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1. Introduction
In this article, we will consider a 2m-point boundary value problem (BVP) at reso-
nance for a coupled system of nonlinear fractional differential equations given by

D&, u(t) =f(t v(t), D5 "w(t), DL %u(r), 0 <t <1,

B o—1 o—2 (11)
Dy, v(t) =g(t u(t), Dy, u(t), Dy, “u(t)),0 <t <1,
I u()lz0 =0, DG %u(1) =Y aDg u(&), u(1) =Y bu(n), (1.2)
i=1 i=1
I, Pv(O)le0 =0, D 2u(1) = Y DL Pu(yy),  v(1) =) diy(8), (1.3)
j=1 j=1

where 2 < o, B<3,0< ¢ <. <8, <,0< N <o <1y <1, 0 <9 <o < Y <1, 0 <
01 <. <0y <1, a; by ¢y die R, f, g: [0, 1] x R > R, f, g satisfies Carathéodory condi-
tions, D{. and I§. are the standard Riemann-Liouville fractional derivative and frac-
tional integral, respectively.

© 2011 Wang et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.


mailto:wangg0824@163.com
http://creativecommons.org/licenses/by/2.0

Wang et al. Advances in Difference Equations 2011, 2011:44
http://www.advancesindifferenceequations.com/content/2011/1/44

Setting:

S 2 (2’
[(a . _T(@)l(a—1 e
Az = (r((zi)) [1 - ;bmf 1} = (F()za(— 0 ) [1 —;bmf 2},

SR, Zc’yf % Tt )

j=1

_ (T'(B)) = 2B-1 _FArB-1) - 22
- r28) 1= "dis ™|, Ag= F(28 - 1) 1= ds

In this article, we will always suppose that the following conditions hold:
(C1):

m m m
Zaiéi = Zai =1, mei mel

1;1 l':”l 1;!1

ZC]')/]' = ZC]' =1, Zd]@f_l = Zdj(ﬁ]{g—z =
j=1 j=1 j=1 j=1

(C2):
A=A1Ay—ArAs 40, A=AAs—AyA; #0.

The subject of fractional calculus has gained considerable popularity and importance
because of its frequent appearance in various fields such as physics, chemistry, and
engineering. In consequence, the subject of fractional differential equations has
attracted much attention. For details, refer to [1-4] and the references therein. Some
basic theory for the initial value problems of fractional differential equations(FDE)
involving Riemann-Liouville differential operator has been discussed by Lakshmikan-
tham [5-7], El-Sayed et al. [8,9], Diethelm and Ford [10], Bai [11], and so on. Also,
there are some articles which deal with the existence and multiplicity of solutions for
nonlinear FDE BVPs using techniques of topological degree theory. For example, Su

[12] considered the BVP of the coupled system

D*u(t) =f(t, v(t), D*v(t)),
{Dﬂv(t) = g(t,u(t), D"u(t)).

By using the Schauder fixed point theorem, one existence result was given.

However, there are few articles which consider the BVP at resonance for nonlinear
ordinary differential equations of fractional order. In [13], Zhang and Bai investigated

the nonlinear nonlocal problem
Dgu(t) =f(t, u(t)), 0<t <1,
u(0) =0, Bu(n) =u(1),

. 1 .
where 1 <o < 2, we consider the case fn* " = 1, i.e., the resonance case.
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In [14], Bai investigated the BVP at resonance

DZu(t) =f(t u(t), DI u(t)) +e(t) 0<t<l,

2u(t) =0 = 0, D& tu(1) = Zﬁ,D"’ Yu(n;)

is considered, where 1 < < 2 is a real number, D§. and I}, are the standard Rie-
mann-Liouville fractional derivative and fractional integral, respectively, and f: [0, 1] x
R* - R is continuous, and e(t) € L'[0, 1], m 22,0 <& <1, Bie Ri=1,2, ., m-2,
are given constants such that Z:’Sz Bi=1

The coupled system (1.1)-(1.3) happens to be at resonance in the sense that the asso-
ciated linear homogeneous coupled system

Dj,u(t) =0,0<t <1,
Dfu(t) =0,0<t <1,

Bu(t)lmo =0, D 2u(1) = Za,Dgfu(s, u(1) = Zb u(n;),

i=1 i=1

13 v(0)le0 =0, Dfv(1) = Zc]Dti u(yy), (1) = Zd v(8))
j=1

has (u(t), v(8)) = (@™ + bt*2, ¢’ + dP?), a, b, ¢, d € R as a nontrivial solution.

The purpose of this article is to study the existence of solution for BVP (1.1)-(1.3) at
resonance case, and establish an existence theorem under nonlinear growth restriction
of f. Our method is based upon the coincidence degree theory of Mawhin.

