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1. Introduction
Finite difference inequalities in one or two independent variables which provide expli-

cit bounds play a fundamental role in the study of boundedness, uniqueness, and con-

tinuous dependence on initial data of solutions of difference equations. Many

difference inequalities have been established (for example, see [1-11] and the references

therein). In the research of difference inequalities, generalization of known inequalities

has been paid much attention by many authors. Here we list some recent results in the

literature.

In [[12], Theorems 2.6-2.8], Pachpatte presents the following six discrete inequalities,

based on which some new bounds on unknown functions are established.

(a1) : u(m, n) ≤ a(m, n) + b(m, n)
m−1∑
s=0

∞∑
t=n+1

c(s, t)u(s, t),
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(a2) : u(m, n) ≤ a(m, n) + b(m, n)
∞∑

s=m+1

∞∑
t=n+1

c(s, t)u(s, t),

(a3) : u(m, n) ≤ a(m, n) +
m−1∑
s=0

b(s, n)u(s, n) +
∞∑

s=m+1

∞∑
t=n+1

c(s, t)u(s, t),

(a4) : u(m, n) ≤ a(m, n) +
∞∑

s=m+1

b(s, n)u(s, n) +
∞∑

s=m+1

∞∑
t=n+1

c(s, t)u(s, t),
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(a5) : u(m, n) ≤ a(m, n) +
m−1∑
s=0

b(s, n)u(s, n) +
m−1∑
s=0

∞∑
t=n+1

L(s, t, u(s, t)),

(a6) : u(m, n) ≤ a(m, n) +
∞∑

s=m+1

b(s, n)u(s, n) +
∞∑

s=m+1

∞∑
t=n+1

L(s, t, u(s, t)),

where u, a, b, c are nonnegative functions defined on m Î N0, n Î N0, and L : N0 ×

N0 × ℝ+ ® ℝ+ satisfies 0 ≤ L(m, n, u) - L(m, n, v) ≤ M(m, n, v)(u - v) for u ≥ v ≥ 0,

where M : N0 × N0 × ℝ+ ® ℝ+.

Recently, in [[13], Theorems 1-6], Meng and Li present the following inequalities

with more general forms.

(b1) : up(m, n) ≤ a(m, n) + b(m, n)
m−1∑
s=0

∞∑
t=n+1

[c(s, t)u(s, t) + e(s, t)],

(b2) : up(m, n) ≤ a(m, n) + b(m, n)
∞∑

s=m+1

∞∑
t=n+1

[c(s, t)u(s, t) + e(s, t)],

(b3) : up(m, n) ≤ a(m, n) +
m−1∑
s=0

b(s, n)up(s, n) +
m−1∑
s=0

∞∑
t=n+1

[c(s, t)u(s, t) + e(s, t)],

(b4) : up(m, n) ≤ a(m, n) +
∞∑

s=m+1

b(s, n)up(s, n) +
∞∑

s=m+1

∞∑
t=n+1

[c(s, t)u(s, t) + e(s, t)].

(b5) : up(m, n) ≤ a(m, n) +
m−1∑
s=0

b(s, n)up(s, n) +
m−1∑
s=0

∞∑
t=n+1

L(s, t, u(s, t)),

(b6) : up(m, n) ≤ a(m, n) +
∞∑

s=m+1

b(s, n)up(s, n) +
∞∑

s=m+1

∞∑
t=n+1

L(s, t, u(s, t)),

where p ≥ 1 is a constant, u, a, b, c, e are nonnegative functions defined on m Î N0,

n Î N0, and L is defined the same as in (a5)-a(6).

As one can see, (b1)-(b2) are generalizations of (a1)-(a2), while (b4)-(b6) are general-

izations of (a4)-(a6).

More recently, Meng and Ji [[14], Theorems 3, 4, 7, 8] extended (b1)-(b4) to the fol-

lowing inequalities.

(c1) : up(m, n) ≤ a(m, n)+b(m, n)
m−1∑
s=0

∞∑
t=n+1

[c(s, t)uq(s, t) + d(s, t)ur(s, t) + e(s, t)],

(c2) : up(m, n) ≤ a(m, n)+b(m, n)
∞∑

s=m+1

∞∑
t=n+1

[c(s, t)uq(s, t) + d(s, t)ur(s, t) + e(s, t)]],

(c3) : up(m, n) ≤ a(m, n)+
m−1∑
s=0

b(s, n)up(s, n)+
m−1∑
s=0

∞∑
t=n+1

[c(s, t)uq(s, t) + d(s, t)ur(s, t) + e(s, t)],
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(c4) : up(m, n) ≤ a(m, n)+
∞∑

s=m+1

b(s, n)up(s, n)+
∞∑

s=m+1

∞∑
t=n+1

[c(s, t)uq(s, t) + d(s, t)ur(s, t) + e(s, t)].

where p, q, r are constants with p ≥ q, p ≥ r, p ≠ 0, and u, a, b, c, d, e are nonnega-

tive functions defined on m Î N0, n Î N0.

The presented inequalities above have proved to be very useful in the study of quan-

titative as well as qualitative properties of solutions of certain difference equations.

Motivated by the work mentioned above, in this paper, we will establish some more

generalized finite difference inequalities, which provide new bounds for unknown func-

tions lying in these inequalities. We will illustrate the usefulness of the established

results by applying them to study the boundedness, uniqueness, and continuous depen-

dence on initial data of solutions of certain difference equations.

Throughout this paper, ℝ denotes the set of real numbers and ℝ+ = [0, ∞), and ℤ

denotes the set of integers, while N0 denotes the set of nonnegative integers. I := [m0, ∞] ∩
ℤ and Î := [n0, ∞]

⋂
Z are two fixed lattices of integral points in ℝ, where m0, n0 Î ℤ.

Let � := I × Î ⊂ Z2. We denote the set of all ℝ-valued functions on Ω by ℘(Ω), and

denote the set of all ℝ+-valued functions on Ω by ℘+(Ω). The partial difference operators

Δ1 and Δ2 on u Î ℘(Ω) are defined as Δ1 u(m, n) = u(m +1, n) - u(m, n), Δ2u(m, n) = u

(m, n + 1) - u(m, n).

2. Main results
Lemma 2.1. [[15]] Assume that a ≥ 0, p ≥ q ≥ 0, and p ≠ 0, then for any K >0

a
q
p ≤ q

p
K

q−p
p a +

p − q
p

K
q
p .

Lemma 2.2. Let u(m, n), a(m, n), b(m, n) are nonnegative functions defined on Ω

with a(m, n) not equivalent to zero.

(1) Assume that a(m, n) is nondecreasing in the first variable. If

u(m, n) ≤ a(m, n) +
m−1∑
s=m0

b(s, n)u(s, n)

for (m, n) Î Ω, then

u(m, n) ≤ a(m, n)
m−1∏
s=m0

[1 + b(s, n)].

(2) Assume that a(m, n) is decreasing in the first variable. If

u(m, n) ≤ a(m, n) +
∞∑

s=m+1

b(s, n)u(s, n)

for (m, n) Î Ω, then

u(m, n) ≤ a(m, n)
∞∏

s=m+1

[1 + b(s, n)].
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Remark 1. Lemma 2.2 is a direct variation of [[12], Lemma 2.5].

