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Abstract

This paper performs a further investigation on the q-Bernoulli polynomials and
numbers given by Açikgöz et al. (Adv. Differ. Equ. 2010, 9, Article ID 951764) some
incorrect properties are revised. It is pointed out that the definition concerning the
q-Bernoulli polynomials and numbers is unreasonable. The purpose of this paper is
to redefine the q-Bernoulli polynomials and numbers and correct its wrong
properties and rebuild its theorems.

1 Introduction/Preliminaries
Many mathematicians have studied the q-Bernoulli, q-Euler polynomials and related

topics (see [1-11]). It is worth that Açikgöz et al. [1] give a new approach to the q-Ber-

noulli polynomials and the q-Bernstein polynomials and show some properties. That is,

Açikgöz et al. introduced a new generating function related the q-Bernoulli polyno-

mials and gave a new construction of these polynomials related to the second kind

Stirling numbers and the q-Bernstein polynomials in [1]. The purpose of this paper is

to redefine a generating function related the q-Bernoulli polynomials and numbers and

correct its wrong properties and rebuild its theorems.

In this paper, we assume that q(∈ C) is indeterminate with |q| < 1. The q-number is

defined by [x]q =
qx−1
q−1 (see [4-9]).

It is known that the Bernoulli polynomials are defined as

t
et − 1

ext =
∞∑
n=0

Bn(x)
tn

n!
for |t| < 2π (1:1)

and that Bn(0) = Bn are called the Bernoulli numbers.

The recurrence formula for the classical Bernoulli numbers Bn is as follows:

B0 = 1 and (B + 1)n − Bn = 0 if n > 0. (1:2)

The q-extension of the following recurrence formula for the Bernoulli numbers is

given by

B0,q = 1 and q(qB + 1)n − Bn,q =
{
1 if n = 1
0 if n > 1

(1:3)

with the usual convention of replacing Bn
q by Bn,q (see [2,4]).
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2 On the q-Bernoulli polynomials and numbers
In this section, we first recall the q-Bernoulli polynomials and numbers, then indicate

the ambiguities on the Açikgöz et al. [1]’s definition for the q-Bernoulli polynomials

and redefine it. Counter-examples show that some properties are incorrect. Specially,

these examples show that the concept on the generating function of the q-Bernoulli

polynomials is unreasonable.

Definition 2.1 (Açikgöz et al. [1]) For q ∈ C with |q| < 1, let us define the q-Ber-

noulli polynomials as follows,

Dq(t, x) = −t
∞∑
y=0

qye[x+y]qt =
∞∑
n=0

Bn,q(x)
tn

n!
. (2:1)

Note that

lim
q→1

Dq(t, x) =
t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
for |t| < 2π , (2:2)

where Bn(x) are the classical Bernoulli polynomials.

In the special case x = 0, Bn,q(0) = Bn,q are called the q-Bernoulli number.

That is,

Dq(t) = Dq(t, 0) = −t
∞∑
y=0

qye[y]qt =
∞∑
n=0

Bn,q
tn

n!
. (2:3)

Remark 2.2 Definition 2.1 (Açikgöz et al. [1]) is unreasonable, since it is not the

generating functions of the q-Bernoulli polynomials and numbers. This can be seen

the following counter-examples.

Counter-example 2.3 If we take t = 0 in (2.2) of Definition 2.1 (Açikgöz et al. [1]),

then we have limq®1 Dq(0, x) = 0. But limt→0
t

et−1e
xt = 1 does not hold in the sense of

Definition 2.1 (Açikgöz et al. [1]).

Counter-example 2.4 From (2.1) of Definition 2.1 (Açikgöz et al. [1]),

Dq(t, x) =
∞∑
n=0

Bn,q(x)
tn

n!

= B0,q(x) +
∞∑
n=1

Bn,q(x)
tn

n!
,

(2:4)

and

Dq(t, x) = −t
∞∑
y=0

qye[x+y]qt

= −t
∞∑
y=0

qy
∞∑
n=0

[x + y]nq
tn

n!

=
∞∑
n=0

⎛
⎝− 1

(1−q)n

n∑
l=0

(
n
l
)(−1)lqlx

∞∑
y=0

q(l+1)y

⎞
⎠ tn+1

n!

=
∞∑
n=0

(
− n

(1−q)n−1

n−1∑
l=0

(
n − 1

l
)(−1)lqlx l

1−ql+1

)
tn

n!
.

(2:5)
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Comparing these identities (2.4) and (2.5), we obtain

B0,q(x) = 0 and Bn,q(x) = − n

(1 − q)n−1

n−1∑
l=0

(
n − 1

l
)(−1)lqlx

l

1 − ql+1
. (2:6)

This cannot satisfy some well-known results related the Bernoulli polynomials and

numbers. For example, B0 = 1.

Counter-example 2.5 From Definition 2.1 (Açikgöz et al. [1]), we note that

qDq(t, 1) − Dq(t) = −t
∞∑
y=0

qy+1e[1+y]qt − t
∞∑
y=0

qye[y]qt

= t,

(2:7)

and

qDq(t, 1) − Dq(t) = q
∞∑
n=0

Bn,q(1)
tn

n!
−

∞∑
n=0

Bn,q
tn

n!

