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Abstract

In this article, we study the existence of positive solutions for a coupled system of
nonlinear differential equations of mixed fractional orders⎧⎪⎨

⎪⎩
−Dα

0+u(t) = f (t, v(t)), 0 < t < 1,
Dβ

0+v(t) = g(t, u(t)), 0 < t < 1,

u(0) = u(1) = u′(0) = v(0) = v(1) = v′(0) = v′(1) = 0,

where 2 <a ≤ 3, 3 <b ≤ 4, Dα
0+, D

β
0+ are the standard Riemann-Liouville fractional

derivative, and f, g : [0, 1] × [0, +∞) ® [0, +∞) are given continuous functions, f(t, 0)
≡ 0, g(t, 0) ≡ 0. Our analysis relies on fixed point theorems on cones. Some sufficient
conditions for the existence of at least one or two positive solutions for the
boundary value problem are established. As an application, examples are presented
to illustrate the main results.

Keywords: Positive solution, coupled system, fractional Green?’?s function, fixed
point theorem

1 Introduction
Fractional differential equations have been of great interest recently. It is caused by the

both intensive development of the theory of fractional calculus itself and applications,

see [1-6]. Recently, there are a large number of papers dealing with the existence of

solutions of nonlinear fractional differential equations by the use of techniques of

nonlinear analysis (fixed point theorems, Leray-Schauder theory, Adomian decomposi-

tion method, etc.), see [7-21]. The articles [13-21] considered boundary value problems

for fractional differential equations.

Yu and Jiang [20] examined the existence of positive solutions for the following

problem

Dα
0+u(t) + f (t, u(t)) = 0, 0 < t < 1,

u(0) = u(1) = u′(0) = 0,

where 2 <a ≤ 3 is a real number, f Î C([0,1] × [0, +∞); (0, +∞)) and Dα
0+ is the

Riemann-Liouville fractional differentiation. Using the properties of the Green func-

tion, they obtained some existence criteria for one or two positive solutions for
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singular and nonsingular boundary value problems by means of the Krasnosel’skii fixed

point theorem and a mixed monotone method.

Xu et al. [21] considered the existence of positive solutions for the following problem

Dα
0+u(t) = f (t, u(t)), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0,

where 3 <a ≤ 4 is a real number, f Î C([0, 1] × [0, +∞), (0, +∞)) and Dα
0+ is the Rie-

mann-Liouville fractional differentiation. Using the properties of the Green function,

they gave some multiple positive solutions for singular and nonsingular boundary

value problems, and also they gave uniqueness of solution for singular problem by

means of Leray-Schauder nonlinear alternative, a fixed point theorem on cones and a

mixed monotone method.

On the other hand, the study of coupled systems involving fractional differential

equations is also important as such systems occur in various problems, see [22-30].

Bai and Fang [24] considered the existence of positive solutions of singular coupled

system
{
Dsu = f (t, v), 0 < t < 1,
Dpv = g(t, u), 0 < t < 1,

where 0 <s, p < 1, and f, g : [0, 1) × [0, +∞) ® [0, +∞) are two given continuous

functions, lim t→0+ f (t, ·) = +∞, lim t→0+g(t, ·) = +∞ and Ds, Dp are two standard Rie-

mann-Liouville fractional derivatives. They established the existence results by a non-

linear alternative of Leray-Schauder type and Krasnosel’skii fixed point theorem on a

cone.

Su [25] discussed a boundary value problem for a coupled differential system of frac-

tional order
⎧⎪⎨
⎪⎩

Dαu(t) = f (t, v(t),Dμv(t)), 0 < t < 1,
Dβv(t) = g(t, u(t),Dνu(t)), 0 < t < 1,

u(0) = u(1) = v(0) = v(1) = 0,

where 1 <a, b ≤ 2, μ, ν > 0, a - ν ≥ 1, b - μ ≥ 1, f, g : [0, 1] × ℝ × ℝ ® ℝ are given

functions and D is the standard Riemann-Liouville fractional derivative. By means of

Schauder fixed point theorem, an existence result for the solution was obtained.