Theorem 2.1. Suppose u, a, b, f, g, h, w Î ℘+ (Ω), and b, f, g, h, w are nondecreasing

in the first variable, while decreasing in the second variable. a : I ® I is nondecreasing

with a (m) ≤ m for ∀m Î I, while β : Î → Î is nondecreasing with b(n) ≥ n for ∀n ∈ Î .

p, q, r, l are constants with p ≥ q, p ≥ r, p ≥ l, p ≠ 0.

If for (m, n) Î Ω, u(m, n) satisfies the following inequality

up(m, n) ≤ a(m, n)+b(m, n)
α(m)−1∑
s=α(m0)

∞∑
t=β(n)+1

[f (s, t)uq(s, t) + g(s, t)ur(s, t) + h(s, t) +
s∑

ξ=0

∞∑
η=t

w(ξ , η)ul(ξ , η)], (1)

then we have

u(m, n) ≤ {a(m, n) + b(m, n)H(m, n)
m−1∏
s=m0

{1+
∞∑

t=n+1

[α(s + 1) − α(s)][β(t) − β(t − 1)]

[f (s, t)
q
p
K

q−p
p + g(s, t)

r
p
K

r−p
p +

s∑
ξ=0

∞∑
η=t

w(ξ , η)
l
p
K

l−p
p ]}}

1
p

(2)

provided H(m.n) >0, where K > 0 is a constant, and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(m, n) =
α(m)−1∑
s=α(m0)

∞∑
t=β(n)+1

{f (s, t)[q
p
K

q−p
p a(s, t) +

p − q
p

K
q
p ] + g(s, t)[ rpK

r−p
p a(s, t) +

p − r
p

K
r
p ]

+h(s, t) +
s∑

ξ=0

∞∑
η=t

w(ξ , η)[
l

p
K

l−p
p a(ξ , η) +

p − l

p
K

l
p ]},

f = f (m, n)b(m, n), g = g(m, n)b(m, n), w = w(m, n)b(m, n).

(3)

Proof. Let z(m, n) =
α(m)−1∑
s=α(m0)

∞∑
t=β(n)+1

[f (s, t)uq(s, t) + g(s, t)ur(s, t) + h(s, t) +
s∑

ξ=0

∞∑
η=t

f (ξ , η)ul(ξ , η)].

Then we have

u(m, n) ≤ [a(m, n) + b(m, n)z(m, n)]
1
p . (4)

Furthermore, if given (X, Y ) Î Ω, and (m, n) Î ([m0, X]×[Y, ∞]) ∩ Ω, then using (4)

and Lemma 2.1 we have

z(m, n) ≤
α(m)−1∑
s=α(m0)

∞∑
t=β(n)+1

{f (s, t)[a(s, t) + b(s, t)z(s, t)]
q
p + g(s, t)[a(s, t) + b(s, t)z(s, t)]

r
p

+ h(s, t) +
s∑

ξ=0

∞∑
η=t

w(ξ , η)[a(ξ , η) + b(ξ , η)z(ξ , η)]
l
p }

≤
α(m)−1∑
s=α(m0)

∞∑
t=β(n)+1

{f (s, t)[q
p
K

q−p
p (a(s, t) + b(s, t)z(s, t)) +

p − q
p

K
q
p ]

+ g(s, t)[
r
p
K

r−p
p (a(s, t) + b(s, t)z(s, t)) +

p − r
p

K
r
p ]

+ h(s, t) +
s∑

ξ=0

∞∑
η=t

w(ξ , η)[
l
p
K

l−p
p (a(ξ , η) + b(ξ , η)z(ξ , η)) +

p − l
p

K
l
p ]}

= H(m, n) +
α(m)−1∑
s=α(m0)

∞∑
t=β(n)+1

{f (s, t)b(s, t)q
p
K

q−p
p z(s, t) + g(s, t)b(s, t)

r

p
K

r−p
p z(s, t)

+
s∑

ξ=0

∞∑
η=t

w(ξ , η)b(ξ , η)
l
p
K

l−p
p z(ξ , η)}

≤ H(X, Y) +
α(m)−1∑
s=α(m0)

∞∑
t=β(n)+1

{f (s, t)q
p
K

q−p
p z(s, t) + g(s, t)

r

p
K

r−p
p z(s, t)

+
s∑

ξ=0

∞∑
η=t

w(ξ , η)
l
p
K

l−p
p z(ξ , η)},

(5)
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where H, f , g, w are defined in (3).

Let the right side of (5) be v(m, n). Then

z(m, n) ≤ v(m, n), (6)

and

[v(m + 1, n) − v(m, n)] − [v(m + 1, n + 1) − v(m, n + 1)]

=
α(m+1)−1∑
s=α(m)

β(n+1)∑
t=β(n)+1

[f (s, t)
q

p
K

q−p
p z(s, t) + g(s, t)

r

p
K

r−p
p z(s, t) +

s∑
ξ=0

∞∑
η=t

w(ξ , η)
l

p
K

l−p
p z(ξ , η)]

≤
α(m+1)−1∑
s=α(m)

β(n+1)∑
t=β(n)+1

[f (s, t)
q
p
K

q−p
p v(s, t) + g(s, t)

r
p
K

r−p
p v(s, t) +

s∑
ξ=0

∞∑
η=t

w(ξ , η)
l
p
K

l−p
p v(ξ , η)]

≤
α(m+1)−1∑
s=α(m)

β(n+1)∑
t=β(n)+1

[f (s, t)
q
p
K

q−p
p + g(s, t)

r
p
K

r−p
p +

s∑
ξ=0

∞∑
η=t

w(ξ , η)
l
p
K

l−p
p ]v(s, t)

≤ [α(m + 1) − α(m)][β(n + 1) − β(n)][f (α(m + 1) − 1, β(n) + 1)
q
p
K

q−p
p

+g(α(m + 1) − 1, β(n) + 1)
r

p
K

r−p
p +

α(m+1)−1∑
ξ=0

∞∑
η=β(n)+1

w(ξ , η)
l

p
K

l−p
p ]v(α(m + 1) − 1, β(n) + 1)

≤ [α(m + 1) − α(m)][β(n + 1) − β(n)][f (m, n + 1)
q
p
K

q−p
p + g(m, n + 1)

r
p
K

r−p
p

+
m∑

ξ=0

∞∑
η=n+1

w(ξ , η)
l
p
K

l−p
p ]v(m, n + 1).

Considering v(m, n) ≥ v(m, n + 1), we have

v(m + 1,n) − v(m,n)
v(m,n)

− v(m + 1,n + 1) − v(m,n + 1)
v(m,n + 1)

≤ [α(m + 1) − α(m)][β(n + 1) − β(n)][f (m, n + 1)
q
p
K

q−p
p + g(m, n + 1)

r
p
K

r−p
p +

m∑
ξ=0

∞∑
η=n+1

w(ξ , η)
l
p
K

l−p
p ].