Now, we will briefiy recall some notation and an abstract existence result.

Let Y, Z be real Banach spaces, L : domL € Y — Z be a Fredholm map of index zero
and P: Y —> Y, Q:Z — Z be continuous projectors such that

Y =KerL & KerP, Z=ImQ & ImL, ImP = KerL, KerQ = ImL.

It follows that L| omraxerr : domL N Ker P — ImL is invertible. We denote the
inverse of the map by K. If Q) is an open bounded subset of Y such that domL n Q =
&, the map N : Y — Z will be called L-compact on Q if QN() is bounded, and
Ky(I — Q)N :Q — Y is compact.

The theorem that we used is Theorem 2.4 of [15].

Theorem 1.1. Let L be a Fredholm operator of index zero and N be L-compact on
Q. Assume that the following conditions are satisfied:

(i) Lx # ANx Y(x, A) € [domL\KerL n 0Q)] x [0, 1];

(ii)) Nx ¢ ImL, Vx € KerL n 0Q);

(iil) deg(JQN |xerr, KerL n Q, 0) = 0;

where Q : Z — Z is a projection as above with KerQ = ImL, and J : ImQ — KerL is
any isomorphism. Then, the equation Lx = Nx has at least one solution in domL N Q-

The rest of this article is organized as follows. In Section 2, we give some notation
and lemmas. In Section 3, we establish a theorem of existence of a solution for the
problem (1.1)-(1.3).
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2. Background materials and preliminaries
For the convenience of the reader, we present here some necessary basic knowledge
and definitions about fractional calculus theory. These definitions can be found in the
recent literature [1-14,16].

Definition 2.1. The fractional integral of order o >0 of a function y : (0, =) — R is
given by

B0 = ooy | € =90

provided the right side is pointwise defined on (0, «), where I'(:) is the Gamma
function.

Definition 2.2. The fractional derivative of order & > 0 of a function y : (0, ©) — R
is given by

o 1 a\" 1t )
D0+y(t) - F(?’l —O{) (dt) A (t_s)oz—m—l dS,

Where n = [o] + 1, provided the right side is pointwise defined on (0, ).

Definition 2.3. We say that the map f: [0, 1] x R” — R satisfies Carathéodory con-
ditions with respect to L'[0, 1] if the following conditions are satisfied:

(i) for each z € R”, the mapping ¢t — f (¢, z) is Lebesgue measurable;

(ii) for almost every ¢ € [0, 1], the mapping ¢ — f (¢, z) is continuous on R"

(iii) for each r > 0, there exists p, € L' ([0, 1], R) such that, for a.e. £ € [0, 1] and
every |z| < r, we have f (¢, z) < p, (¢).

Lemma 2.1. [13] Assume that z € C(0, 1) n L0, 1) with a fractional derivative of
order o > 0 that belongs to C(0, 1) n L(0, 1). Then,

12,D% u(t) = u(t) +crt*  +ert* 24w ont®N

for some c; € R, i =1, 2, .., N, where N is the smallest integer grater than or equal
to a.

We use the classical Banach space C[0, 1] with the norm

[lulloo = max |u(t) |,
te[0,1]

L[0, 1] with the norm ||u||; = fol |u(t)|dt. For n € N, we denote by AC"[0, 1] the
space of functions u(#) which have continuous derivatives up to order # - 1 on [0, 1]
such that #"V(¢) is absolutely continuous:

AC" [0, 1] = {u][0, 1] — R and D" 'u(t) is absolutely continuous in [0, 1]}.

Definition 2.4. Given ¢ > 0 and N = [¢] + 1 we can define a linear space

CH[0,1] = {u(t) lu(t) =I5x(t) +crt* o cpt" 24w ot W7D ¢ € (0, 1)),

where x € C[0,1],¢;e R, i=1,2,..,N- 1.
Remark 2.1. By means of the linear functional analysis theory, we can prove that

with the
n—(N—-1
lulloe = (1D utlloo + -+ - + [1DE NV log + |11l

C" [0, 1] is a Banach space.
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Remark 2.2. If 4 is a natural number, then C* [0, 1] is in accordance with the classi-
cal Banach space C” [0, 1].

Lemma 2.2. [13]f < C* [0, 1] is a sequentially compact set if and only if fis uni-
formly bounded and equicontinuous. Here, uniformly bounded means there exists M >
0, such that for every u € f

llullon = 11D§,ulloo + -+ + 11DG ™l + lulloe < M,
and equicontinuous means that Ve > 0, 36 > 0, such that
[u(tr) —u()l <e (Yo, b €[0,1], |t — 2| <3, Yuef)
and
Dy u(t) — D Mu(i)] < e
Vi, b e[0,1], [ti —to] <8, Yuef, Yi=1,2, ..., N—1)

Lemma 2.3. [14] Let o > 0, # = [0] + 1. Assume that z € L' (0, 1) with a fractional
integration of order # - o that belongs to AC"[0, 1]. Then, the equality

I w)(1)" =0 g

(Ig+Dg+u)(t) = u(t) - Z (( F(O{ — i+ ])

i=1

holds almost everywhere on [0, 1].

