [a,b].

Lemma . Let β > α > , f ∈ L[a,b]. Then cDαIβ f (t) = Iβ–αf (t), for all t ∈ [a,b].

Todefine the solution of the boundary value problem (.), we need the following lemma,
which deals with a linear variant of the problem (.).

Lemma . Let γ �= �(p+)
ηp . Then for a given g ∈ C([, ],R), the solution of the fractional

differential equation

cDαx(t) = g(t),  < α ≤  (.)

subject to the boundary condition

x() = γ Ipx(η) = γ

∫ η



(η – s)p–

�(p)
x(s)ds,  < η <  (.)
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is given by

x(t) =


�(α)

∫ t


(t – s)α–g(s)ds

+
γ�(p + )

�(p + ) – γ ηp

∫ η



(η – s)p+α–

�(p + α)
g(s)ds, t ∈ [, ]. (.)

Proof For some constant c ∈R, we have []

x(t) =
∫ t



(t – s)α–

�(α)
g(s)ds – c. (.)

Using the Riemann-Liouville integral of order p for (.), we have

Ipx(t) =
∫ t



(t – s)p–

�(p)

[∫ s



(s – r)α–

�(α)
g(r)dr – c

]
ds

= IpIαg(t) – c
tp

�(p + )
= Ip+αg(t) – c

tp

�(p + )
,

where we have used Lemma .. Using the condition (.) in the above expression, we get

c = –
γ�(p + )

�(p + ) – γ ηp I
p+αg(η).

Substituting the value of c in (.), we obtain (.). �

3 Main results
For the sake of convenience, we set

M =


�(α + )
+

|γ |ηp+α�(p + )
�(p + q + )|�(p + ) – γ ηp| , (.)

M =


�(β + )
+

|δ|ζ q+β�(q + )
�(q + β + )|�(q + ) – δζ q| (.)

and

M =min
{
 – (Mk +Mλ),  – (Mk +Mλ)

}
. (.)

Define the operator T : X × Y → X × Y by

T(u, v)(t)

=

(
T(u, v)(t)
T(u, v)(t)

)

=

(


�(α)
∫ t
 (t – s)α–f (s,u(s), v(s))ds + γ�(p+)

�(p+)–γ ηα

∫ η


(η–s)p+α–

�(p+α) f (s,u(s), v(s))ds


�(β)
∫ t
 (t – s)β–g(s,u(s), v(s))ds + δ�(q+)

�(q+)–δζβ

∫ ζ


(ζ–s)q+β–

�(q+β) g(s,u(s), v(s))ds

)
.

The first result is based on Leray-Schauder alternative.
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Lemma . (Leray-Schauder alternative, [] p.) Let F : E → E be a completely continu-
ous operator (i.e., a map that restricted to any bounded set in E is compact). Let

E(F) =
{
x ∈ E : x = λF(x) for some  < λ < 

}
.

Then either the set E(F) is unbounded, or F has at least one fixed point.

Theorem. Suppose that γ �= �(p+)
ηp and δ �= �(q+)

ζq . Assume that there exist real constants
ki, λi ≥  (i = , ) and k > , λ >  such that ∀xi ∈R (i = , ), we have

∣∣f (t,x,x)∣∣ ≤ k + k|x| + k|x|,∣∣g(t,x,x)∣∣ ≤ λ + λ|x| + λ|x|.

In addition, it is assumed that

Mk +Mλ <  and Mk +Mλ < ,

where M and M are given by (.) and (.), respectively. Then the boundary value prob-
lem (.) has at least one solution.

Proof First, we show that the operator T : X × Y → X × Y is completely continuous. By
continuity of functions f and g , the operator T is continuous.
Let 
 ⊂ X × Y be bounded. Then there exist positive constants L and L such that

∣∣f (t,u(t), v(t))∣∣ ≤ L,
∣∣g(t,u(t), v(t))∣∣ ≤ L, ∀(u, v) ∈ 
.

Then for any (u, v) ∈ 
, we have

∣∣T(u, v)(t)
∣∣ ≤ 

�(α)

∫ t


(t – s)α–

∣∣f (s,u(s), v(s))∣∣ds
+

|γ |�(p + )
|�(p + ) – γ ηp|

∫ η



(η – s)p+α–

�(p + α)
∣∣f (s,u(s), v(s))∣∣ds

≤ L
{


�(α + )

+
|γ |ηp+α�(p + )

�(p + q + )|�(p + ) – γ ηp|
}
= LM.