=
∞∑
n=0

(qBn,q(1) − Bn,q)
tn

n!
.

(2:8)

From (2.7) and (2.8), we can easily derive that

Bn,q = 0 and qBn,q(1) − Bn,q =
{
1 if n = 1
0 if n > 1

. (2:9)

From (2.1) of Definition 2.1 (Açikgöz et al. [1]),

∞∑
n=0

Bn,q(x)
tn

n!
= Dq(t, x)

= −t
∞∑
y=0

qye[x+y]qt

= e[x]qt
1
qx
Dq(tqx)

=

( ∞∑
l=0

[x]lq t
l

l!

)
×

( ∞∑
m=0

Bm,q
q(m−1)xtm

m!

)

=
∞∑
n=0

(
n∑

m=0

(
n
m
)Bm,q q(m−1)x[x]n−m

q

)
tn

n!
.

(2:10)

If we compare the coefficients on the both sides in (2.10),

Bn,q(x) =
n∑

m=0

(
n
m
)Bm,qq(m−1)x[x]n−m

q . (2:11)

From (2.9) and (2.11),

B0,q(x) =
1
qx
B0,q = 0. (2:12)

However, these are also incorrect.

Next, we redefine the q-Bernoulli polynomials and numbers.
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Definition 2.6 For q ∈ C with |q| < 1, let us define the q-Bernoulli polynomials Bn,q

(x) as follows,

Fq(t, x) =
q − 1
logq

e
1

1−q t − t
∞∑
m=0

qx+me[x+m]qt =
∞∑
n=0

Bn,q(x)
tn

n!
. (2:13)

Note that

lim
q→1

Fq(t, x) =
t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
for |t| < 2π , (2:14)

where Bn(x) are the classical Bernoulli polynomials.

In the special case x = 0, Bn,q(0) = Bn,q are called the q-Bernoulli numbers. That is,

Fq(t) = Fq(t, 0) =
∞∑
n=0

Bn,q
tn

n!
. (2:15)

By simple calculations, we get

∞∑
n=0

Bn,q(x)
tn

n!
= Fq(t, x)

= e[x]qtFq(qxt)

=

( ∞∑
m=0

[x]mq t
m

m!

)
×

( ∞∑
l=0

Bl,q
qlxtl

l!

)

=
∞∑
n=0

(
n∑
l=0

(
n
l
)Bl,qqlx[x]n−l

q

)
tn

n!
.

(2:16)

Comparing the coefficients on the both sides in (2.16), we obtain

Bn,q(x) =
n∑
l=0

(
n
l
)Bl,qqlx[x]n−l

q . (2:17)

From (2.13) and (2.15), we derive the following equation.

B0,q =
q − 1
logq

and Bn,q(1) − Bn,q =
{
1 if n = 1
0 if n > 1

. (2:18)

By (2.17) and (2.18), we can see that

B0,q =
q − 1
logq

and
n∑
l=0

(
n
l
)Bl,qql − Bn,q =

{
1 if n = 1
0 if n > 1

. (2:19)

Theorem 2.7* For n Î N*, we have

B0,q =
q − 1
logq

and (qBq + 1)n − Bn,q =
{
1 if n = 1
0 if n > 1

. (2:20)

with the usual convention of replacing Bn
q by Bn,q.

Remark 2.8 Theorem 2.7* is a revised theorem of Theorem 2.1 in [1].
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From (2. 13), we have

∞∑
n=0

Bn,q(x)
tn

n!
= Fq(t, x)

=
q − 1
logq

e
1

1−q t − t
∞∑
m=0

qx+me[x+m]qt

=
q − 1
logq

∞∑
n=0

1
(1 − q)n

tn

n!
−

∞∑
m=0

qx+m
∞∑
n=0

n[x +m]n−1
q

tn

n!

=
∞∑
n=0

(
q−1
logq

1
(1−q)n − n

∞∑
m=0

qx+m[x +m]n−1
q

)
tn

n!

=
∞∑
n=0

(
− (1−q)n

logq − n
(1−q)n−1

∞∑
m=0

qx+m
n−1∑
l=0

(
n − 1

l
)(−1)lq(x+m)l

)
tn

n!

=
∞∑
n=0

(
(q−1)1−n

logq + n
(1−q)n−1

n−1∑
l=0

(
n − 1

l
)(−1)l+1q(l+1)x 1

1−q(l+1)

)
tn

n!

=
∞∑
n=0

(
1

(1−q)n

n∑
l=0

(
n
l
)(−1)lqlx l

[l]q

)
tn

n!
.

(2:21)

By (2.21), we obtain the following theorem.

Theorem 2.9* For n Î N*, we have

B0,q =
q − 1
logq

and Bn,q(x) =
1

(1 − q)n

n∑
l=0

(
n
l
)(−1)lqlx

l

[l]q
. (2:22)

Remark 2.10 Theorem 2.9* is a revised theorem of Theorem 2.3 in [1].
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