(7)

Setting n = t in (7), and a summary with respect to t from n to r - 1 yields

v(m + 1,n) − v(m,n)
v(m,n)

− v(m + 1, r) − v(m, r)
v(m, r)

≤
r∑

t=n+1

[α(m + 1) − α(m)][β(t) − β(t − 1)][f (m, t)
q
p
K

q−p
p + g(m, t)

r
p
K

r−p
p +

m∑
ξ=0

∞∑
η=t

w(ξ , η)
l
p
K

l−p
p ].

(8)

Letting r ® ∞ in (8), using v(m, ∞) = H(X, Y ) we obtain

v(m + 1,n) − v(m,n)
v(m,n)

≤
∞∑

t=n+1

[α(m + 1) − α(m)][β(t) − β(t − 1)][f (m, t)
q
p
K

q−p
p + g(m, t)

r
p
K

r−p
p +

m∑
ξ=0

∞∑
η=t

w(ξ , η)
l
p
K

l−p
p ],

which is followed by

v(m + 1,n)
v(m,n)

≤ {1+
∞∑

t=n+1

[α(m + 1) − α(m)][β(t)−β(t−1)][f (m, t)
q

p
K

q−p
p +g(m, t)

r

p
K

r−p
p +

m∑
ξ=0

∞∑
η=t

w(ξ ,n)
l

p
K

l−p
p ]} (9)

Setting m = s in (9), and a multiple with respect to s from m0 to m - 1 yields

v(m,n)
v(m0,n)

≤
m−1∏
s=m0

{1 +
∞∑

t=n+1

[α(s + 1) − α(s)][β(t) − β(t − 1)][f (s, t)
q
p
K

q−p
p + g(s, t)

r
p
K

r−p
p +

s∑
ξ=0

∞∑
η=t

w(ξ , η)
l
p
K

l−p
p ]}. (10)
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Considering v(m0, n) = H(X, Y ), and then combining (4), (6) and (10) we obtain

u(m, n) ≤ {a(m, n) + b(m, n)H(X, Y)
m−1∏
s=m0

{1 +
∞∑

t=n+1

[α(s + 1) − α(s)][β(t) − β(t − 1)]

[f (s, t)
q
p
K

q−p
p + g(s, t)

r
p
K

r−p
p +

s∑
ξ=0

∞∑
η=t

w(ξ , η)
l
p
K

l−p
p ]}}

1
p .

(11)

Setting m = X, n = Y in (11), and considering (X, Y ) Î Ω is selected arbitrarily, then

after substituting X, Y with m, n we obtain the desired inequality.

Remark 2. If we take Ω = N0 × N0, w(m, n) ≡ 0, a (m) = m, b(n) = n, and omit the

conditions “b, f, g, h, w are nondecreasing in the first variable, while decreasing in the

second variable” in Theorem 2.1, which is unnecessary for the proof since a(m) = m, b
(n) = n, then Theorem 2.1 reduces to [[14], Theorem 3]. Furthermore, if g(m, n) ≡ 0,

q = 1, p ≥ 1, then Theorem 2.1 reduces to [[13], Theorem 1].

Following a similar process as the proof of Theorem 2.1, we have the following three

theorems.

Theorem 2.2. Suppose u, a, b, f, g, h, w Î ℘+ (Ω), and b, f, g, h, w are decreasing

both in the first variable and the second variable. a : I ® I is nondecreasing with a(m)

≥ m for ∀m Î I, while β : Î → Î is nondecreasing with b(n) ≥ n for ∀n ∈ Î . p, q, r, l

are defined as in Theorem 2.1. If for (m, n) Î Ω, u(m, n) satisfies the following

inequality

up(m, n) ≤ a(m, n)+b(m, n)
∞∑

s=α(m)+1

∞∑
t=β(n)+1

[f (s, t)uq(s, t) + g(s, t)ur(s, t) + h(s, t) +
∞∑
ξ=s

∞∑
η=t

w(ξ , η)ul(ξ , η)],

then we have

u(m, n) ≤ {a(m, n) + b(m, n)H(m, n)
∞∏

s=α(m)+1

{1 +
∞∑

t=n+1

[α(s + 1) − α(s)][β(t) − β(t − 1)]

[f (s, t)
q
p
K

q−p
p + g(s, t)

r
p
K

r−p
p +

∞∑
ξ=s

∞∑
η=t

w(ξ , η)
l
p
K

l−p
p ]}}

1
p

provided H(m.n) >0, where f , g, w are defined as in Theorem 2.1, and

H(m, n) =
∞∑

s=α(m)+1

∞∑
t=β(n)+1

{f (s, t)[q
p
K

q−p
p a(s, t) +

p − q
p

K
q
p ] + g(s, t)[

r
p
K

r−p
p a(s, t) +

p − r
p

K
r
p ]

+h(s, t) +
∞∑
ξ=s

∞∑
η=t

w(ξ , η)[
l
p
K

l−p
p a(ξ , η) +

p − l
p

K
l
p ]}.

Remark 3. If we take Ω = N0 × N0, w(m, n) ≡ 0, a(m) = m, b(n) = n, and omit the

conditions “b, f, g, h, w are decreasing both in the first variable and the second vari-

able” in Theorem 2.2, which are unnecessary for the proof since a(m) = m, b(n) = n,

then Theorem 2.2 reduces to [[14], Theorem 4]. Furthermore, if g(m, n) ≡ 0, q = 1, p ≥

1, then Theorem 2.2 reduces to [[13], Theorem 2].

Theorem 2.3. Suppose u, a, b, f, g, h, w Î ℘+ (Ω), and b, f, g, h, w are nondecreasing

both in the first variable and the second variable. a : I ® I is nondecreasing with a(m)

≤ m for ∀m Î I, while β : Î → Î is nondecreasing with b(n) ≤ n for ∀n ∈ Î . p, q, r, l

are defined as in Theorem 2.1. If for (m, n) Î Ω, u(m, n) satisfies the following

inequality
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up(m, n) ≤ a(m, n)+b(m, n)
α(m)−1∑
s=α(m0)t

β(n)−1∑
=β(n0)

[f (s, t)uq(s, t) + g(s, t)ur(s, t) + h(s, t) +
s∑

ξ=0

t∑
η=0

w(ξ , η)ul(ξ , η)],

then we have

u(m, n) ≤ {a(m, n) + b(m, n)H(m, n)
m−1∏
s=m0

{1 +
n−1∑
t=n0

[α(s + 1) − α(s)][β(t) − β(t − 1)]

[f (s, t)
q
p
K

q−p
p + g(s, t)

r
p
K

r−p
p +

s∑
ξ=0

t∑
η=0

w(ξ , η)
l
p
K

l−p
p ]}}

1
p

provided H(m.n) >0, where f , g, w are defined as in Theorem 2.1, and

H(m, n) =
α(m)−1∑
s=α(m0)

β(n)−1∑
t=β(n0)

{f (s, t)[q
p
K

q − p
p a(s, t) +

p − q
p

K

q
p ] + g(s, t)[

r
p
K

r − p
p a(s, t) +

p − r
p

K

r
p ]

+ h(s, t) +
s∑

ξ=0

t∑
η=0

w(ξ , η)[
l
p
K

l−p
p a(ξ , η) +

p − l
p

K

l
p ]}.