Similarly, we get

∥∥T(u, v)
∥∥ ≤ L

{


�(β + )
+

|δ|ζ q+β�(q + )
�(q + β + )|�(q + ) – δζ q|

}
= LM,

Thus, it follows from the above inequalities that the operator T is uniformly bounded.
Next, we show that T is equicontinuous. Let ≤ t ≤ t ≤ . Then we have

∣∣T
(
u(t), v(t)

)
– T

(
u(t), v(t)

)∣∣
=

∣∣∣∣
∫ t



(t – s)α–

�(α)
f
(
s,u(s), v(s)

)
ds –

∫ t



(t – s)α–

�(α)
f
(
s,u(s), v(s)

)
ds

∣∣∣∣

http://www.advancesindifferenceequations.com/content/2012/1/130
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≤ L
�(α)

∣∣∣∣
∫ t



[
(t – s)α– – (t – s)α–

]
ds +

∫ t

t
(t – s)α– ds

∣∣∣∣
≤ L

�(α + )
(
tα – tα

)
.

Analogously, we can obtain

∣∣T
(
u(t), v(t)

)
– T

(
u(t), v(t)

)∣∣
≤ L

�(β)

∣∣∣∣
∫ t



[
(t – s)β– – (t – s)β–

]
ds +

∫ t

t
(t – s)β– ds

∣∣∣∣
≤ L

�(β + )
(
tβ – tβ

)
.

Therefore, the operator T(u, v) is equicontinuous, and thus the operator T(u, v) is com-
pletely continuous.
Finally, it will be verified that the set E = {(u, v) ∈ X × Y |(u, v) = λT(u, v),  ≤ λ ≤ } is

bounded. Let (u, v) ∈ E , then (u, v) = λT(u, v). For any t ∈ [, ], we have

u(t) = λT(u, v)(t), v(t) = λT(u, v)(t).

Then

∣∣u(t)∣∣ ≤
{


�(α + )

+
|γ |ηp+α�(p + )

�(p + q + )|�(p + ) – γ ηp|
}(

k + k
∣∣u(t)∣∣ + k

∣∣v(t)∣∣)

and

∣∣v(t)∣∣ ≤
{


�(β + )

+
|δ|ζ q+β�(q + )

�(q + β + )|�(q + ) – δζ q|
}(

λ + λ
∣∣u(t)∣∣ + λ

∣∣v(t)∣∣).
Hence, we have

‖u‖ ≤ M
(
k + k‖u‖ + k‖v‖

)
and

‖v‖ ≤ M
(
λ + λ‖u‖ + λ‖v‖

)
,

which imply that

‖u‖ + ‖v‖ = (Mk +Mλ) + (Mk +Mλ)‖u‖ + (Mk +Mλ)‖v‖.

Consequently,

∥∥(u, v)∥∥ ≤ Mk +Mλ

M
,

for any t ∈ [, ], where M is defined by (.), which proves that E is bounded. Thus, by
Lemma., the operatorT has at least one fixed point. Hence, the boundary value problem
(.) has at least one solution. The proof is complete. �
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In the second result, we prove existence and uniqueness of solutions of the boundary
value problem (.) via Banach’s contraction principle.

Theorem . Assume that f , g : [, ]×R
 → R are continuous functions and there exist

constants mi, ni, i = ,  such that for all t ∈ [, ] and ui, vi ∈R, i = , ,
∣∣f (t,u,u) – f (t, v, v)

∣∣ ≤m|u – v| +m|u – v|

and
∣∣g(t,u,u) – g(t, v, v)

∣∣ ≤ n|u – v| + n|u – v|.

In addition, assume that

M(m +m) +M(n + n) < ,

where M and M are given by (.) and (.), respectively. Then the boundary value prob-
lem (.) has a unique solution.

Proof Define supt∈[,] f (t, , ) =N < ∞ and supt∈[,] g(t, , ) =N <∞ such that

r ≥ NM +NM

 –M(m +m) –M(n + n)
.

