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Abstract

This article is devoted to studying uniqueness of difference polynomials sharing
values. The results improve those given by Liu and Yang and Heittokangas et al.

1 Introduction and main results
In this article, we shall assume that the reader is familiar with the fundamental results

and the standard notations of the Nevanlinna theory (e.g., see [1-3]). In addition, we

will use the notations l(f) to denote the exponent of convergence of zero sequences of

meromorphic function f(z); s(f) to denote the order of f(z). We say that meromorphic

functions f and g share a finite value a CM when f - a and g - a have the same zeros

with the same multiplicities. For a non-zero constant c, the forward difference

�n+1
c f (z) = �n

c f (z + c) − �n
c f (z) , �n+1

c f (z) = �n
c f (z + c) − �n

c f (z) , n = 1, 2,.... In gen-

eral, we use the notation C to denote the field of complex numbers.

Currently, there has been an increasing interest in studying difference equations in

the complex plane. Halburd and Korhonen [4,5] established a version of Nevanlinna

theory based on difference operators. Ishizaki and Yanagihara [6] developed a version

of Wiman-Valiron theory for difference equations of entire functions of small growth.

Recently, Liu and Yang [7] establish a counterpart result to the Brück conjecture [8]

valid for transcendental entire function for which s(f) <1. The result is stated as

follows.

Theorem A. Let f be a transcendental entire function such that s(f) <1. If f and �n
c f

share a finite value a CM, n is a positive integer, and c is a fixed constant, then

�n
c f − a
f − a

= τ

for some non-zero constant τ.

Heittokangas et al. [9], prove the following result which is a shifted analogue of

Brück conjecture valid for meromorphic functions.

Theorem B. Let f be a meromorphic function of order of growth s(f) <2, and let c Î
C. If f(z) and f(z + c) share the values a Î C and ∞ CM, then

f (z + c) − a
f (z) − a

= τ

Liu et al. Advances in Difference Equations 2012, 2012:1
http://www.advancesindifferenceequations.com/content/2012/1/1

© 2012 Liu et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:xiaoguangqi@yahoo.cn
http://creativecommons.org/licenses/by/2.0


for some constant τ.

Here, we also study the shift analogue of Brück conjecture, and obtain the results as

follows.

Theorem 1.1. Let f(z) be a non-constant entire function, s(f) <1 or 1 < s(f) <2 and l
(f) < s(f) = s. Set L1(f) = an(z) f(z + n) + an-1(z) f(z + n - 1) +... + a1(z) f(z + 1) + a0(z)

f(z), where aj(z)(0 ≤ j ≤ n) are entire functions with an(z)a0(z) ≢ 0. Suppose that if s(f)
<1, then max{s(aj)} = a <1, and if 1 < s(f) <2, then max{s(aj)} = a < s - 1. If f and L1
(f) share 0 CM, then

L1(f ) = cf ,

where c is a non-zero constant.

Theorem 1.2. Let f(z) be a non-constant entire function, 2 < s(f) <∞ and l(f) < s(f).
Set L2(f) = an(z) f(z + n) + an-1(z) f(z + n - 1) +... + a1(z) f(z + 1) + ezf(z), aj(z)(1 ≤ j ≤

n) are entire functions with s(aj) <1 and an(z) ≢ 0. If f and L2(f ) share 0 CM, then

L2(f ) = h(z)f ,

where h(z) is an entire function of order no less than 1.

Theorem 1.3. Let f(z) be a non-constant entire function, s(f) <1 or 1 < s(f) <2, l(f) <
s(f). Set L3(f) = an(z) f(z + n) + an-1(z) f(z + n - 1) + ... + a1(z) f(z + 1) + a0(z) f(z), aj(z)

(0 ≤ j ≤ n) are polynomials and an(z) ≢ 0. If f and L3(f ) share a polynomial P(z) CM,

then

L3(f ) − p(z) = c(f (z) − p(z)),

where c is a non-zero constant.

Theorem 1.4. Let f(z) be a non-constant entire function, s(f) <1 or 1 < s(f) <2, l(f) <
s(f). Set a(z) is an entire function with s(a) <1. If f and a(z)f(z + n) share a polynomial

P(z) CM, then

a(z)f (z + n) − p(z) = c(f (z) − p(z)),

where c is a non-zero constant.

The method of the article is partly from [10].

2 Preliminary lemmas
Lemma 2.1. [11]Let f(z) be a meromorphic function with s(f) = h <∞. Then for any

given ε >0, there is a set E1 ⊂ (1, +∞) that has finite logarithmic measure, such that

|f (z)| ≤ exp{rη+ε},

holds for |z| = r ∉ [0, 1] ∪ E1, r ® ∞.