Definition 2.5. [14] Let I% (L!(0, 1)), & > 0 denote the space of functions u(t), repre-
sented by fractional integral of order ¢ of a summable function: u =I§, v, v € L! (0,1).

In the following lemma, we use the unified notation of both for fractional integrals

and fractional derivatives assuming that I§, = D, for o > 0.
Let Z; = L'[0, 1], with the norm [ly|| = [ [y(s)lds, Y1 = C*'[0, 1], Y; = c? o, 1],
defined by Remark 2.1, with the norm

-1 -2
ully, = 1IDg- " ulloo + [IDG: " ulloc + [l loo,

IWlly, = 11DG- vlloo + 1DG *vlloc + [1llso,
where Y = Y7 x Y, is a Banach space, with the norm
[I(w, V)lly = max{|[ully,, [[V]ly,},
and Z = Z; x Z, is a Banach space, with the norm
10 Y)Ilz = max{[[x[l1, [lyll1}.
Define L, to be the linear operator from domL, n Y; to Z; with
domL; = {u e C*7'[0, 1]|D%,u € L'[0, 1], u satisfies (1.2)},
and
Liu=Dg.u, ue domL,.
Define L, to be the linear operator from domL, N Y, to Z; with

domL, = {ve CP71|0, 1]|D§+v € L'[0, 1], v satisfies (1.3)},

Page 5 of 17



Wang et al. Advances in Difference Equations 2011, 2011:44 Page 6 of 17
http://www.advancesindifferenceequations.com/content/2011/1/44

and
Lo = ng, v € domL,.
Define L to be the linear operator from domL N Y to Z with
domL = {(u, v) € Y|lu € domL;, v € domL,},
and
L(u, v) = (L1u, Lyv),
we define N : Y — Z by setting
N(u, v) = (N1v, Nyu),
where N : Y, — Z; is defined by
Nyw(t) = f(t, v(t), DS u(r)), DE2u(t)),
and N, : Y7 — Z, is defined by
Nou(t) = f(t, u(t), DE; "u(t)), D§;2u(0)).
Then, the coupled system of BVPs (1.1) can be written as
L(u, v) = N(u, v).

3. Main results
Lemma 3.1. The mapping L : domL € Y — Z is a Fredholm operator of index zero.
Proof. Let Liu = Dg.u, by Lemma 2.3, D§,u(t) = 0 has solution

u(?)

3 3o 3—i
((Io. ")) le=0 o
121: 0F(oc —i+1) !

(0O =0 s, (WO 0 s, (Wi oy

I'(«) IMNa—1) I'a —2)
_ D, u(t)l,o o1, Dg:zu(t)h:o @2, ((ISI“u)(t))It=o @3
I'(a) M(a—1) o —2) '

Combine with (1.2), so
KerL; ={at® ' + bt 2|a, b€ R} ¥ R%.

Similarly, let L,v = Dg*v, by Lemmas 2.3, 2.4, D€+y(t) = 0, combine with (1.3),

SO
KerL, = {ct’~' +dtP~2|c, d € R} = R?.
It is clear that
KerL = {(at® ' +bt*™2, ct’7' + dtP~?)|a, b, ¢, d € R} ¥ R* x R*.

Let (x, y) € ImL, then there exists (i, v) € domlL, such that (x, y) = L(u, v), that is u

€ Y,x=Dg,uandve Y, y= D€+v. By Lemma 2.3, we have
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Box(t) =u(t) —at® ! —cpt*? —c3t* 3,

Ly() =v(t) —dit? ! —dpt? 2 — dst? 3,

where
D(X*l DO{*Z I370{
_ Yo+ u(t)li=o c, = O+ u(t)l—o oz 0+ u(t)l—o
! FrMe) '~ 7 T-1)" 7 TDe-2)'
P OIS RO O
re) -’ r-1 ' rp-2)’

and by the boundary condition (1.2), we obtain c¢3 = 0, ¢;, ¢, can be any constant,
and x satisfies

{fol(l —s)a(s)ds — X1 ai [ (& — s)x(s)ds =0, (3.1)

Jo (1 =9)*"a(s)ds = X, b fy" (ni = )"~ x(s)ds = 0.