Theorem 2.4. Suppose u, a, b, f, g, h, w Î ℘+ (Ω), and b, f, g, h, w are decreasing in

the first variable, while nondecreasing in the second variable. a : I ® I is nondecreas-

ing with a(m) ≥ m for ∀m Î I, while β : Î → Î is nondecreasing with b(n) ≤ n for

∀n ∈ Î . p, q, r, l are defined as in Theorem 2.1. If for (m, n) Î Ω, u(m, n) satisfies the

following inequality

up(m, n) ≤ a(m, n)+b(m, n)
∞∑

s=α(m)+1

β(n)−1∑
t=β(n0)

[f (s, t)uq(s, t) + g(s, t)ur(s, t) + h(s, t) +
∞∑
ξ=s

t∑
η=0

w(ξ , η)ul(ξ , η)],

then we have

u(m, n) ≤ {a(m, n) + b(m, n)H(m, n)
∞∏

s=α(m)+1

{1 +
n−1∑
t=n0

[α(s + 1) − α(s)][β(t) − β(t − 1)]

[f (s, t)
q
p
K

q−p
p + g(s, t)

r
p
K

r−p
p +

∞∑
ξ=s

t∑
η=0

w(ξ , η)
l
p
K

l−p
p ]}}

1
p

provided H(m.n) >0, where f , g, w are defined as in Theorem 2.1, and

H(m, n) =
∞∑

s=α(m)+1

β(n)−1∑
t=β(n0)

{f (s, t)[q
p
K

q−p
p a(s, t) +

p − q
p

K
q
p ] + g(s, t)[

r
p
K

r−p
p a(s, t) +

p − r
p

K
r
p ]

+ h(s, t) +
∞∑
ξ=s

t∑
η=0

w(ξ , η)[
l
p
K

l−p
p a(ξ , η) +

p − l
p

K
l
p ]}.

Next we will study the following difference inequality:

up(m, n) ≤ a(m, n) +
m−1∑
s=m0

b(s, n)up(s, n)+

α(m)−1∑
s=α(m0)

∞∑
t=β(n)+1

[f (s, t)uq(s, t) + g(s, t)ur(s, t) + h(s, t) +
s∑

ξ=0

∞∑
η=t

w(ξ , η)ul(ξ , η)],

(12)

where u, a, b, f, g, h, w Î ℘+(Ω) with a(m, n) not equivalent to zero, and f, g, h, w

are nondecreasing in the first variable, while decreasing in the second variable, a is

nondecreasing in the first variable, and b is decreasing in the second variable, a, b, p,
q, r, l are defined as in Theorem 2.1.
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Theorem 2.5. If for (m, n) Î Ω, u(m, n) satisfies (12), then we have

u(m, n) ≤{{a(m, n) + H̃(m, n)
m−1∏
s=m0

{1 +
∞∑

t=n+1

[α(s + 1) − α(s)][β(t) − β(t − 1)]

[̃f (s, t)
q
p
K

q−p
p + g̃(s, t)

r
p
K

r−p
p +

s∑
ξ=0

∞∑
η=t

w̃(ξ , η)
l
p
K

l−p
p ]}}J(m, n)}

1
p

(13)

provided H̃(m.n) > 0, where K >0 is a constant, and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H̃(m, n) =
α(m)−1∑
s=α(m0)

∞∑
t=β(n)+1

{f (s, t)[q
p
K

q−p
p a(s, t)J(s, t) +

p − q
p

K
q
p ]

+g(s, t)[
r
p
K

r−p
p a(s, t))J(s, t) +

p − r
p

K
r
p ]

+h(s, t) +
s∑

ξ=0

∞∑
η=t

w(ξ , η)[
l
p
K

l−p
p a(ξ , η)J(ξ , η) +

p − l
p

K
l
p ]},

f̃ (m, n) = f (m, n)J
q
p (m, n), g̃(m, n) = g(m, n)J

r
p (m, n), w̃(m, n) = w(m, n)J

l
p (m, n),

J(m, n) =
m−1∏
s=m0

[1 + b(s, n)].

(14)

Proof: Denote z(m, n) =
α(m)−1∑
s=α(m0)

∞∑
t=β(n)+1

[f (s, t)uq(s, t) + g(s, t)ur(s, t) + h(s, t) +
s∑

ξ=0

∞∑
η=t

w(ξ , η)ul(ξ , η)], and v(m, n)

= a(m, n) + z(m, n). Then v(m, n) is nondecreasing in the first variable, and

up(m, n) ≤ v(m, n) +
m−1∑
s=m0

b(s, n)up(s, n). (15)

By Lemma 2.2 we obtain

up(m, n) ≤ v(m, n)
m−1∏
s=m0

[1 + b(s, n)] = (a(m, n) + z(m, n))J(m, n), (16)

where J(m, n) is defined in (14). Furthermore, using Lemma 2.1 we have

z(m, n) ≤
α(m)−1∑
s=α(m0)

∞∑
t=β(n)+1

{f (s, t)[(a(s, t) + z(s, t))J(s, t)]
q
p + g(s, t)[(a(s, t) + z(s, t))J(s, t)]

r
p

+ h(s, t) +
s∑

ξ=0

∞∑
η=t

w(ξ , η)[(a(ξ , η) + z(ξ , η))J(ξ , η)]
l
p }

≤
α(m)−1∑
s=α(m0)

∞∑
t=β(n)+1

{f (s, t)J
q
p (s, t)[

q
p
K

q−p
p (a(s, t) + z(s, t)) +

p − q
p

K
q
p ]

+ g(s, t)J
r
p (s, t)[

r
p
K

r−p
p (a(s, t) + z(s, t)) +

p − r
p

K
r
p ]

+ h(s, t) +
s∑

ξ=0

∞∑
η=t

w(ξ , η)J
l
p (ξ , η)[

l
p
K

l−p
p (a(ξ , η) + z(ξ , η)) +

p − l
p

K
l
p ]}

= H̃(m, n) +
α(m)−1∑
s=α(m0)

∞∑
t=β(n)+1

{̃f (s, t)q
p
K

q−p
p z(s, t)

r

p
+ g̃(s, t)K

r−p
p z(s, t)

+ h(s, t) +
s∑

ξ=0

∞∑
η=t

w̃(ξ , η)[
l
p
K

l−p
p z(ξ , η)},

(17)

where H̃, f̃ , g̃, w̃ are defined in (14).
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Obviously, f̃ , g̃ , w̃ are nondecreasing in the first variable, while decreasing in the sec-

ond variable. Following in a same manner as the proof of Theorem 2.1 we obtain

z(m, n) ≤H̃(m, n)
m−1∏
s=m0

{1 +
∞∑

t=n+1

[α(s + 1) − α(s)][β(t) − β(t − 1)]

[̃f (s, t)
q
p
K

q−p
p + g̃(s, t)

r
p
K

r−p
p +

s∑
ξ=0

∞∑
η=t

w̃(ξ , η)
l
p
K

l−p
p ]}.

(18)

Combining (16) and (18) we obtain the desired result.