We show that TBr ⊂ Br , where Br = {(u, v) ∈ X × Y : ‖(u, v)‖ ≤ r}.
For (u, v) ∈ Br , we have∣∣T(u, v)(t)

∣∣
≤ 

�(α)

∫ t


(t – s)α–

∣∣f (s,u(s), v(s))∣∣ds
+

|γ |�(p + )
|�(p + ) – γ ηp|

∫ η



(η – s)p+α–

�(p + α)
∣∣f (s,u(s), v(s))∣∣ds

≤ 
�(α)

∫ t


(t – s)α–

(∣∣f (s,u(s), v(s)) – f (t, , )
∣∣ + ∣∣f (t, , )∣∣)ds

+
|γ |�(p + )

|�(p + ) – γ ηp|
∫ η



(η – s)p+α–

�(p + α)
(∣∣f (s,u(s), v(s)) – f (t, , )

∣∣ + ∣∣f (t, , )∣∣)ds
≤

{


�(α + )
+

|γ |ηp+α�(p + )
�(p + q + )|�(p + ) – γ ηp|

}(
m‖u‖ +m‖v‖ +N

)
≤ M

[
(m +m)r +N

]
.

Hence,
∥∥T(u, v)(t)

∥∥ ≤ M
[
(m +m)r +N

]
.

In the same way, we can obtain that

∥∥T(u, v)(t)
∥∥ ≤ M

[
(n + n)r +N

]
.

Consequently, ‖T(u, v)(t)‖ ≤ r.

http://www.advancesindifferenceequations.com/content/2012/1/130
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Now for (u, v), (u, v) ∈ X × Y , and for any t ∈ [, ], we get

∣∣T(u, v)(t) – T(u, v)(t)
∣∣

≤ 
�(α)

∫ t


(t – s)α–

∣∣f (s,u(s), v(s)) – f
(
s,u(s), v(s)

)∣∣ds
+

|γ |�(p + )
|�(p + ) – γ ηp|

∫ η



(η – s)p+α–

�(p + α)
∣∣f (s,u(s), v(s)) – f

(
s,u(s), v(s)

)∣∣ds
≤

{


�(α + )
+

|γ |ηp+α�(p + )
�(p + q + )|�(p + ) – γ ηp|

}(
m|u – u| +m|v – v|

)
≤ M

(
m‖u – u‖ +m‖v – v‖

)
≤ M(m +m)

(‖u – u‖ + ‖v – v‖
)
,

and consequently we obtain

∥∥T(u, v)(t) – T(u, v)
∥∥ ≤ M(m +m)

(‖u – u‖ + ‖v – v‖
)
. (.)

Similarly,

∥∥T(u, v)(t) – T(u, v)
∥∥ ≤ M(n + n)

(‖u – u‖ + ‖v – v‖
)
. (.)

It follows from (.) and (.) that

∥∥T(u, v)(t) – T(u, v)(t)
∥∥ ≤ [

M(m +m) +M(n + n)
](‖u – u‖ + ‖v – v‖

)
.

SinceM(m +m)+M(n +n) < , therefore, T is a contraction operator. So, by Banach’s
fixed-point theorem, the operator T has a unique fixed point, which is the unique solution
of problem (.). This completes the proof. �

Example . Consider the following system of fractional boundary value problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cD/x(t) = 
(t+)

|u(t)|
+|u(t)| +  + 

 sin
 v(t), t ∈ [, ],

cD/x(t) = 
π sin(πu(t)) + |v(t)|

(+|v(t)|) +

 , t ∈ [, ],

u() =
√
I/u(  ),

v() =
√
I/v(  ).

(.)

Here, α = /, γ =
√
, p = /, η = /, β = /, δ =

√
, q = /, ζ = /, and f (t,u, v) =


(t+)

|u|
+|u| +  + 

 sin
 v and g(t,u, v) = 

π sin(πu) + |v|
(+|v|) +


 . Note that γ =

√
 �=

�(p + )/ηp = �(/)/(/)/ and δ =
√
 �= �(q + )/ζ q = �(/)/(/)/. Furthermore,

|f (t,u,u) – f (t, v, v)| ≤ 
 |u – u| + 

 |v – v|, |g(t,u,u) – g(t, v, v)| ≤ 
 |u – u| +


 |v – v|, and

M(m +m) +M(n + n) =



{
√
π

+
√
π

(
√

π – )

}
+




{
√
π

+
√
π

( –
√

π )

}
≈ . < .

http://www.advancesindifferenceequations.com/content/2012/1/130
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Thus, all the conditions of Theorem . are satisfied and consequently, its conclusion ap-
plies to the problem (.).
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