From the above works, we can see a fact, although the coupled systems of fractional

boundary value problems have been investigated by some authors, coupled systems

due to mixed fractional orders are seldom considered. Motivated by all the works

above, in this article we investigate the existence of positive solutions for a coupled

system of nonlinear differential equations of mixed fractional orders
⎧⎪⎨
⎪⎩

−Dα
0+u(t) = f (t, v(t)), 0 < t < 1,

Dβ
0+v(t) = g(t, u(t)), 0 < t < 1,

u(0) = u(1) = u′(0) = v(0) = v(1) = v′(0) = v′(1) = 0,

(1:1)

where 2 <a ≤ 3, 3 <b ≤ 4, Dα
0+, D

β
0+ are the standard Riemann-Liouville fractional

derivative, and f, g : [0, 1] × [0, +∞) ® [0, +∞) are given continuous functions, f(t, 0) ≡

0, g(t, 0) ≡ 0. Our analysis relies on fixed point theorems on cones. Some sufficient

conditions for the existence of at least one or two positive solutions for the boundary
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value problem are established. Finally, we present some examples to demonstrate our

results.

The article is organized as follows. In Sect. 2, we shall give some definitions and lem-

mas to prove our main results. In Sect. 3, we establish existence results of at least one

or two positive solutions for boundary value problem (1.1) by fixed point theorems on

cones. In Sect. 4, examples are presented to illustrate the main results.

2 Preliminaries
For the convenience of readers, we give some background materials from fractional

calculus theory to facilitate analysis of problem (1.1). These materials can be found in

the recent literature, see [20,21,31-33].

Definition 2.1 [31] The Riemann-Liouville fractional derivative of order a > 0 of a

continuous function f : (0, +∞) ® ℝ is given by

Dα
0+ f (t) =

1
�(n − α)

(
d
dt

)(n) t∫
0

f (s)

(t − s)α−n+1 ds,

where n = [a]+1, [a] denotes the integer part of number a, provided that the right

side is pointwise defined on (0, +∞).

Definition 2.2 [31] The Riemann-Liouville fractional integral of order a > 0 of a

function f : (0, +∞) ® ℝ is given by

Iα0+ f (t) =
1

�(α)

t∫
0

(t − s)α−1f (s) ds,

provided that the right side is pointwise defined on (0, +∞).

From the definition of the Riemann-Liouville derivative, we can obtain the following

statement.

Lemma 2.1 [31]Let a > 0. If we assume u Î C(0, 1) ∩ L(0, 1), then the fractional dif-

ferential equation

Dα
0+u(t) = 0

has u(t) = c1t
a - 1 + c2t

a - 2 + ... + cnt
a - n, ci Î ℝ, i = 1, 2,..., n, as unique solutions,

where n is the smallest integer greater than or equal to a.
Lemma 2.2 [31]Assume that u Î C(0, 1) ∩ L(0, 1) with a fractional derivative of

order a > 0 that belongs to C(0, 1) ∩ L(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + c1tα−1 + c2tα−2 + · · · + cntα−n, for some ci ∈ R, i = 1, 2, . . . ,n,

where n is the smallest integer greater than or equal to a.
In the following, we present the Green function of fractional differential equation

boundary value problem.

Lemma 2.3 [20]Let h1 Î C[0, 1] and 2 <a ≤ 3. The unique solution of problem

−Dα
0+u(t) = h1(t), 0 < t < 1, (2:1)

u(0) = u(1) = u′(0) = 0, (2:2)
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is

u(t) =

1∫
0

G1(t, s)h1(s) ds,

where

G1(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

tα−1(1 − s)α−1 − (t − s)α−1

�(α)
, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−1

�(α)
, 0 ≤ t ≤ s ≤ 1.