Applying Lemma 2.1 to 1
f , it is easy to see that for any given ε >0, there is a set E2 ⊂

(1, ∞) of finite logarithmic measure, such that

exp{−rη+∈} ≤ |f (z)| ≤ exp{rη+ε},

holds for |z| = r ∉ [0, 1] ∪ E2, r ® ∞.

Lemma 2.2. [11]Let

Q(z) = bnz
n + bn−1z

n−1 + · · · + b0,
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where n is a positive integer and bn = αneiθn ,αn > 0, θn ∈ [0, 2π) . For any given

ε(0 < ε < π
4n ), we introduce 2n open sectors

Sj : −θn + (2j − 1)
π

2n
+ ε < θ < −θn + (2j + 1)

π

2n
− ε(j = 0, 1, . . . , 2n − 1).

Then there exists a positive number R = R(ε) such that for |z| = r > R,

Re{Q(z)} > αn(1 − ε) sin(nε)rn

if z Î Sj where j is even; while

Re{Q(z)} < −αn(1 − ε) sin(nε)rn

if z Î Sj where j is odd.

Now for any given θ Î [0, 2π), if θ �= − θn
n + (2j − 1) π

2n , (j = 0, 1,..., 2n - 1), then we

take ε sufficiently small, there is some Sj, j Î {0, 1,...,2n - 1} such that θ Î Sj.

Lemma 2.3. [12]Let f(z) be a meromorphic function of order s = s(f) <∞, and let l’
and l’’ be, respectively, the exponent of convergence of the zeros and poles of f. Then for

any given ε >0, there exists a set E ⊂ (1, ∞) of |z| = r of finite logarithmic measure, so

that

2π inz,η + log
f (z + η)
f (z)

= η
f ′(z)
f (z)

+O(rβ+ε),

or equivalently,

f (z + η)
f (z)

= e
η
f ′(z)
f (z) +O(rβ+ε )

,

holds for r ∉ E ∪ [0, 1], where nz,h is an integer depending on both z and h, b = max

{s - 2, 2l - 2} if l <1 and b = max{s - 2, l - 1} if l ≥ 1 and l = max{l’, l’’}.
Lemma 2.4. [2]Let f(z) be an entire function of order s, then

σ = lim sup
r→∞

log ν(r)
log r

where ν(r) be the central index of f.

Lemma 2.5. [2,13,14]Let f be a transcendental entire function, let 0 < δ < 1
4 and z be

such that |z| = r and that

|f (z)| > M(r, g)ν(r, g)−
1
4 +δ

holds. Then there exists a set F ⊂ R+ of finite logarithmic measure, i.e.,
∫
F

dt
t < ∞ ,

such that

f (m)(z)
f (z)

=
(

ν(r, f )
z

)m

(1 + o(1))

holds for all m ≥ 0 and all r ∉ F.

Lemma 2.6. [10]Let f(z) be a transcendental entire function, s(f) = s <∞, and G =

{ω1, ω2,..., ωn}, and a set E ⊂ (1, ∞) having logarithmic measure lmE <∞. Then there is
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a positive number B( 34 ≤ B ≤ 1) , a point range {zk = rkeiωk}such that |f(zk)| ≥ BM(rk, f

), ωk Î [0, 2π), limk®∞ ωk = ω0 Î [0, 2π), rk ∉ E ∪ [0, 1], rk ® ∞, for any given ε >0,

we have

rσ−ε
k < ν(rk, f ) < rσ+ε

k .

3 Proof of Theorem 1.1
Under the hypothesis of Theorem 1.1, see [3], it is easy to get that

L1(f )
f

= eQ(z), (3:1)

where Q(z) is an entire function. If s(f) <1, we get Q(z) is a constant. Then Theorem

1.1 holds. Next, we suppose that 1 < s(f) <2 and l(f) < s(f) = s. We divide this into

two cases (Q(z) is a constant or a polynomial with deg Q = 1) to prove.

Case (1): Q(z) is a constant. Then Theorem 1.1 holds.

Case (2): deg Q = 1. By Lemma 2.3 and l(f) < s(f) = s, for any given

0 < ε < min{ σ−1
2 , 1−α

2 , σ−λ(f )
2 , σ−1−α

2 } , there exists a set E1 ⊂ (1, ∞) of |z| = r of finite

logarithmic measure, so that

f (z + j)
f (z)

= exp
{
j
f ′(z)
f (z)

+ o(rσ (f )−1−ε)
}
, j = 1, 2, . . . ,n (3:2)

holds for r ∉ E1 ∪ 0[1].