Similarly, by the boundary condition (1.3), we obtain ds; = 0, d;, d> can be any con-
stant, and y satisfies

ifol(l —s)y(s)ds — Y1 6 Jo (v — s)y(s)ds =0,

) 3.2
Jo (1 =5y Yy(s)ds — X0 d; [y (8 —5)P ' y(s)ds = o. (52)

On the other hand, suppose x, y € Z; satisfy (3.1), (3.2), respectively, let
(1) =12 y(t) v(t) =15 y(t) then u e domL,, Diu(t)==x(t) and v € domL,,
Dg+1/(t) =y(t). That is to say, (x, y) € ImL. From the above argument, we obtain

ImL = {(x, y) € Z|x satisfies (3.1), ysatisfies (3.2)} .

Consider the continuous linear mapping A;, B;, T;, R, Q;: Z; —> Zy, i =1,2and Q :
Z — Z defined by

Arx = [01(1 — s)x(s)ds — igm;ai /:i(éi — $)x(s)ds,

1 m i
Axx = [ (1 —5)*'x(s)ds — Zbi/ (ni — 5)* " 'x(s)ds
0 -1 7O
and

1 m j
b= [ (- - Yo [ = o

1 m S5
_ -1 _ R P (3.3)
By / (1— )P y(s)ds ];d] / (5 — )y (s)ds

1 1
T].X = A (A4A1x — A2A2x), sz = A (A3A1X — A1A2.X’)

and

1 1
Ryy = A(A4Bl}/— AyByy), Ryy= A(A3Bl)/— A1Byy). (3.4)

Page 7 of 17



Wang et al. Advances in Difference Equations 2011, 2011:44 Page 8 of 17
http://www.advancesindifferenceequations.com/content/2011/1/44

Since the conditions (C1) and (C2) hold, the mapping defined by

{le(t) = (Tyx(0))t ! + (Tox(t))t* 2, 3.5)
Qay(t) = (Ruy(1)tP~" + (Ray(1))tF 2 '

is well-defined. It is clear that dimImQ; = dimImQ, = 2.
Recall (C1) and (C2) and note that

1
T] (T]Xta_l) = A(A4A1 (Tlxt"‘_l) — AzAz(TlxtD‘_l))
1 AgA A A AgA Ay A
= A4 4 1A1x— ! 2A2x —A2 4 3A1X— 2 3A2x
A A A A A
= T,

and similarly we can derive that
T, (sztaiz) =0, Tz(Tlxtail) =0, T, (sztaiz) = Thx.
Hence, for x € Z,, it follows from the four relations above that

2
Qix

Qi ((T1x)t* ! + (Tox)t*2)
= Ti((Tix)t* 4+ (Tox)t* )t 4 To((T1x)t* ™1 + (Tox)t* )" 2
= (Tﬂ(‘)tail + (TzX)taiz
= lel

that is, the map Q is idempotent. In fact, Q; is a continuous linear projector.

Similarly, the map Q. is a continuous linear projector.

Therefore,
Q(x, ¥) = (Q1x, Qay).

It is clear that Q is a continuous linear projector.
Note (x, y) € ImL implies Q(x, ¥) = (Qyx, Q) = (0, 0). Conversely, if Q(x, ¥) = (0, 0),
0

A4A1x — A2A2x =0,
A]AQX — A3A1x =0,

AyB1y — AxBoy =0,
Aley — A3B1y = O,

but

= AsA1 — AyAs #0,

= AyA1 — ArA3 70,

then we must have Ax = By =0, i = 1, 2, that is, (x, y) € ImL. In fact, KerQ = ImL.

Take (x, y) € Z in the form (x, y) = ((x, ¥) - Q(x, ) + Q(x, y) so that ((x, y) - Q(x, y))
€ KerQ = ImL, Q(x, y) € ImQ. Thus, Z = ImL + ImQ. Let (x, y) € ImL n ImQ and
assume that (x, y) = (at** + bt*?, et + diP?) is not identically zero on [0, 1]. Then,
since (x, y) € ImL, from (3.1) and (3.2) and the condition (C2), we have
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1 m &
Ax = / (1 —s)(as* ! +bs* %)ds — Z ai[ (& —s)(as® ! + bs*"%)ds = 0,
0 o Jo
1 m ni
Axx = / (1 =) Y(as®" + bs*2)ds — Z bif (i — ) (as®™ + bs*~2)ds = 0,
0 - Jo

1 m vi
Byy = / (1 —9)(cs?! + dsP=2)ds — ch/ (vj = $)(cs? ! +dsP2)ds = 0,
0 ; 0
j=1

1 m 8
Byy = / (1 —5)P (st +dsP=2)ds — E dj/ ] (8 —$)f (e~ + dsP~?)ds = 0.
0 } 0
j=1

So,
aAl + bAz = 0,
aA3 + bA4 = 0,
CAl +dA2 =0,
CA3 + dA4 = 0,
but
A1 A
‘A; Ai =A1As — ArA3 70,
A1 A
‘A; AZ =A1A4 — AyA3 70,

we derive a = b = ¢ = d = 0, which is a contradiction. Hence, ImL n ImQ = {0, 0};
thus, Z = ImL & ImQ.