(2:3)

Here G1 (t, s) is called the Green function of boundary value problem (2.1) and (2.2).

Lemma 2.4 [20]The function G1(t, s) defined by (2.3) satisfies the following conditions:

(A1) G1 (t, s) = G1(1 - s, 1 - t), for t, s Î (0, 1);

(A2) ta - 1(1 - t)s(1 - s)a - 1 ≤ Γ(a)G1 (t, s) ≤ (a - 1)s(1 - s)a - 1, for t, s Î (0, 1);

(A3) G1 (t, s) > 0, for t, s Î (0, 1);

(A4) ta - 1(1 - t)s(1 - s)a - 1 ≤ Γ(a)G1 (t, s) ≤ (a - 1)(1 - t) ta - 1, for t, s Î (0, 1).

Remark 2.1 Let q1(t) = ta - 1(1 - t), k1(s) = s(1 - s)a - 1. Then

q1(t)k1(s) ≤ �(α)G1(t, s) ≤ (α − 1)k1(s).

Lemma 2.5 [21]Let h2 Î C[0, 1] and 3 <b ≤ 4. The unique solution of problem

Dβ
0+u(t) = h2(t), 0 < t < 1 (2:4)

u(0) = u(1) = u′(0) = u′(1) = 0, (2:5)

is

u(t) =

1∫
0

G2(t, s)h2(s) ds,

where

G2(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

(t − s)β−1 + (1 − s)β−2tβ−2[(s − t) + (β − 2)(1 − t)s]
�(β)

, 0 ≤ s ≤ t ≤ 1,

tβ−2(1 − s)β−2[(s − t) + (β − 2)(1 − t)s]
�(β)

, 0 ≤ t ≤ s ≤ 1.
(2:6)

Here G2(t, s) is called the Green function of boundary value problem (2.4) and (2.5).

Lemma 2.6 [21]The function G2(t, s) defined by (2.6) satisfies the following conditions:

(B1) G2(t, s) = G2(1 - s, 1 - t), for t, s Î (0, 1);

(B2) (b - 2)tb - 2(1 - t)2s2(1 - s)b - 2 ≤ Γ(b)G2(t, s) ≤ M0s
2(1 - s)b - 2, for t, s Î (0, 1);

(B3) G2(t, s) > 0, for t, s Î (0, 1);

(B4) (b - 2)s2(1 - s)b - 2tb - 2 (1 - t)2 ≤ Γ(b)G2(t, s) ≤ M0t
b - 2 (1 - t)2, for t, s Î (0, 1),

here M0 = max{b - 1, (b - 2)2}.

Remark 2.2 Let q2(t) = tb-2(1 - t)2, k2(s) = s2(1 - s)b - 2. Then

(β − 2)q2(t)k2(s) ≤ �(β)G2(t, s) ≤ M0k2(s).

The following two lemmas are fundamental in the proofs of our main results.
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Lemma 2.7 [32]Let E be a Banach space, and let P ⊂ E be a cone in E. Assume Ω1,

Ω2 are open subsets of E with 0 ∈ �1 ⊂ �̄1 ⊂ �2, and let S : P ® P be a completely

continuous operator such that, either

(D1) ||Sw|| ≤ ||w||, w Î P ∩ ∂Ω1, ||Sw|| ≥ ||w||, w Î P ∩ ∂Ω2, or

(D2) ||Sw|| ≥ ||w||, w Î P ∩ ∂Ω1, ||Sw|| ≤ ||w||, w Î P ∩ ∂Ω2.

Then S has a fixed point in P ∩ (�̄2\�1).