Remark 4. If we take Ω = N0 × N0, w(m, n) ≡ 0, a(m) = m, b(n) = n, and omit the

conditions “f, g, h, w are nondecreasing in the first variable, while decreasing in the

second variable” and “b is decreasing in the second variable” in Theorem 2.5, then

Theorem 2.5 reduces to [[14], Theorem 7]. Furthermore, if g(m, n) ≡ 0, q = 1, p ≥ 1,

then Theorem 2.5 reduces to [[13], Theorem 3].

Following a almost same process as the proof of Theorem 2.5, we have the following

two theorems.

Theorem 2.6. Suppose u, a, b, f, g, h, w Î ℘+ (Ω) with a(m, n) not equivalent to

zero, and f, g, h, w are decreasing both in the first variable and the second variable, a

is decreasing in the first variable, and b is decreasing in the second variable, a, b are

defined as in Theorem 2.2, and p, q, r l are defined as in Theorem 2.1. If for (m, n) Î
Ω, u(m, n) satisfies the following inequality

up(m, n) ≤ a(m, n) +
∞∑

s=m+1

b(s, n)up(s, n)+

∞∑
s=α(m)+1

∞∑
t=β(n)+1

[f (s, t)uq(s, t) + g(s, t)ur(s, t) + h(s, t) +
∞∑
ξ=s

∞∑
η=t

w(ξ , η)ul(ξ , η)],

then we have

u(m, n) ≤{{a(m, n) + H̃(m, n)
∞∏

s=m+1

{1 +
∞∑

t=n+1

[α(s + 1) − α(s)][β(t) − β(t − 1)]

[̃f (s, t)
q
p
K

q−p
p + g̃(s, t)

r
p
K

r−p
p +

∞∑
ξ=s

∞∑
η=t

w̃(ξ , η)
l
p
K

l−p
p ]}}J(m, n)}

1
p

provided H̃(m.n) > 0, where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H̃(m, n) =
∞∑

s=α(m)+1

∞∑
t=β(n)+1

{f (s, t)[q
p
K

q−p
p a(s, t)J(s, t) +

p − q
p

K
q
p ]

+g(s, t)[
r

p
K

r−p
p a(s, t))J(s, t) +

p − r

p
K

r
p ]

+h(s, t) +
∞∑
ξ=s

∞∑
η=t

w(ξ , η)[
l

p
K

l−p
p a(ξ , η)J(ξ , η) +

p − l

p
K

l
p ]},

f̃ (m, n) = f (m, n)J
q
p (m, n), g̃(m, n) = g(m, n)J

r
p (m, n), w̃(m, n) = w(m, n)J

l
p (m, n),

J(m, n) =
∞∏

s=m+1

[1 + b(s, n)].

Theorem 2.7. Suppose u, a, b, f, g, h, w Î ℘+ (Ω) with a(m, n) not equivalent to

zero, and f, g, h, w are decreasing both in the first variable and the second variable, a
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is nondecreasing in the first variable, and b is decreasing in the second variable, a, b
are defined as in Theorem 2.2, and p, q, r, l are defined as in Theorem 2.1. If for (m,

n) Î Ω, u(m, n) satisfies the following inequality

up(m, n) ≤ a(m, n) +
m−1∑
s=m0

b(s, n)up(s, n)+

∞∑
s=α(m)+1

∞∑
t=β(n)+1

[f (s, t)uq(s, t) + g(s, t)ur(s, t) + h(s, t) +
∞∑
ξ=s

∞∑
η=t

w(ξ , η)ul(ξ , η)],

then we have

u(m, n) ≤ {{a(m, n) + H̃(m, n)
∞∏

s=m+1

{1 +
∞∑

t=n+1

[α(s + 1) − α(s)][β(t) − β(t − 1)]

[̃f (s, t)
q
p
K

q−p
p + g̃(s, t)

r
p
K

r−p
p +

∞∑
ξ=s

∞∑
η=t

w̃(ξ , η)
l
p
K

l−p
p ]}}J(m, n)}

1
p

provided H̃(m.n) > 0, where K >0 is a constant, and

H̃(m, n) =
∞∑

s=α(m)+1

∞∑
t=β(n)+1

{f (s, t)[q
p
K

q−p
p a(s, t)J(s, t) +

p − q
p

K
q
p ]

+ g(s, t)[
r

p
K

r−p
p a(s, t))J(s, t) +

p − r

p
K

r
p ]

+ h(s, t) +
∞∑
ξ=s

∞∑
η=t

w(ξ , η)[
l

p
K

l−p
p a(ξ , η)J(ξ , η) +

p − l

p
K

l
p ]},

and f̃ (m, n), g̃(m, n), w̃(m, n), J(m, n) are defined as in Theorem 2.5.

Remark 5. If we take Ω = N0 × N0, w(m, n) ≡ 0, a(m) = m, b(n) = n, and omit the

conditions “f, g, h, w are decreasing both in the first variable and the second variable”

and “b is decreasing in the second variable” in Theorem 2.6, then Theorem 2.6 reduces

to [[14], Theorem 8]. Furthermore, if g(m, n) ≡ 0, q = 1, p ≥ 1, then Theorem 2.6

reduces to [[13], Theorem 4].

Remark 6. If we take Ω = N0 × N0, w(m, n) ≡ 0, a(m) = m, b(n) = n, and omit the

conditions “f, g, h, w are decreasing both in the first variable and the second variable”

and “b is decreasing in the second variable” in Theorem 2.7, then Theorem 2.7 reduces

to [[12], Theorem 2.7(q1)].

In the following, we will study the difference inequality with the following form

up(m, n) ≤ a(m, n)+
m−1∑
s=m0

b(s, n)up(s, n)+
α(m)−1∑
s=α(m0)

∞∑
t=β(n)+1

[L(s, t, u(s, t)) +
s∑

ξ=0

∞∑
η=t

w(ξ , η)ul(ξ , η)], (19)

where u, a, b, w Î ℘+(Ω) with a(m, n) not equivalent to zero, and w is nonde-

creasing in the first variable, while decreasing in the second variable, a is nonde-

creasing in the first variable, and b is decreasing in the second variable, a, b are

defined as in Theorem 2.1, L : Ω × ℝ+ ® ℝ+ satisfies 0 ≤ L(m, n, u) - L(m, n, v) ≤

M(m, n, v)(u - v) for u ≥ v ≥ 0, where M : Ω × ℝ+ ® ℝ+. p, l are defined as in The-

orem 2.1 with p ≥ 1.
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Theorem 2.8. If for (m, n) Î Ω, u(m, n) satisfies (19), then

u(m, n) ≤{{a(m, n) + Ĥ(m, n)
m−1∏
s=m0

{1 +
∞∑

t=n+1

[α(s + 1) − α(s)][β(t) − β(t − 1)]

[̂f (s, t)
1
p
K

1−p
p +

s∑
ξ=0

∞∑
η=t

ŵ(ξ , η)
l
p
K

l−p
p ]}}J(m, n)}

1
p ,

(20)

provided that Ĥ(m.n) > 0, and f̂ (m, n) is nondecreasing in the first variable and

decreasing in the second variable, where K >0 is a constant, and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĥ(m, n) =
α(m)−1∑
s=α(m0)

∞∑
t=β(n)+1

{L(s, t, J
1
p (s, t)(

1
p
K

1−p
p a(s, t) +

p − 1
p

K
1
p ))

+
s∑

ξ=0

∞∑
η=t

w(ξ , η)J
l
p (ξ , η)[

l

p
K

l−p
p a(ξ , η) +

p − l

p
K

l
p ]},

f̂ (m, n) = M(m, n, J
1
p (m, n)(

1
p
K

1−p
p a(m, n) +

p − 1
p

K
1
p ))J

1
p (m, n)

1
p
K

1−p
p ,

ŵ(m, n) = w(m, n)J
l
p (m, n), J(m, n) =

m−1∏
s=m0

[1 + b(s, n)].