Now, IndL = dimKerL - codimImL = 0, and so L is a Fredholm operator of index
zero.

Let Py : Yy > Yy, Py: Yy, > Yy, P: Y — Y be defined by

1 1
Piu(t) = D u(t) ot ! D 2u(t)|-0t*"2, te0,1],
1 () F(a) 0+ ()'tO +F(a_1) 0+ ()|[0 [ ]

1 1

- B—1 p—1 B—1 -2
Pou(t) = Dy, v(t)|=0t Dy, v(t)|i=0t" =, te]0,1],
2 () F(,B) 0+ ()|t—0 + F(,B—l) 0+ ()|t—0 [ ]
and

P(u, v) = (Pyu, Pyv).
Note that P, P,, P are continuous linear projectors and

KerP = (KerP;, KerP;)
{(u, v) € YD 'u(0) = D& 2u(0) = 0, D5 'w(0) = DE?v(0) = 0}.

It is clear that Y = KerL @ KerP.
Note that the projectors P and Q are exact. Define by K, : ImL — domL n KerP by

Kp(x, ) = (I2,x, 15,7),

Kyx(t) = F(la) [Ot (t —s)* 'x(s)ds = I3, x(t), x e ImL.
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Hence, we have
t t
D (Kpx)t = /0 x(s)ds, D% ?(Kyx)t = fo (t — s)x(s)ds.
Then,

1 _ _
[1Kpxlloo = F(a)”x”lr IDG; ! (Kpx) oo < llxll1,  1IDG; 2 (Kpx) oo < 111,

and thus

1
K < 2
1Ky, _(F(a)+ )||x||1

and

K0 = 1y [ € =97 s = 0,y

1
I'(B)
Hence, we have
-1 ' 52 '
DA (Kot = [ y(s)ds, DL (Kt - / (t = s)y(s)ds.

Then,

1

rep) M DS (Kop) oo < VM1, IDEZ2(Kop)lloo < [l1L,

KpYlloo <

and thus

1
Kpylly, < (F(ﬂ) +2) Iyl

SO

1Kok iy = I (%x I5p)ly

= max{]| I&.xlly,, II 5,ylly,}

<ol () )

For (x, y) € ImL, we have
LKp(x, y) = LUIG,% 16,y) = (D§,18,% DE,I5,) = (x, ¥).

Also, if (u, v) € domL n KerP, we have u € domL;, D% 'u(0) = D% ?u(0) =0, v e
domlL,, D’g:ly(o) = D’g:zv(o) = 0, so the coefficients ¢;, d;, i = 1, 2, 3 in the expressions
then

(KpL1)u(t) = I3, D% u(t) = u(t) +crt® '+t + ¢33,
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where

o O o (O AT [

Fre) '~ 7 T-1)" 7 TDe-2)'
(KpLo)u(t) = 15,D8 v(t) = v(t) +drtP~" + dytP =2 + dstP 3,

C1

where

D0l D00l 1o (0l
re) reg-1) " rg-2)’

and from the boundary value conditions (1.2), (1.3) and the fact that (&, v) € domL n
KerP, P(u, v) = 0, we have ¢; = d; = 0, thus

dy

(KoL) (u, v) = Kp(L1u, Lyv) = (u, v).

This shows that K, = (L domzoxers) -
Using (3.3)-(3.5), we write

K- QNN = ([ [ €97 N6 — QN1
re o @9 N - Qe (91

By Lemma 2.2 and a standard method, we obtain the following lemma.
Lemma 3.2. [16]K,(I - QN : Y — Y is completely continuous.
In this section, we shall prove existence results for (1.1)-(1.3).

First, let us set the following notations for convenience:

m=3+ ! ++ ! n=3+ ! + !
T T Te-1)" T T re-1
=2+ ! k=2+ !
T= )’ r(p)’
=5+ 2 ++ ! w=5+ 2 ++ 1
122" ) @ -1y reg) -1y

Assume that the following conditions on the function f{¢, x, y, z), g(t, x, y, z) are
satisfied:

(H1) There exist functions a;(t), bi(t), ci(¢), dit), rt) € L'[0, 1], i = 1, 2 and a con-
stant 0; € [0, 1), i = 1, 2 such that for all (x, y, z) € R3 te [0, 1], one of the following

inequalities is satisfied:

If(t, x v, 2)| < ai(O)lxl +bi(2)lyl +c1(t)lal +da (£)|x]” + 11 (¢), (3.6)