Lemma 2.8 [33]Let E be a Banach space, and let P ⊂ E be a cone in E. Assume Ω1,

Ω2 and Ω3 are open subsets of E with 0 ∈ �1 ⊂ �̄1 ⊂ �2 ⊂ �̄2 ⊂ �3, and let

S : P ∩ (�̄3\�1) → P be a completely continuous operator such that

(E1) ||Sw|| ≥ ||w||, ∀ w Î P ∩ ∂Ω1;

(E2) ||Sw|| ≤ ||w||, Sw ≠ w, ∀ w Î P ∩ ∂Ω2;

(E3) ||Sw|| ≥ ||w||, ∀ w Î P ∩ ∂Ω3.

Then S has two fixed points w1 and w2 in P ∩ (�̄3\�1)with w1 ∈ (�̄2\�1) and

w2 ∈ (�̄3\�2).

3 Main results
In this section, we establish the existence results of positive solutions for boundary

value problem (1.1).

Consider the following coupled system of integral equations:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u(t) =

1∫
0
G1(t, s)f (s, v(s)) ds,

v(t) =
1∫
0
G2(t, s)g(s, u(s)) ds.

(3:1)

Lemma 3.1 Suppose that f, g : [0, 1] × [0, +∞) ® [0, +∞) are continuous. Then (u, v)

Î C[0, 1] × C[0, 1] is a solution of (1.1) if and only if (u, v) Î C[0, 1] × C[0, 1] is a

solution of system (3.1).

This proof is similar to that of Lemma 3.3 in [25], so is omitted.

From (3.1), we can get the following integral equation

u(t) =

1∫
0

G1(t, s)f

⎛
⎝s,

1∫
0

G2(s, r)g(r, u(r)) dr

⎞
⎠ds, t ∈ [0, 1].

Let Banach space E = C[0, 1] be endowed with the norm ||u|| = max0≤t≤1 |u(t)|. De

ne the cone P ⊂ E by

P =
{
u ∈ E : u(t) ≥ q1(t)

α − 1
||u||, t ∈ [0, 1]

}
.

We define an operator T : P ® E as follows

Tu(t) =

1∫
0

G1(t, s)f

⎛
⎝s,

1∫
0

G2(s, r)g(r, u(r)) dr

⎞
⎠ds, t ∈ [0, 1].

Lemma 3.2 T : P ® P is completely continuous.
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Proof. For u Î P, 0 ≤ t ≤ 1, by Lemma 2.4,

||Tu|| = max
0≤t≤1

|Tu(t)|

= max
0≤t≤1

∣∣∣∣∣∣
1∫

0

G1(t, s)f
(
s,

∫ 1

0
G2(s, r)g(r, u(r)) dr

)
ds

∣∣∣∣∣∣

≤ α − 1
�(α)

1∫
0

k1(s)f

⎛
⎝s,

1∫
0

G2(s, r)g(r, u(r)) dr

⎞
⎠ds,

Tu(t) =

1∫
0

G1(t, s)f

⎛
⎝s,

1∫
0

G2(s, r)g(r, u(r)) dr

⎞
⎠ ds

≥
1∫

0

q1(t)k1(s)
�(α)

f

⎛
⎝s,

1∫
0

G2(s, r)g(r, u(r)) dr

⎞
⎠ds

≥ q1(t)
α − 1

||Tu||.

Thus we have T (P) ⊂ P.

The operator T : P ® P is continuous in view of continuity of G(t, s), f(t, u), and g(t,

u). For any bounded set M, T (M) is uniformly bounded and equicontinuous. This

proof is similar to that of Lemma 2.1.1 in [20], so is omitted. By means of Arzela-

Ascoli Theorem, T : P ® P is completely continuous. This completes the proof.

We consider the following hypotheses in what follows.