(21)

Proof: Denote z(m, n) =
α(m)−1∑
s=α(m0)

∞∑
t=β(n)+1

[L(s, t, u(s, t)) +
s∑

ξ=0

∞∑
η=t

w(ξ , η)ul(ξ , η)], and v(m, n)

= a(m, n) + z(m, n). Then v(m, n) is nondecreasing in the first variable, and

up(m, n) ≤ v(m, n) +
m−1∑
s=m0

b(s, n)up(s, n). (22)

By Lemma 2.2 we obtain

up(m, n) ≤ v(m, n)
m−1∏
s=m0

[1 + b(s, n)] = (a(m, n) + z(m, n))J(m, n), (23)

where J(m, n) is defined in (21). Furthermore,

z(m, n) ≤
α(m)−1∑
s=α(m0)

∞∑
t=β(n)+1

{L(s, t, ((a(s, t) + z(s, t))J(s, t))
1
p ) +

s∑
ξ=0

∞∑
η=t

w(ξ , η)((a(ξ , η) + z(ξ , η))J(ξ , η))
l
p }

≤
α(m)−1∑
s=α(m0)

∞∑
t=β(n)+1

{L(s, t, J
1
p (s, t)(

1
p
K

1−p
p (a(s, t) + z(s, t)) +

p − 1
p

K
1
p ))

+
s∑

ξ=0

∞∑
η=t

w(ξ , η)J
l
p (ξ , η)(

l
p
K

l−p
p (a(ξ , η) + z(ξ , η)) +

p − l
p

K
l
p )}

=
α(m)−1∑
s=α(m0)

∞∑
t=β(n)+1

{L(s, t, J
1
p
(s, t)(

1
p
K

1−p
p (a(s, t) + z(s, t)) +

p − 1
p

K
1
p ))

− L(s, t, J
1
p (s, t)(

1
p
K

1−p
p a(s, t) +

p − 1
p

K
1
p )) + L(s, t, J

1
p (s, t)(

1
p
K

1−p
p

a(s, t) +
p − 1
p

K
1
p ))

+
s∑

ξ=0

∞∑
η=t

w(ξ , η)J

l
p
(ξ , η)[

l
p
K

1−p
p (a(ξ , η) + z(ξ , η)) +

p − l
p

K
l
p ]}

≤
α(m)−1∑
s=α(m0)

∞∑
t=β(n)+1

{M(s, t, J
1
p (s, t)(

1
p
K

1−p
p a(s, t) +

p − 1
p

K
1
p ))J

1
p (s, t)

1
p
K

1−p
p z(s, t)

+ L(s, t, J
1
p (s, t)(

1
p
K

1−p
p a(s, t) +

p − 1
p

K
1
p ))

+
s∑

ξ=0

∞∑
η=t

w(ξ , η)J
1
p (ξ , η)[

l
p
K

l−p
p (a(ξ , η) + z(ξ , η)) +

p − l
p

K
l
p ]}

= Ĥ(m, n) +
α(m)−1∑
s=α(m0)

∞∑
t=β(n)+1

{̂f (s, t)z(s, t) +
s∑

ξ=0

∞∑
η=t

ŵ(ξ , η)
l
p
K

l−p
p z(ξ , η)},

(24)

Feng et al. Advances in Difference Equations 2011, 2011:21
http://www.advancesindifferenceequations.com/content/2011/1/21

Page 11 of 17



where Ĥ, f̂ , ŵ are defined in (21).

Then following in a same manner as the proof of Theorem 2.1 we obtain

z(m, n) ≤ Ĥ(m, n)
m−1∏
s=m0

{1 +
∞∑

t=n+1

[α(s + 1) − α(s)][β(t)−β(t−1)][̂f (s, t)
1
p
K

1−p
p +

s∑
ξ=0

∞∑
η=t

ŵ(ξ , η)
l
p
K

l−p
p ]}. (25)

The desired inequality can be deduced by the combination of (23) and (25).

Theorem 2.9. Suppose u, a, b, w Î ℘+(Ω) with a(m, n) not equivalent to zero, and

w is decreasing both in the first variable and the second variable, a is decreasing in the

first variable, and b is decreasing in the second variable, a, b are defined as in Theo-

rem 2.2, and L is defined as in Theorem 2.8. p, l are defined as in Theorem 2.1 with

p ≥ 1. If for (m, n) Î Ω, u(m, n) satisfies the following inequality

up(m, n) ≤ a(m, n)+
∞∑

s=m+1

b(s, n)up(s, n)+
∞∑

s=α(m)+1

∞∑
t=β(n)+1

[L(s, t, u(s, t)) +
∞∑
ξ=s

∞∑
η=t

w(ξ , η)ul(ξ , η)],

then

u(m, n) ≤{{a(m, n) + Ĥ(m, n)
∞∏

s=m+1

{1 +
∞∑

t=n+1

[α(s + 1) − α(s)][β(t) − β(t − 1)]

[̂f (s, t)
1
p
K

1−p
p +

∞∑
ξ=s

∞∑
η=t

ŵ(ξ , η)
l
p
K

l−p
p ]}}J(m, n)}

1
p ,

provided that Ĥ(m.n) > 0, and f̂ (m, n) is decreasing both in the first variable and

the second variable, where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĥ(m, n) =
∞∑

s=α(m)+1

∞∑
t=β(n)+1

{L(s, t, J
1
p (s, t)[

1
p
K

1−p
p a(s, t) +

p − 1
p

K
1
p ])

+
∞∑
ξ=s

∞∑
η=t

w(ξ , η)J
l
p (ξ , η)[

l
p
K

l−p
p a(ξ , η) +

p − l
p

K
l
p ]},

f̂ (m, n) = M(m, n, J
1
p
(m, n)(

1
p
K

1−p
p a(m, n) +

p − 1
p

K
1
p ))J

1
p (m, n)

1
p
K

1−p
p ,

ŵ(m, n) = w(m, n)J
l
p (m, n), J(m, n) =

∞∏
s=m+1

[1 + b(s, n)].

The proof for Theorem 2.8 is similar to Theorem 2.7, and we omit it here.

Remark 7. If we take Ω = N0 × N0, w(m, n) ≡ 0, a(m) = m, b(n) = n, and omit the

conditions “w is nondecreasing in the first variable, while decreasing in the second

variable”, “ f̂ (m, n) is nondecreasing in the first variable and decreasing in the second

variable”, and “b is decreasing in the second variable” in Theorem 2.8, then Theorem

2.8 reduces to [[13], Theorem 5].