18(t, x, v, 2)| < az()lxl + ba(0)ly] + ca(t) =] + da(£) 1% + 72(2). 3.7)
(H2) There exists a constant A > 0, such that for (u, v) € domL\KerL satistying
min{|DZ, " u(t)| + DL 2u(t)l, DY, v(t)] + IDE 2u(t)]} > A

or for all ¢t € [0, 1], we have

AlNll}(t) #0, BlNzu(t) #0 or Alel}(t) #0, BzNzu(t) # 0.
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(H3) There exists a constant B > 0 such that for every a, b, ¢, d € R satisfying min{a”
+ b P+ dz} > B then either

aT1N; (at"‘*l + btwiz) +bTHN; (at"‘*l + btwiz) > 0, (3.8)

CR]NQ(Cfﬂil + dtﬂiz) + dRzNz(Ctﬂ71 + dtﬂiz) > 0, (39)
or

aTiNy(at* ™ +bt* %) + bToN; (at* ' + bt* %) < 0, (3.10)

CR]NQ(Cfﬂil + dtﬂiz) + dRzNz(Ctﬂ71 + dtﬂiz) < 0, (311)

Theorem 3.1 If (C1)-(C2) and (H1)-(H3) hold, then the BVP (1.1)-1.3) has at least

one solution provided that

max{q(ll arlli+ I balli+ [Ferlln), w(ll a2lli+ | b2lli+ 1 e2 1),
jlhaily+nlazlly +j 1 ballh +nllbally +j eillh +nll ealln,

kllaili+mll alli +k 1 billi +m [ balls +k [ cillh +m || c2ll1} < 1.

Proof. Set
Q1 ={(u, v) € domL\KerL : L(u, v) = AN(u, v), 1 € [0, 1]}.

Then, for (u, v) € Qq, L(u, v) = AN (u, v), thus A # 0, N(u, v) € ImL = KerQ, and
hence QN(u, v) = (0, 0) for all £ e [0, 1]. By the definition of Q, we have QN;jv(¢) =
QuNLu(t) = 0. It follows from (H2) that there exists £y, 1 € [0, 1], such that

min{|DZ  u(to)| + DS 2u(to)l, DA v(ty)] + DL v(th)1} < A.

Now

t

D% u(t) =D‘(’)‘:1u(t0)+/ D¢, u(s)ds,
to
t

D 2u(t) =D‘(’)‘+‘2u(t0)+/ DY u(s)ds,
to
t

Dg:ly(t) =D§+_1v(t1)+/ D§+v(s)ds,
5]

t
DEu(t) = DL u(tr) + [ DL u(s)ds,

5]

and so
IDZ'u(0) < Il DL u() lloo
< ID§; u(to)l+ || DY, ully
< A+ || Luull; < A+ || Nylly,
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and
IDE2u(0) < Il Dgu(t) llo
< ID§ *u(to) |+ || D, ' ulloo
< ID§u(to)] + DG, u(to)|+ | D, ullx
< A+ | Liuly <A+ | Nylh.
Similarly,

IDS'w(0)] < A+ || Naully, |DE20(0)] < A + || Noul;.

Therefore, we have noted that (I - P)(i, v) € domL n KerP for ¥Y(u, v) € Q.
Then,

I P(u, v)lly

I (Pru, Pav)lly = max{|| Pyully,, || Pavlly,}
1
INoe—1)

D tu(0)e ! + D 2u(0)t*

|

D 2u(0)t* 2

’

Y

ma"” F(la)

1 _ -
H Dy w(0)P T + D) 2v(0)P 2

r'(8)

1
-1

-1 -1
Dy, u(0)t* " + r

1 1
H I'(e) (¢ —1)
+ || D u(0) oo+ Il DG, u(0) + D ?u(0) oo,
1 1
I'(8) rp-1)
A D‘g:lv(o)t+D§:2v(0)||oo}

=max{
[}

-2 _ -1
DE2u(0)P 2| + || DS w(0) 1

(o)

Db w(0) ! +

Smax{(3e el ) @i

1 1
(v rip-) o]
= max(m(A+ || Nyvlh), n(A+ | Noulr)),

I (I=P)(w v)lly

| KoL(I = P)(u, v)lly = || Kp(L1u, Lov)|ly
YL, @+
ufi1,
INC) M ()|
max{j | Niv|l1, k|| Naull1},

IA

max{(2 + ) I Lovlin}

IA

so, we have

I wo)lly = I UI=P)(wv)ly+ |l Pluv)lly
= max{m(A+ || Nyv[l1), n(A+ || Naull1)}

+max{j | Nivll1, k|| Naull1} (3.12)

= max{q || N1vlly + mA, m(A+ || Nyvll1) + k|| Naully,
n(A+ | Naully) +j | Ny, wll Naully + nA}.