(A1) limu→0+ supt∈[0,1]
f (t, u)

u
= 0, limu→0+supt∈[0,1]

g(t, u)
u

= 0;

(A2) limu→+∞inft∈[0,1]
f (t, u)

u
= +∞, limu→+∞inft∈[0,1]

g(t, u)
u

= +∞;

(A3) limu→0+ inft∈[0,1]
f (t, u)

u
= +∞, limu→0+ inft∈[0,1]

g(t, u)
u

= +∞;

(A4) limu→+∞supt∈[0,1]
f (t, u)

u
= 0, limu→+∞supt∈[0,1]

g(t, u)
u

= 0;

(A5) f(t, u) and g(t, u) are two increasing functions with respect to u, and there exists

N > 0 such that

n1f

⎛
⎝t,

1∫
0

n2g(r,N) dr

⎞
⎠ < N, for t ∈ [0, 1],

where n1 = max0≤t,s≤1 G1(t, s), n2 = max0≤t,s≤1 G2(t, s).

Theorem 3.1 Assume that hypotheses (A1) and (A2) hold. Then the boundary value

problem (1.1) has at least one positive solution (u, v).

Proof. By hypothesis (A1), we see that there exists p1 Î (0, 1) such that

f (t, u) ≤ λ1u, g(t, u) ≤ λ2u, for (t, u) ∈ [0, 1] × (0, p1), (3:2)

where l1, l2 > 0 and satisfy

λ1(α − 1)
�(α)

1∫
0

k1(s) ds ≤ 1,
λ2M0

�(β)

1∫
0

k2(s) ds ≤ 1. (3:3)
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For u Î P with ||u|| = p1
2
, we have

1∫
0

G2(s, r)g(r, u(r)) dr ≤
1∫

0

M0k2(r)
�(β)

g(r, u(r)) dr ≤ λ2||u||
�(β)

1∫
0

M0k2(r) dr ≤ ||u|| = p1
2

< p1,

then by (3.2) and (3.3), we get

||Tu|| ≤ α − 1
�(α)

1∫
0

k1(s)f

⎛
⎝s,

1∫
0

G2(s, r)g(r, u(r)) dr

⎞
⎠ds

≤ λ1(α − 1)
�(α)

1∫
0

k1(s)

1∫
0

G2(s, r)g(r, u(r)) dr ds

≤ λ1λ2||u||M0(α − 1)
�(α)�(β)

1∫
0

k1(s)

1∫
0

k2(r) dr ds

≤ ||u||.

Hence, if we choose �1 = {u ∈ E : ||u|| <
p1
2

} , then

||Tu|| ≤ ||u||, for u ∈ P ∩ ∂�1. (3:4)

From hypothesis (A2), there exist positive constants μ1, μ2, C1, and C2 such that

f (t, u) ≥ μ1u − C1, g(t, u) ≥ μ2u − C2, for (t, u) ∈ [0, 1] × [0, +∞), (3:5)

where μ1 and μ2 satisfy

μ1

1∫
0

G1(l, s)q2(s) ds ≥ 1,
μ2(β − 2)
(α − 1)�(β)

1∫
0

q1(r)k2(r) dr ≥ 2, (3:6)

For u Î P and l Î (0, 1), then by (3.5) and (3.6), we have

Tu(l) =

1∫
0

G1(l, s)f

⎛
⎝s,

1∫
0

G2(s, r)g(r, u(r)) dr

⎞
⎠ds

≥
1∫

0

G1(l, s)

⎛
⎝μ1

1∫
0

G2(s, r)g(r, u(r)) dr − C1

⎞
⎠ds

= μ1

1∫
0

G1(l, s)

1∫
0

G2(s, r)g(r, u(r)) dr ds − C1

1∫
0

G1(l, s) ds

≥ μ1

1∫
0

G1(l, s)

1∫
0

G2(s, r)(μ2u(r) − C2) dr ds − C1

1∫
0

G1(l, s)ds

= μ1μ2

1∫
0

G1(l, s)

1∫
0

G2(s, r)u(r) dr ds − C(l)

≥ μ1μ2
β − 2

(α − 1)�(β)
||u||

1∫
0

G1(l, s)q2(s)

1∫
0

q1(r)k2(r) dr ds − C(l)

≥ 2||u|| − C(l),
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where

C(l) = μ1C2

1∫
0

G1(l, s)

1∫
0

G2(s, r) dr ds + C1

1∫
0

G1(l, s) ds

≤ μ1C2M0

�(β)

1∫
0

G1(l, s)

1∫
0

k2(r) dr ds + C1

1∫
0

G1(l, s) ds

= C3,

so,

Tu(l) ≥ 2||u|| − C3.