Remark 8. If we take Ω = N0 × N0, w(m, n) ≡ 0, a(m) = m, b(n) = n, and omit the

conditions “w is decreasing both in the first variable and the second variable”, “ f̂ (m, n)

is decreasing both in the first variable and the second variable” and “b is decreasing in

the second variable” in Theorem 2.9, then Theorem 2.9 reduces to [[13], Theorem 6].

3. Applications
In this section, we will present some applications for the established results above, and

show they are useful in the study of boundedness, uniqueness, continuous dependence

of solutions of certain difference equations.
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Example 1. Consider the following difference equation

−�12up(m, n) = F1(m, n + 1, u(m, n + 1)) +
m∑

ξ=m0

∞∑
η=n+1

F2(ξ , η, u(ξ , η)), (26)

with the initial condition

up(m, ∞) = f (m), up(m0, n) = g(n), f (m0) = g(∞) = C, (27)

where p ≥ 1 is an odd number, u Î ℘ (Ω), F1, F2 : Ω × ℝ ® ℝ.

Theorem 3.1. Suppose u(m, n) is a solution of (26) and (27). If |f(m) + g(n) - C| ≤ s,
|F1(m, n, u)| ≤ f1(m, n)|u|, and |F2(m, n, u)| ≤ f2(m, n)|u|, where f1, f2 Î ℘+(Ω), then

we have

|u(m, n)| ≤ {σ +H(m, n)
m−1∏
s=m0

{1+
∞∑

t=n+1

[f1(s, t)
1
p
K

1−p
p +

s∑
ξ=0

∞∑
η=t

f2(ξ , η)
1
p
K

1−p
p ]}}

1
p , (28)

where K >0 is a constant, and

H(m, n) =
m−1∑
s=m0

∞∑
t=n+1

{f1(s, t)[1p K
1−p
p σ+

p − 1
p

K
1
p ]+

s∑
ξ=0

∞∑
η=t

f2(ξ , η)[
1
p
K

1−p
p σ+

p − 1
p

K
1
p ]}. (29)

Proof. The equivalent form of (26) and (27) is denoted by

up(m, n) = f (m) + g(n) − C +
m−1∑
s=m0

∞∑
t=n+1

[F1(s, t, u(s, t)) +
s∑

ξ=0

∞∑
η=t

F2(ξ , η, u(ξ , η))]. (30)

Then we have

|u(m, n)|p ≤ |f (m) + g(n) − C| +
m−1∑
s=m0

∞∑
t=n+1

|F1(s, t, u(s, t)) +
s∑

ξ=0

∞∑
η=t

F2(ξ , η, u(ξ , η))|

≤ |f (m) + g(n) − C| +
m−1∑
s=m0

∞∑
t=n+1

|F1(s, t, u(s, t))| +
s∑

ξ=0

∞∑
η=t

|F2(ξ , η, u(ξ , η))|

≤ σ +
m−1∑
s=m0

∞∑
t=n+1

f1(s, t)|u(s, t)| +
s∑

ξ=0

∞∑
η=t

f2(ξ , η)|u(ξ , η)|.

(31)

We note that it is unnecessary for f1, f2 being nondecreasing or decreasing since a(m) =

m, b(n) = n here, and a suitable application of Theorem 2.1 to (31) yields the desired

result.

The following theorem deals with the uniqueness of solutions of (26) and (27).

Theorem 3.2. Suppose |Fi(m, n, u) - Fi(m, n, v)| ≤ fi(m, n)|up - vp|, i = 1, 2, where fi
Î ℘+(Ω), i = 1, 2, then (26) and (27) has at most one solution.

Proof. Suppose u1(m, n), u2(m, n) are two solutions of (26) and (27). Then

|up1(m, n) − up2(m, n)|

= |
m−1∑
s=m0

∞∑
t=n+1

F1(s, t, u1(s, t)) − F1(s, t, u2(s, t)) +
s∑

ξ=0

∞∑
η=t

[F2(ξ , η, u1(ξ , η)) − F2(ξ , η, u2(ξ , η))]|

≤
m−1∑
s=m0

∞∑
t=n+1

|F1(s, t, u1(s, t)) − F1(s, t, u2(s, t))| +
s∑

ξ=0

∞∑
η=t

|F2(ξ , η, u1(ξ , η)) − F2(ξ , η, u2(ξ , η))|

≤
m−1∑
s=m0

∞∑
t=n+1

|f1(s, t)|up1(s, t) − up2(s, t)| +
s∑

ξ=0

∞∑
η=t

|f2(ξ , η)|up1(ξ , η) − up2(ξ , η)|

(32)

Treat |up1(m, n) − up2(m, n)| as one variable, and a suitable application of Theorem

2.1 to (32) yields |up1(m, n) − up2(m, n)| ≤ 0, which implies up1(m, n) ≡ up2(m, n).
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Since p is an odd number, then we have u1(m, n) ≡ u2(m, n), and the proof is

complete.

The following theorem deals with the continuous dependence of the solution of (26)

and (27) on the functions F1, F2 and the initial value f (m), g(n).

Theorem 3.3. Assume |Fi(m, n, u1) − Fi(s, t, u2)| ≤ fi(s, t)|up1 − up2|, i = 1,2, where

fi Î ℘+(Ω), i = 1, 2, |f (m) − f (m) + g(n) − g(n) ≤ ε, where ε >0 is a constant, and

furthermore, assume
m−1∑
s=m0

∞∑
t=n+1

{|F1(s, t, u(s, t))−F1(s, t, u(s, t))|+
s∑

ξ=0

∞∑
η=t

| F2(ξ , η, u(ξ , η))−F2(ξ , η, u(ξ , η))|} ≤ ε,

u ∈ ℘(�) is the solution of the following difference equation

−�12u
p(m, n) = F1(m, n + 1, u(m, n + 1)) +

m∑
ξ=0

∞∑
η=n+1

F2(ξ , η, u(ξ , η)), (33)

with the initial condition

up(m, ∞) = f (m), up(m0, n) = g(n), f (m0) = g(∞) = C, (34)

where F1, F2: Ω × ℝ ® ℝ, then

|up(m, n) − up(m, n)| ≤ (2ε)
1
p K, (35)

provided that G(m, n) ≤ K, where

G(m, n) = {1+{
m−1∑
s=m0

∞∑
t=n=1

[f1(s, t)+
s∑

ξ=0

∞∑
η=t

f2(ξ , η)]}
m−1∏
s=m0

{1+
∞∑

t=n=1

[f1(s, t) +
s∑

ξ=0

∞∑
η=t

f2(ξ , η)]}}
1
p .

