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Abstract

Investigated here are interesting aspects of the positive solutions for two kinds of m-
point boundary value problems for an increasing homeomorphism and positive
homo-morphism on time scales. By using the Avery-Peterson fixed point theorem,
we obtain the existence of at least three positive solutions for these problems. The
interesting point is that the nonlinear term depends on the first-order delta-
derivative explicitly.
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1 Introduction
With the development of boundary value problems for differential equations [1-5], dif-

ference equations [6,7], and the theory of time scales [8-12], the existence of solutions

for boundary value problems on time scales have attracted many author’s attention.

Recently in [13], the authors considered positive solutions for boundary value problem

of the following second-order dynamic equations on time scales

(
φ

(
u�

))∇
+ a(t)f (t, u(t)) = 0, t ∈ (0,T), (1:1)

u(0) =
m−2∑
i=1

αiu(ξi)φ
(
u�(T)

)
=

m−2∑
i=1

βiφ
(
u�(ξi)

)
, (1:2)

where j: R ® R is an increasing homeomorphism and positive homomorphism and

j(0) = 0. Here a projection j: R ® R is called an increasing homeomorphism and

homomorphism, if the following conditions are satisfied:

(i) if x ≤ y, then j(x) ≤ j(y), ∀x, y Î R;

(ii) j is a continuous bijection and its inverse mapping is also continuous;

(iii) j (xy) = j (x)j (y), ∀x, y Î R.

By using a fixed point theorem, they obtained an existence theorem for positive solu-

tions for this problem. In [14], Han and Jin established existence results of positive

solutions for problem (1.1, 1.2) by using fixed point index theory. Sang et al. [15]
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considered the problem

(
φ

(
u�

))∇
+ a(t)f (t, u(t)) = 0, t ∈ (0,T), (1:3)

φ
(
u�(0)

)
=

m−2∑
i=1

αiφ
(
u�(ξi)

)
, u(T) =

m−2∑
i=1

βiu(ξi). (1:4)

By using a fixed point index theorem, the existence results of positive solutions for

this problem were established.

However, the nonlinear terms f in [13-15] does not depend on the first order delta

derivative. It is well-known that many difficulties occur when the nonlinear term f

depends on the first order delta derivative explicitly. To the author’s best knowledge,

positive solutions are not available for the case when the boundary value problem for

an increasing homeomorphism and positive homomorphism on a time scale in which

the nonlinear term depends on the first order delta derivative. This article will fill this

gap in the literature. In this article, we consider the existence of positive solutions for

the second-order nonlinear m-point dynamic equation on a time scale with an increas-

ing homeomorphism and positive homomorphism,

(
φ(u�)

)∇
+ a(t)f

(
t, u(t), u�(t)

)
= 0, t ∈ (0,T) (1:5)

u(0) =
m−2∑
i=1

αiu(ξi),φ
(
u�(T)

)
=

m−2∑
i=1

βiφ
(
u�(ξi)

)
or (1:6)

φ
(
u�(0)

)
=

m−2∑
i=1

αiφ
(
u�(ξi)

)
, u(T) =

m−2∑
i=1

βiu(ξi) (1:7)

where ξi ∈ Tk
k for i Î {1,2,...,m -2}, T is a time scale.

We will assume that the following conditions are satisfied throughout this:

(H1) ai, bi Î [0, +∞) satisfy 0 <

m−2∑
i=1

αi < 1, 0 <

m−2∑
i=1

βi < 1..

(H2) f Î [0, T] × [0, ∞) × R ® [0, ∞) is continuous.

Our main results will depend on an application of a fixed point theorem due to

Avery and Peterson which deals with fixed points of a cone-preserving operator

defined on an ordered Banach space. By using analysis techniques and the Avery-Peter-

son fixed point theorem, we obtain sufficient conditions for existence of at least three

positive solutions of the problems (1.5, 1.6) and (1.5, 1.7).

2 Preliminaries
First we present some basic definitions on time scales which can be found in Atici and

Guseinov [8].