By Lemma 2.5, there exists a set E2 ⊂ (0, ∞) of finite logarithmic measure, such that

f ′(z)
f (z)

= (1 + o(1))
ν(r, f )

z
, (3:3)

holds for |z| = r ∉ E2 ∪ [0, 1], where z is chosen as in Lemma 2.5.

By Lemma 2.1, for any given ε > 0, there exists a set E3 ⊂ (1, ∞) that has finite loga-

rithmic measure such that

exp{−rα+ε} ≤ |aj(z)| ≤ exp{rα+ε}(j = 0, 1, . . . ,n) (3:4)

holds for |z| = r ∉ [0, 1] ∪ E3, r ® ∞.

Set E = E1∪E2∪E3 and G = {− ϕn
n + (2j − 1) π

2n |j = 0, 1} ∪ {π
2 ,

3π
2 } . By Lemma 2.6, there

exist a positive number B ∈ [ 34 , 1] , a point range {zk = rkeiθk} such that |f(zk)| ≥ BM (rk,

f], θk Î [0, 2π), limk®∞ θk = θ0 Î [0, 2π) \ G, rk ∉ E ∪ [0, 1], rk ® ∞, for any given ε

>0, as rk ® ∞, we have

rσ (f )−ε

k < ν(rk, f ) < rσ (f )+ε

k
(3:5)

By (3.1)-(3.3), we have that

an exp
{
n(1 + o(1))

ν(rk, f )
zk

}
+ · · · + a1 exp

{
(1 + o(1))

ν(rk, f )
zk

} + a0 = eQ(z)
}

(3:6)

Let Q(z) = τ eiθ1z + b0 , τ >0, θ1 Î [0, 2π). By Lemma 2.4, there are two opened angles

for above ε,
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Sj : −θ1 + (2j − 1)
π

2
+ ε < θ < −θ1 + (2j + 1)

π

2
+ ε(j = 0, 1)

For the above θ0, there are two cases: (i) θ0 Î S0; (ii) θ0 Î S1.

Case (i). θ0 Î S1. Since Sj is an opened set and limk®∞ θk = θ0, there is a K >0 such

that θk Î Sj when k > K. By Lemma 2.2, we have

Re{Q(rkeiθk)} < −ηrk, (3:7)

where h = h(1 - ε) sin(ε) >0. By Lemma 2.2, if Rezk > ζrk (0 < ζ ≤ 1). By (3.4)-(3.7),

we have

exp{rσ (f )−1−ε

k − rα+ε
k }

≤
∣∣∣∣an exp

{
n(1 + o(1))

ν(rk, f )
zk

}∣∣∣∣
≤ 3

∣∣∣∣an exp
{
n(1 + o(1))

ν(rk, f )
zk

}
+ · · · + a1 exp{(1 + o(1))

ν(rk, f )
zk

} + a0

∣∣∣∣
= 3

∣∣∣eQ(z)
∣∣∣ ≤ 3e−ηrk ,

(3:8)

which contradicts that 0 < s(f) - 1 - a - ε.

If Rezk < - ζrk (0 < ζ ≤ 1), By (3.4)-(3.7), we have

1 ≤
∣∣∣∣ana0 exp

{
n(1 + o(1))

ν(rk, f )
zk

}
+ · · · + a1

a0
exp

{
(1 + o(1))

ν(rk, f )
zk

}∣∣∣∣ +
∣∣∣∣∣
eQ(z)

a0

∣∣∣∣∣
≤ 2n exp

{
−ηrσ (f )−1+ε

k + 2rα+ε
k

}
+ e−ηrk exp {rα+ε

k },
(3:9)

which implies that 1 <0, r ® ∞, a contradiction.

Case (ii). θ0 Î S0. Since S0 is an opened set and limk®∞ θk = θ0, there is K >0 such

that θk Î Sj when k > K. By Lemma 2.2, we have

Re{Q(rkeiθk)} > ηrk, (3:10)

where h = τ(1 - ε) sin(ε) > 0. By (3.4)-(3.6), (3.9), we obtain

(n + 1) exp{nrσ (f )−1+ε

k + rα+ε
k }

≥ |an exp{n(1 + o(1))
ν(rk, f )

zk
} + · · · + a1 exp{(1 + o(1))

ν(rk, f )
zk

} + a0|

= |eQ(z)| ≥ eηrk .

(3:11)

From (3.11), we get that s(f) ≥ 2, a contradiction. Theorem 1.1 is thus proved.

4 Proof of Theorem 1.2
Under the hypothesis of Theorem 1.2, see [3], it is easy to get that

L2(f )
f

= eQ(z), (4:1)

where Q(z) is an entire function. For Q(z), we discuss the following two cases.

Case (1): Q(z) is a polynomial with deg Q = n ≥ 1. Then Theorem 1.2 is proved.