If the first condition of (H1) is satisfied, then from (3.12), the proof can be divided

into four cases:
Case 1. ||(&, v)||y < q||IN1v||1 + mA.
From (3.6), we have

-1 -2 -2 0
I (wv)lly < gl arll | vllso+ I bally | Dy, Wlioot Il cally | Dby *vlloot Il dilly | Doy v 1% +D],
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m.

where D = || 711 + qA, and consequently, for

—1 -2
| Vlloor 1| DA Wlloos | DE 0l < Il (0 V),

SO
q —1 -2 -2
Il =) gy, (10000 Dy Wlioo+ Il cilly Il DY 2 vlloo+ Il dilln 1| DY v (12 +D],
- 111
—1 q -2 -2
I DG vlloe < TN Y DG xlloo+ Il dally || DG v 12, +D],

q

B—=2_ 6
I dyll 1| DE-2 |2 +D).
—qlali—al bl =gl alh 0.V llos +D)

-2
I Dy vlloe < .

But ; € [0, 1) and |l a1lli+ I balli+ [ el < ,11, so there exists A;, A, A3 >0 such
that

IDE vl <A1, I DS Wleo <Ay | Wlloo < As.
Therefore, for all (i, v) € Q;,
I (, v)lly = max{|| vlloo, || Dy, "lloo, | Db, Vo) < max{A;, Ay, Az},

we can prove that Q; is also bounded.
Case 2. ||(&, v)||y < w||Nau||1 + HA.
The proof is similar to that of case 1. Here, we omit it, where

1
I axlli+ I balli+ 1l e2llh < w

Case 3. ||(&t, V)||y < n(A + || Nau||1) + j||INyv|]1-
From (3.6) and (3.7), we have

. -1 -2
1w v)ly  <jlll s | vlloot I bully || DG, oot Il crlly | D vl
B2 16
+ I dill I Do, “v i + [T rlla] +nlll a2l 1| ulleo
-1 -2
+ 1102l I DGy tlleo+ I 21l I DG~ tlloo

-2 0.
+ Il dall | DG, u Ml +A+ [ r2llh],

1 . 1 . -2
[Vl <. . [ 1 bully | DY ollo +7 1l clly Il DB 20llo
1—jllailh

. 2.0 s

w1 dull I Do, v 1% 45 1 rally + 0l azlly [ wlloo
-1 -2

+n || bally || Do, ulleo + 1 Il c2ll1 1| D, ~ulloo
—2. 16

+n |l dally || DG, "ull +nA +n |l ra2llh],

1 . —1 ) 2
luloo < [ 1 bl I Dh lloo +5 1l clln | Db *vlloo

T—jllailli —nl a2l
il d D720 |2 4 b pet D2
+jldills | Do, v oo + Il allh +n |l balla | Dy, tlleo + 71 1| c2ll1 | D, “tlloc

-2 0,
+n |l dally | DG u il +nA +n | m2ll],

1
L—jllailly —nllazlly —j Il billx

: B—=2 61 -1 -2
+j [l dills I Do, vl +i Ll +n 1 ball | DG, ulleo + 1 Il 2011 1| DG, “ulloc

—1 . -2
I Df vlloo Il il I D vlloo

-2
+n | dally | DG ?u 2 +nA +n | 7ll2],
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1
-1 . L—2
I Dg; ulle < ) . i Il eilli I Doy vl
’ T—jllailli —nllaxlly —jll billy —n |l b2ll1 *
: B=2 161 s -2
+jldill I Dy, v ligh +i I rilly + 7 |l e2lly | DY, oo
2. 6
+n | dally | Do, "u |l +nA +n |l r2ll1],
. -2 . -2
I DF 2y - il |l D§+ v % +j 1 r1lly +n 0l d2 111D, 2w 1% +nA + il
0 9 = . . . ,
’ L—jllailly =nllazalli =jl billi = n |l bally —jllerllh — 7l e2lly |
. -2 . 9
| D220l jldili |l Df; v 1% +i I r1lly + 70l do [l 11Dg 2w 1%, +nA + nllra 1
0+ —

L—jllailly —=nllazlly —jl billi = n il bally —jlleslly —n Il eally Il
-2 . -2
Ifn | dally | Dg2u %2 j Il dilly || Df, v 1%, then we have

. -2
jllrull +2n || dall411DG, % u |12 +nA + nllryll)

-2
Il Doy "ulloo < . ; . -
" L—jllailly —=nllazlly —j I bally —nllbally —j L eully =l e2lla |l

But 0, € [0, 1) and j[|a:[|1 + n||az||1 + j||b1][1 + n||b2|[1 + jl[ei][x + n]]ca|[1 <1, so
there exists A; >0, i = 1, ..., 6 such that

-2 -1
I DS 2 0lloe < A1, || DY Wllo < Agy [l Vo < As,

-2 -1
I Do, “ulloo = Ag, || DG, ulloo < As, || ullos < As.