A time scale T is a closed nonempty subset of R. For t < sup T and r > inf T, we

define the forward jump operator s and the backward jump operator r respectively by

σ (t) = inf{τ ∈ T|τ > t} ∈ T,

ρ(r) = sup{τ ∈ T|τ < r} ∈ T,

Yang and Zhang Advances in Difference Equations 2012, 2012:13
http://www.advancesindifferenceequations.com/content/2012/1/13

Page 2 of 9



for all t Î T. If s(t) >t, t is said to be right scattered, and if s(t) = t, t is said to be

right dense. If r(t) <t, t is said to be left scattered, and if r(t) = t, t is said to be left

dense. A function f is left-dense continuous, if f is continuous at each left dense point

in T and its right-sided limits exists at each right dense points.

For u : T ® R and t Î T, we define the delta derivative of u(t), uΔ(t), to be the num-

ber (when it exists), with the property that for each ε > 0, there is a neighborhood U of

t such that∣∣u(σ (t)) − u(s) − u�(t)(σ (t) − s)
∣∣ ≤ ε

∣∣σ (t) − s
∣∣ ,

for all s Î U.

For u: T ® R and t Î T, we define the nabla derivative of u(t), u∇(t), to be the num-

ber (when it exists), with the property that for each ε > 0, there is a neighborhood U

of t such that∣∣u(ρ(t)) − u(s) − u∇(t)(ρ(t) − s
∣∣ ≤ ε

∣∣ρ(t) − s
∣∣ ,

for all s Î U.

We present here the necessary definitions of the theory of cones in Banach spaces

and the Avery-Peterson fixed point theorem.

Definition 2.1. Let E be a real Banach space over R. A nonempty convex closed set

P ⊂ E is said to be a cone provided that:

(1) au Î P, for all u Î P, a ≥ 0;

(2) u, -u Î P implies u = 0.

Definition 2.2. An operator is called completely continuous if it is continuous and

maps bounded sets into pre-compact sets.

Definition 2.3. The map a is said to be a nonnegative continuous convex functional

on a cone P of a real Banach space E provided that a : P ® [0, + ∞) is continuous and

α(tx + (1 − t)y) ≤ tα(x) + (1 − t)α(y), for all x, y ∈ P, t ∈ [0, 1].

Definition 2.4. The map b is said to be a nonnegative continuous concave functional

on a cone P of a real Banach space E provided that b : P ® [0, + ∞) is continuous and

β(tx + (1 − t)y) ≤ tβ(x) + (1 − t)β(y), for all x, y ∈ P, t ∈ [0, 1].

Let g, θ be nonnegative continuous convex functionals on P, a be a nonnegative con-

tinuous concave functional on P and ψ be a nonnegative continuous functional on P.

Then for positive numbers a, b, c and d, we define the following convex sets:

P(γ , d) = {x ∈ P|γ (x) < d},
P(γ ,α, b, d) = {x ∈ P|b ≤ α(x), γ (x) ≤ d},
P(γ , θ ,α, b, c, d) = {x ∈ P|b ≤ α(x), θ(x) ≤ c, γ (x) ≤ d},

and a closed set

R(γ ,ψ , a, d) = {x ∈ P|a ≤ ψ(x), γ (x) ≤ d}.

Lemma 2.1. [16] Let P be a cone in Banach space E. Let g, θ be nonnegative contin-

uous convex functionals on P, a be a nonnegative continuous concave functional on P,

and ψ be a nonnegative continuous functional on P satisfying
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ψ(λx) ≤ λψ(x), for 0 ≤ λ ≤ 1, (2:1)

such that for some positive numbers l and d,

α(x) ≤ ψ(x), ‖x‖ ≤ lγ (x) (2:2)

for all x ∈ P(γ , d). Suppose T : P(γ , d) → P(γ , d) is completely continuous and there

exist positive numbers a, b, c with a <b such that

(S1) {x ∈ P(γ , θ ,α, b, c, d)|α(x) > b} �= � 0 and a(Tx) >b for x Î P(g, θ, a, b, c, d);
(S2) a(Tx) >b for x Î P(g, a, b, d) with θ(Tx) >c;

(S3) 0 �∈ R(γ ,ψ , a, d) and ψ(Tx) <a for x Î R(g, ψ, a, d) with ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P(γ , d) such that:

γ (xi) ≤ d, i = 1, 2, 3;

b < α(x1); a < ψ(x2),α(x2) < b;

ψ(x3) < a.