Case (2): Q(z) is a constant. Using the similar reasoning as in the proof of Theorem

1.1, we get that
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an exp
{
n(1 + o(1))

ν(rk, f )
zk

}
+ · · · + a1 exp

{
(1 + o(1))

ν(rk, f )
zk

}
+ a = −ezk , (4:2)

where a is some non-zero constant.

If Rezk < -hrk (h Î (0, 1]), By (3.4), (3.5), (4.2), we have

|a| ≤
∣∣∣∣an exp

{
n(1 + o(1))

ν(rk, f )
zk

}
+ · · · + a1 exp

{
(1 + o(1))

ν(rk, f )
zk

}∣∣∣∣ + | exp{zk}|

≤ exp{−ηrk} + n exp{−ηrσ (f )−1+ε

k + 2rα+ε
k },

(4:3)

which is impossible.

If Rezk > hrk (h Î (0, 1]), By (3.4), (3.5) and (4.2), we get

exp
{
ηrσ (f )−1−ε

k

}
< exp

{
n
ν(rk, f )

zk
− rα+ε

k

}

≤ 2

∣∣∣∣an exp
{
n(1 + o(1))

ν(rk, f )
zk

}
+ · · · + a1 exp

{
(1 + o(1))

ν(rk, f )
zk

}
+ a

∣∣∣∣
= 2| − exp{zk}| ≤ 2 exp{rk},

(4:4)

which contradicts that s(f) >2. This completes the proof of Theorem 1.2.

5 Proof of Theorem 1.3
Since f and L3(f) share P CM, we get

L3(f )
f

= eQ(z), (5:1)

where Q(z) is an entire function. If s(f) <1, we get Q(z) is a constant. Then Theorem

1.3 holds. Next, we suppose that 1 < s(f) <2 and l(f) < s(f) = s. Set F(z) = f(z) - P(z),

then s(F) = s(f). Substituting F(z) = f(z) - p(z) into (5.1), we obtain

an(z)F(z + n) + an−1(z)F(z + n − 1) + · · · + a1(z)F(z + 1)
F(z)

+ a0(z) +
b(z)
F(z)

= eQ(z), (5:2)

where b(z) = an(z)P(z + n) + ... + a1(z)P (z + 1) + a0(z)p(z) is a polynomial. We dis-

cuss the following two cases.

Case 1. Q(z) is a complex constant. Then Theorem 1.3 holds.

Case 2. Q(z) is a polynomial with deg Q = 1. By Lemma 2.3 and l(f) < s(f) = s, for

any given 0 < ε < min{ σ−1
2 , 1−α

2 , σ−λ(f )
2 , σ−1−α

2 } , there exists a set E1 ⊂ (1, ∞) of |z| =

r of finite logarithmic measure, so that

f (z + j)
f (z)

= exp{j f
′(z)
f (z)

+ o(rσ (f )−1−ε)}, j = 1, 2, . . . ,n (5:3)

holds for r ∉ E1 ∪ [0, 1].

By Lemma 2.5, there exists a set E2 ⊂ (0, ∞) of finite logarithmic measure, such that

f ′(z)
f (z)

= (1 + o(1))
ν(r, f )

z
, (5:4)

holds for |z| = r ∉ E2 ∪ [0, 1], where z is chosen as in Lemma 2.5.
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Set E = E1 ∪ E2 and G = {− ϕn
n + (2j − 1) π

2n |j = 0, 1} ∪ {π
2 ,

3π
2 } . By Lemma 2.6, there

exist a positive number B ∈ [ 34 , 1] , a point range {zk = rkeiθk} such that | f (zk)| ≥ BM

(rk, f), θk Î [0, 2π), limk®∞θk = θ0 Î [0, 2π) \ G, rk ∉ E ∪ 0[1], rk ® ∞, for any given ε

>0, as rk ® ∞, we have

rσ (f )−ε

k < ν(rk, f ) < rσ (f )+ε

k . (5:5)

Since F is a transcendental entire function and |f(zk)| ≥ BM (rk, f), we obtain

b(zk)
F(zk)

→ 0, (rk → ∞). (5:6)

By (5.2)-(5.6), we have that

an exp
{
n(1 + o(1))

ν(rk, f )
zk

}
+ · · · + a1 exp

{
(1 + o(1))

ν(rk, f )
zk

}
+ a0 + o(1) = eQ(z). (5:7)

Using similar proof as in proof of Theorem 1.1, we can get a contradiction. Hence,

Theorem 1.3 holds.

6 Proof of Theorem 1.4
Using similar proof as in proof of Theorem 1.1, we can get Theorem 1.4 holds.
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