Proof. The equivalent form of (33) and (34) is denoted by

up(m, n) = f (m) + g(n) − C +
m−1∑
s=m0

∞∑
t=n+1

[F1(s, t, u(s, t)) +
s∑

ξ=0

∞∑
η=t

F2(ξ , η, u(ξ , η))]. (36)

Then from (30) and (36) we have

|up(m,n) − up(m,n)|

= |f (m) + g(n) − C +
m−1∑
s=m0

∞∑
t=n+1

[F1(s, t, u(s, t)) +
s∑

ξ=0

∞∑
η=t

F2(ξ , η, u(ξ , η))]

−f (m) − g(n) + C −
m−1∑
s=m0

∞∑
t=n+1

[f 1(s, t, u(s, t)) −
s∑

ξ=0

∞∑
η=t

f 2(ξ , η, u(ξ , η))]|

≤ |f (m) − f (m) + g(n) − g(n)| +
m−1∑
s=m0

∞∑
t=n+1

{|F1(s, t, u(s, t)) − f 1(s, t, u(s, t))|

+
s∑

ξ=0

∞∑
η=t

|F2(ξ , η, u(ξ , η)) − f 2(ξ , η, u(ξ , η))|}

≤ ε +
m−1∑
s=m0

∞∑
t=n+1

{|F1(s, t, u(s, t)) − F1(s, t, u(s, t))| + |F1(s, t, u(s, t)) − f 1(s, t, u(s, t))|

+
s∑

ξ=0

∞∑
η=t

|F2(ξ , η, u(ξ , η)) − F2(ξ , η, u(ξ , η))| + |F2(ξ , η, u(ξ , η)) − f 2(ξ , η, u(ξ , η))|}

≤ 2ε +
m−1∑
s=m0

∞∑
t=n+1

{|F1(s, t, u(s, t)) − F1(s, t, u(s, t))| +
s∑

ξ=0

∞∑
η=t

|F2(ξ , η, u(ξ , η)) − F2(ξ , η, u(ξ , η))|}

≤ 2ε +
m−1∑
s=m0

∞∑
t=n+1

{f1(s, t)|up(s, t) − up(s, t)| +
s∑

ξ=0

∞∑
η=t

f2(ξ , η)|up(ξ , η) − up(ξ , η)|}.

(37)
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Then a suitable application of Theorem 2.1 to (37) yields the desired result.

Example 2. Consider the following difference equation

up(m, n) = a(m, n)+
∞∑

s=m+1

b(s, n)up(s, n)+
∞∑

s=m+1

∞∑
t=n+1

[F1(s, t, u(s, t)) +
∞∑
ξ=s

∞∑
η=t

F2(ξ , η, u(ξ , η))], (38)

where u, a, b Î ℘(Ω) with a(m, n) not equivalent to zero, p ≥ 1 is an odd number,

F1, F2 : Ω × ℝ ® ℝ.

Theorem 3.4. Suppose u(m, n) is a solution of (38). If |F1(m, n, u)| ≤ L(m, n, u), |F2
(m, n, u)| ≤ w(m, n)|u|l, where L is defined as in Theorem 2.8, and w Î ℘+(Ω), l ≥ 0, p

≥ l, then we have

|u(m, n)| ≤ {{|a(m, n)| + Ĥ(m, n)
∞∏

s=m+1

{1 +
∞∑

t=n+1

[̂f (s, t)
1
p
K

1−p
p +

∞∑
ξ=s

∞∑
η=t

ŵ(ξ , η)
l
p
K

l−p
p ]}J(m, n)}

1
p , (39)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĥ(m, n) =
∞∑

s=m+1

∞∑
t=n+1

{L(s, t, J
1
p (s, t)[

1
p
K

1−p
p a(s, t) +

p − 1
p

K
1
p ])

+
∞∑
ξ=s

∞∑
η=t

w(ξ , η)J
l
p (ξ , η)[

l
p
K

l−p
p a(ξ , η) +

p − l
p

K

l
p
]},

f̂ (m, n) = M(m, n, J
1
p (m, n)(

1
p
K

1−p
p a(m, n) +

p − 1
p

K
1
p ))J

1
p (m, n)

1
p
K

1−p
p ,

ŵ(m, n) = w(m, n)J
l
p (m, n), J(m, n) =

∞∏
s=m+1

[1 + |b(s, n)|].

(40)

Proof. From (38) we have

|u(m, n)|p ≤ |a(m, n)| +
∞∑

s=m+1

| b(s, n)||u(s, n)|p +
∞∑

s=m+1

∞∑
t=n+1

[|F1(s, t, u(s, t))| +
∞∑
ξ=s

∞∑
η=t

|F2(ξ , η, u(ξ , η))|]

≤ |a(m, n)| +
∞∑

s=m+1

| b(s, n)||u(s, n)|p +
∞∑

s=m+1

∞∑
t=n+1

[L(s, t, u(s, t)) +
∞∑
ξ=s

∞∑
η=t

w(ξ , η)|u(ξ , η)|l].
(41)

Then a suitable application of Theorem 2.9 (with a(m) = m, b(n) = n) to (41) yields

the desired result.

Similar to Theorems 3.2 and 3.3, we also have the following two theorems dealing

with the uniqueness and continuous dependence of the solution of (38) on the func-

tions a, b, F1, F2.

Theorem 3.5. Suppose |Fi(m, n, u) - Fi(m, n, v)| ≤ fi(m, n)|up - vp|, i = 1, 2, where fi
Î ℘+(Ω), i = 1, 2, then (38) has at most one solution.

Theorem 3.6. Assume |Fi(m, n, u1) − Fi(s, t, u2)| ≤ fi(s, t)|up1 − up2|, i = 1, 2, where

fi Î ℘+(Ω), i = 1, 2, |f (m) − f (m) + g(n) − g(n) ≤ ε, and furthermore, assume

u ∈ ℘(�), u ∈ ℘(�) is the solution of the following difference equation

up(m, n) = a(m, n)+
∞∑

s=m+1

b(s, n)up(s, n)+
∞∑

s=m+1

∞∑
t=n+1

[F1(s, t, u(s, t)) +
∞∑
ξ=s

∞∑
η=t

F2(ξ , η, u(ξ , η))], (42)

where F1, F2: Ω × ℝ ® ℝ, then

|up(m, n) − up(m, n)| ≤ (2ε)
1
p K,
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provided that G̃(m, n) ≤ K, where

G̃(m, n) = {{1 + {
∞∑

s=m+1

∞∑
t=n+1

[f1(s, t)J(s, t) +
∞∑
ξ=s

∞∑
η=t

f2(ξ , η)J(ξ , η)]}×

∞∏
s=m+1

{1 +
∞∑

t=n+1

[̃f1(s, t) +
∞∑
ξ=s

∞∑
η=t

f̃2(ξ , η)]}}J(m, n)}
1
p ,

and

f̃1(m, n) = f1(m, n)J(m, n), f̃2(m, n) = w(m, n)J(m, n), J(m, n) =
∞∏

s=m+1

[1 + |b(s, n)|].

The proof for Theorems 3.5-3.6 is similar to Theorems 3.2-3.3, in which Theorem

2.6 is used. Due to the limited space, we omit it here.

4. Conclusions
In this paper, some new finite difference inequalities in two independent variables are

established, which can be used as a handy tool in the study of boundedness, unique-

ness, continuous dependence on initial data of solutions of certain difference equations.

The established inequalities generalize some existing results in the literature.
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