3 Positive solutions for problem (1.5, 1.6)
Lemma 3.1. [13] Suppose that condition (H1) holds, then the boundary value problem

(
φ

(
u�

))∇
+ h(t) = 0, t ∈ (0,T), (3:1)

u(0) =
m−2∑
i=1

αiu(ξi),φ
(
u�(T)

)
=

m−2∑
i=1

βiφ
(
u�(ξi)

)
, (3:2)

has the unique solution

u(t) =

t∫
0

φ−1

⎛
⎝ T∫

0

h(τ )∇τ − A

⎞
⎠�s + B

where

A = −

∑m−2
i=1 βi

T∫
ξi

h(τ )∇τ

1 − ∑m−2
i=1 βi

,B =

∑m−2
i=1 αi

ξi∫
0

φ−1

(
T∫
s
h(τ )∇τ − A

)
�s

1 − ∑m−2
i=1 αi

Lemma 3.2. Suppose that condition (H1) holds, for h Î Cld[0, T] and h(t) ≥ 0, the

unique solution of problem (3.1, 3.2) satisfies

(1)u(t) ≥ 0, t Î [0, T].

(2) inft Î [0,T] u(t) ≥ δ maxt Î [0,T] |u(t)|, where

δ =

∑m−2
i=1 αiξi((

1 − ∑m−2
i=1 αi

)
T +

∑m−2
i=1 αiξi

) .

(3) maxt∈[0,T]
∣∣u(t)∣∣ ≤ lmaxt∈[0,T]Tk

∣∣u�(t)
∣∣, where

l =

((
1 − ∑m−2

i=1 αi

)
T +

∑m−2
i=1 αiξi

)
(
1 − ∑m−2

i=1 αi

) .
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Proof. Parts (1) and (2) were established in [13]. We give the proof of (3). It is easy

to check that

max
t∈[0,T]

∣∣u(t)∣∣ = u(T), min
t∈[0,T]

∣∣u(t)∣∣ = u(0).

For the concavity of u and the boundary condition, we get(
1 −

m−2∑
i=1

αi

)
u(0) ≤

m−2∑
i=1

αi max
∣∣u�(t)

∣∣ .
This together with conclusion (2) ensures that conclusion (3) is satisfied.

Let E be the real Banach space E = CΔ[0, s(T)] to be the set of all Δ- differential

functions with continuous Δ-derivative on [0, s(T)] with the norm

∥∥u(t)∥∥1,T = max
{
‖u‖0,T

∥∥u�
∥∥
0,Tk

}
where

‖u‖0,T = sup{∣∣u(t)∣∣ : t ∈ [0,T]},
‖u‖0,Tk = sup

{∣∣u�(t)
∣∣ : t ∈ [0,T]Tk

}
, u ∈ E.

We define the cone P ⊂ E by

P =

{
u ∈ E : u(t) ≥ 0, u(0) =

m−2∑
i=1

αiu(ξi),φ
(
u�(T)

)
=

m−2∑
i=1

βiφ
(
u�(ξi)

)
,

u is concave and increasing on[0,T]
} ⊂ E.

Let the nonnegative continuous concave functional a, the nonnegative continuous

convex functionals g, θ and the nonnegative continuous functional ψ be defined on the

cone P by

γ (u) = max
t∈[0,T]Tk

∣∣u�(t)
∣∣ , θ(u) = ψ(u) = max

t∈[0,T]
∣∣u(t)∣∣ ,α(u) = min

t∈[0,T]
∣∣u(t)∣∣ .

By Lemmas 3.3 and 3.4, the functionals defined above satisfy

δθ(x) ≤ α(x) ≤ θ(x) = ψ(x), ‖x‖1,T ≤ lγ (x).

Therefore condition (2.2) of Lemma 2.1 is satisfied.