Therefore, for all (i, v) € Q;,

-1 -2 -1 -2
I (u, v)lly = max{ll viioo, I| Db, Wliso, Il Df; vlloo Il lloor | DG ulloes | D utlloo)
<max{A;}, i=1, ...,6.

Ifn|dylly | DE2u %<l dilly | Dg;zy [%, similarly to the above argument, we
can also prove that Q; is bounded.

Case 4. ||(&, v)||y € m(A + ||[Nv||1) + k|| Nou] |

The proof is similar to that of case 3. Here, we omit it, where

Rllaili+mllaxlli+k 1 billi +m I balli +k Nl cilli+m |l callh < 1.
Let
Q) = {(u, v) € KerL : N(u, v) € ImL}

for (u, v) € Qy, (u, v) € KerL = {(u, v) € domL|(at®+bt™ 2, ct’+dtP?), a, b, ¢, d e
R, t € [0, 1]} and QN(u, v) = (0, 0); thus

TINI (ato‘*l + bta72) — T2N1 (atO‘*l + btafz) =0,
RNy (ct? 1 +dtP=2) = RyNy(ct? ' +deP~2) = 0.

By (H3), min{a® + b% ¢* + d°} < B that is, Q, is bounded.
We define the isomorphism J : KerL — ImQ by

Jat® ™'+ b2, o TN+ dP?) = (@ + 02, o T+ dP ),
If the first part of (H3) is satisfied, and then let

Q3 ={(u, v) € KerL : =2J(u, v) + (1 — A)QN(u, v) =(0,0), » € [0, 1]},
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For every (u, v) = (at®' + bt*?, P+ dif? e Q,
Aat ™+ b2, P+ dtP?)
= (1 =) ((TiN1 (@t ' + bt )™ + TNy (at™ " + bt )",
RINy(ctP 71 4+ dtP )Pl £ TN (et ™1 + dtP 2P ).
IfA=1,thena=>b=c=d=0,and if min{a® + b>, ¢ + d’} > B, then by (H3)
Aa* + 0,2 +d*) = (1 —A)(aTiNy(at* ™! + bt*™2) + bToN, (at® ! + bt*2),
RN, (ctP ™1 + dtP=2) + AT,N, (ctP 1 + dtP=2)) < (0, 0).

which, in either case, is a contradiction. If the other part of (H3) is satisfied, then we
take

Q3 ={(u, v) € KerL : \J(u, v) + (1 — 2)QN(u, v) = (O, 0), » € [0, 1]},
and, again, obtain a contradiction. Thus, in either case

I )y = |l (a* " +b* 2, =+ diP2)|ly
= max{]| at® " +bt* 2y, | ¢t +diP 2y, |1}
=  max{(1l+2(«))lal + (1 + T'(a — 1))|b],
(L+20(B))lel + (1 + (B — 1))1d]}
max{[(1 + 2T («)) + (1 + '(@ — 1))]B,
[(1+20(B)) + (1 +T'(B — 1))]B}
(4+2l'(a¢) + (e — 1) +2T°(B) + (B — 1))B,

IA

IA

for all x € Qj, that is, Q3 is bounded.

In the following, we shall prove that all the conditions of Theorem 1.1 are satisfied.
Set Q) to be a bounded open set of Y such that U} | Q C Q. By Lemma 3.2, the operator
Ky,(I — Q)N :Q — Y is compact N thus is L-compact on Q.

Then by the above argument, we have

(i) L(&, v) = AN(u, v) for every ((u, v), 1) € [domL\KerL n 0Q] x [0, 1];

(ii) N(u, v) ¢ ImL, for every (u, v) € KerL n 0Q.

Finally, we will prove that (iii) of Theorem 1.1 is satisfied.

Let H((u, v), A) = +AJ(u, v) + (1 - A)QN(u, v), where I is the identity operator in the
Banach space Y. According to the above argument, we know that H((«, v), A) = 0, for
all (&, v) € 9Q n KerL, and thus, by the homotopy property of degree,

S(QN|kerL, KerL N, (0,0)) =deg(H(-, 0), KerL N2, (0,0))

=deg(H(-, 1), KerL N 2, (0,0))
= deg(£l, KerL N2, (0,0))

Ay —Ay AV —Ay

= A, A A A

= sgn ((ﬂ: Bas Ay [E] Sy A ))
A A A A

40,

Then, by Theorem 1.1, L(&, v) = N(u, v)has at least one solution in JomL N ©, and
so, the BVP (1.1)-(1.3) has at least one solution in the space Y.
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