Define an operator F : P ® E by

Fu(t) =

t∫
0

φ−1

⎛
⎜⎜⎜⎜⎝

T∫
s

f
(
τ , u(τ ), u�(τ )

)∇τ +

∑m−2
i=1 βi

T∫
ξi

f
(
τ , u(τ ), u�(τ )

)∇τ

1 − ∑m−2
i=1 βi

⎞
⎟⎟⎟⎟⎠�s

+
1

1 − ∑m−2
i=1 αi

⎛
⎜⎜⎜⎜⎝

m−2∑
i=1

αi

ξi∫
0

φ−1

⎛
⎜⎜⎜⎜⎝

T∫
s

f
(
τ , u(τ ), u�(τ )

)∇τ +

∑m−2
i=1 βi

T∫
ξi

f
(
τ , u(τ ), u�(τ )

)∇τ

1 − ∑m−2
i=1 βi

⎞
⎟⎟⎟⎟⎠�s

⎞
⎟⎟⎟⎟⎠

To present our main results, we assume there exist constants 0 <a, b, c, d with a <b

<d such that

(A1) f (t, u, v) ≤
φ(d)

(
1 − ∑m−2

i=1 βi

)
T − ∑m−2

i=1 βiξi
, (t, u, v) ∈ [0, 1]T × [0, ld] × [−d, d];
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(A2) f (t, u, v) >
φ

(
b
(
1 − ∑m−2

i=1 αi

)) (
1 − ∑m−2

i=1 βi

)
φ

(∑m−2
i=1 αiξiφ−1(βi(T − ξi))

) , (t, u, v) ∈ [0, 1]T×[b, b/δ]×[−d, d];

(A3)
f (t, u, v) <

φ(a)
(
1 − ∑m−2

i=1 βi

)
(
T − ∑m−2

i=1 βiξi

)
φ

(
T +

∑m−2
i=1 αiξi

1 − ∑m−2
i=1 αi

) , (t, u, v) ∈ [0, 1]T×[0, a]×[−d, d].

Theorem 3.1. Under the assumptions (A1)-(A3), the boundary value problem (1.5)-

(1.6) has at least three positive solutions u1, u2, u3 satisfying

max
t∈[0,1]T

∣∣u�
i (t)

∣∣ ≤ d, i = 1, 2, 3;

b < min
t∈[0,1]T

∣∣u1(t)∣∣ ; a < max
t∈[0,1]T

∣∣u2(t)∣∣ , min
t∈[0,1]T

∣∣u2(t)∣∣
max
t∈[0,1]T

∣∣u3(t)∣∣ ≤ a.

< b; (3:3)

Proof.

It is easy to check that problem (1.5), (1.6) has a solution u(t) if and only if u is a

fixed

point of operator F.

If u ∈ P(γ , d), then γ (u) = max
t∈[0,1]Tk

∣∣u�(t)
∣∣ ≤ d. Thus

f
(
t, u(t), u�(t)

) ≤
φ(d)

(
1 − ∑m−2

i=1 βi

)
T − ∑m−2

i=1 βiξi
.

Then,

γ (Tu) = φ−1

⎛
⎜⎜⎜⎜⎝

T∫
s

f
(
t, u(t), u�(t)

)∇t +

∑m−2
i=1 βi

T∫
ξi

f
(
t, u(t), u�(t)

)∇τ

1 − ∑m−2
i=1 βi

⎞
⎟⎟⎟⎟⎠

= φ−1

(
1

1 − ∑m−2
i=1 βi

)
φ−1

⎛
⎝ T∫

0

f
(
t, u(t), u�(t)

)∇t −
m−2∑
i=1

βi

ξi∫
0

f
(
t, u(t), u�(t)

)∇t

⎞
⎠

≤ d.

Hence F : P(γ , d) → P(γ , d).

To check condition (S1) of Lemma 2.1, we choose u(t) ≡ b
δ
= c. It’s easy to see

u(t) = b
δ

∈ P(γ , θ ,α, b, c, d) and α( b
δ
) > b . So {u ∈ P(γ , θ ,α, b, c, d|α(x) > b)} �= � 0.

If u Î P(g, θ, a, b, c, d), we have b ≤ u(t) ≤ b
δ
,
∣∣u�(t)

∣∣ ≤ d. From assumption (A2), we

have

f
(
t, u(t), u�(t)

) ≥
φ

(
b
(
1 − ∑m−2

i=1 αi

)) (
1 − ∑m−2

i=1 βi

)
φ

(∑m−2
i=1 αiξiφ−1(βi(T − ξi))

) .
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Thus,

α(Fu) =
1

1 − ∑m−2
i=1 αi

⎛
⎜⎜⎜⎜⎝

m−2∑
i=1

αi

ξi∫
0

φ−1

⎛
⎜⎜⎜⎜⎝

T∫
s

f
(
τ , u(τ ), u�(τ )

)∇τ +

∑m−2
i=1 βi

T∫
ξi

f
(
τ , u(τ ), u�(τ )

)∇τ

1 − ∑m−2
i=1 βi

⎞
⎟⎟⎟⎟⎠�s

⎞
⎟⎟⎟⎟⎠

≥ 1

1 − ∑m−2
i=1 αi

⎛
⎜⎜⎜⎜⎝

m−2∑
i=1

αi

ξi∫
0

φ−1

⎛
⎜⎜⎜⎜⎝

∑m−2
i=1

T∫
ξi

f
(
τ , u(τ ), u�(τ )

)
1 − ∑m−2

i=1 βi

⎞
⎟⎟⎟⎟⎠�s

⎞
⎟⎟⎟⎟⎠ > b,

so a(Fu) >b, ∀u Î P(g, θ, a, b, b/δ, d).
Second, with (4.1), we have a(Fu) ≥ δθ(Fu) >δb/δ = b for all u Î P(g, a, b, d) with

θ(Fu) >b/δ. Thus, condition (S2) of Lemma 2.1 is satisfied.

Finally we show that (S3) also holds. Clearly, as ψ(0) = 0 <a, we see 0 ∉ R(g, ψ, a, d).
Suppose that x Î R(g, ψ, a, d) with ψ(u) = a, then assumption (A3) holds. then

ψ(Fu) = F(u(T)) =

T∫
0

φ−1

⎛
⎜⎜⎜⎜⎝

T∫
0

f
(
τ , u(τ ), u�(τ )

)∇τ +

∑m−2
i=1 βi

T∫
ξi

f
(
τ , u(τ ), u�(τ )

)∇τ

1 − ∑m−2
i=1 βi

⎞
⎟⎟⎟⎟⎠�s

+
1

1 − ∑m−2
i=1 αi

⎛
⎜⎜⎜⎜⎝

m−2∑
i=1

αi

ξi∫
0

φ−1

⎛
⎜⎜⎜⎜⎝

∫ T

s
f
(
τ , u(τ ), u�(τ )

)∇τ +

∑m−2
i=1 βi

T∫
ξi

f
(
τ , u(τ ), u�(τ )

)∇τ

1 − ∑m−2
i=1 βi

⎞
⎟⎟⎟⎟⎠�s

⎞
⎟⎟⎟⎟⎠

< a.

So we verify that condition (S3) of Lemma 2.1 is satisfied. Thus, an application of

Lemma 2.1 implies that the boundary value problem (1.5)-(1.6) has at least three posi-

tive solutions u1, u2, u3 satisfying (3.3).

4 Positive solutions for problem (1.5, 1.7)
In this section, we present the existence of positive solutions for problem (1.5, 1.7).

Lemma 4.1. [15] Suppose that condition (H1) holds, then boundary value problem

(
φ(u�)

)∇
+ h(t) = 0, t ∈ (0,T), (4:1)

φ
(
u�(0)

)
=

m−2∑
i=1

αiφ
(
u�(ξi)

)
, u(T) =

m−2∑
i=1

βiu(ξi), (4:2)

has the unique solution

u(t) =

T∫
t

φ−1

⎛
⎝ s∫

0

h(τ )∇τ − A1

⎞
⎠�s + B1

where

A1 = −

∑m−2
i=1 αi

ξi∫
0
h(τ )∇τ

1 − ∑m−2
i=1 αi

,B1 =

∑m−2
i=1 βi

T∫
ξi

φ−1

( s∫
0
h(τ )∇τ − A1

)
�s

1 − ∑m−2
i=1 βi

Lemma 4.2. Suppose that condition (H1) holds, for h Î Cld[0,T] and h(t) ≥ 0, the

unique solution of problem (4.1, 4.2) satisfies
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(1) u(t) ≥ 0, t Î [0,T]

(2) inft Î [0,T] u(t) ≥ δ1 maxt Î [0,T] |u(t)|, where δ1 =
(∑m−2

i=1 βi(T − ξi)
)
/T is a

constant.

(3) maxt∈[0,T]
∣∣u(t)∣∣ ≤ γmaxt∈[0,T]Tk

∣∣u�(t)
∣∣, where l1 = T/

(
1 − ∑m−2

i=1 βi

)
. is a

constant.

Proof. Parts (1) and (2) are established in [15]. It is easy to check that

max
t∈[0,T]

∣∣u(t)∣∣ = u(0), min
t∈[0,T]

∣∣u(t)∣∣ = u(T).

For the concavity of u and the boundary condition, we get(
1 −

m−2∑
i=1

βi

)
u(T) ≤

m−2∑
i=1

βi(T − ξi)max
∣∣u�(t)

∣∣ .
This together with conclusion (2) ensures that conclusion (3) is satisfied. We define

the cone P1 ⊂ E by

P1 =

{
u ∈ E : u(t) ≥ 0,φ

(
u�(0)

)
=

m−2∑
i=1

αiφ
(
u�(ξi)

)
, u(T) =

m−2∑
i=1

βiu(ξi) ,

u is concave and decreasing on[0,T]
} ⊂ E.

Define an operator G : P ® E by

G(u(t)) =

T∫
t

φ−1

⎛
⎜⎜⎜⎝

s∫
0

f
(
τ , u(τ ), u�(τ )

)∇τ +

∑m−2
i=1 αi

ξi∫
0
f
(
τ , u(τ ), u�(τ )

)∇τ

1 − ∑m−2
i=1 αi

⎞
⎟⎟⎟⎠�s

+
1

1 − ∑m−2
i=1 βi

⎛
⎜⎜⎜⎝

m−2∑
i=1

βi

T∫
ξi

φ−1

⎛
⎜⎜⎜⎝

s∫
0

f
(
τ , u(τ ), u�(τ )

)∇τ +

∑m−2
i=1 αi

ξi∫
0
f
(
τ , u(τ ), u�(τ )

)∇τ

1 − ∑m−2
i=1 αi

⎞
⎟⎟⎟⎠�s

⎞
⎟⎟⎟⎠

To present our main results, we assume there exist constants 0 <a1, b1, c 1, d with a1
<b1 <d1 such that

A4) f (t, u, v) ≤
φ(d1)

(
1 − ∑m−2

i=1 αi

)
T − ∑m−2

i=1 αi(T − ξi)
, (t, u, v) ∈ [0, 1]T × [0, l1d1] × [−d1, d1];

A5) f (t, u, v) >
1∑m−2

i=1 αiξi
φ

⎛
⎝b1

(
1 − ∑m−2

i=1 βi

)
∑m−2

i=1 βi(T − ξi)

⎞
⎠ , (t, u, v) ∈ [0, 1]T×[b1, b1/δ1]×[−d1, d1];

A6) f (t, u, v) < φ

(
1 − ∑m−2

i=1 βi

T − ∑m−2
i=1 βiξi

)
1 − ∑m−2

i=1 αi

T +
∑m−2

i=1 αi(T − ξi)
φ(a1), (t, u, v) ∈ [0, 1]T×[0, a1]×[−d1, d1].

Theorem 4.1. Under the assumptions (A4)-(A6), the boundary value problem (1.5),

(1.7) has at least three positive solutions u1, u2, u3 satisfying

max
t∈[0,1]T

∣∣u�
i (t)

∣∣ ≤ d1, i = 1, 2, 3;

b < min
t∈[0,1]T

∣∣u1(t)∣∣ ; a1 < max
t∈[0,1]T

∣∣u2(t)∣∣ , min
t∈[0,1]T

∣∣u2(t)∣∣
max
t∈[0,1]T

∣∣u3(t)∣∣ ≤ a1.

< b1;

The proof of Theorem 4.1 is similar with the Theorem 3.1 and is omitted here.
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