Thus, if we set p2 > max{p1, C3} and Ω2 = {u Î E : ||u|| <p2}, then

||Tu|| ≥ ||u||, for u ∈ P ∩ ∂�2. (3:7)

Now, from (3.4), (3.7), and Lemma 2.7, we guarantee that T has a fix point

u ∈ P ∩ (�̄2\�1), and clearly (u, v) is a positive solution of (1.1). The proof is completed.

Theorem 3.2 Assume that hypotheses (A3) and (A4) hold. Then the boundary value

problem (1.1) has at least one positive solution (u, v).

Proof. By hypothesis (A3), we see that there exists p Î (0, 1) such that

f (t, u) ≥ η1u, g(t, u) ≥ η2u, for (t, u) ∈ [0, 1] × (0, p), (3:8)

where h1, s2 > 0 and satisfy

η1

1∫
0

G1(l, s)q2(s) ds ≥ 1,
η2(β − 2)

(α − 1)�(β)

1∫
0

q1(r)k2(r)dr ≥ 1, (3:9)

From g(t, 0) ≡ 0 and the continuity of g, then there exists p3 Î (0, 1) such that

g(t, u) ≤ p

M0

1∫
0
k2(r) dr

, for (t, u) ∈ [0, 1] × (0, p3).

For u Î P with ||u|| = p3, we have

1∫
0

G2(s, r)g(r, u)(r))dr ≤
1∫

0

G2(s, r)
p

M0

1∫
0
k2(r)dr

dr < p,

for l Î (0, 1), by (3.8) and (3.9), we get

Tu(l) =

1∫
0

G1(l, s)f

⎛
⎝s,

1∫
0

G2(s, r)g(r, u(r)) dr

⎞
⎠ ds

≥ η1

1∫
0

G1(l, s)

1∫
0

G2(s, r)g(r, u(r))dr ds

≥ η1η2

1∫
0

G1(l, s)

1∫
0

G2(s, r)u(r)dr ds

≥ η1η2
β − 2

(α − 1)�(β)
||u||

1∫
0

G1(l, s)q2(s)

1∫
0

q1(r)k2(r)dr ds

≥ ||u||,
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Hence, if we choose Ω3 = {u Î E : ||u|| <p3}, then

||Tu|| ≤ ||u||, for u ∈ P ∩ ∂�3. (3:10)

From hypothesis (A4), there exist positive constants δ1, δ2, C4, and C5 such that

f (t, u) ≥ δ1u + C4, g(t, u) ≥ δ2u + C5, for (t, u) ∈ [0, 1] × [0, +∞), (3:11)

where δ1 and δ2 satisfy

δ1(α − 1)
�(α)

1∫
0

k1(s) ds ≤ 1
2
,

δ2M0

�(β)

1∫
0

k2(r) dr ≤ 1
2
. (3:12)

Then by (3.11) and (3.12), we have

||Tu|| ≤ α − 1
�(α)

=

1∫
0

k1(s)f

⎛
⎝s,

1∫
0

G2(s, r)g(r, u(r))dr

⎞
⎠ ds

≤ α − 1
�(α)

1∫
0

k1(s)

⎛
⎝δ1

1∫
0

G2(s, r)g(r, u(r))dr + C4

⎞
⎠ ds

=
δ1(α − 1)

�(α)

1∫
0

k1(s)

1∫
0

G2(s, r)g(r, u(r)) dr ds +
C4(α − 1)

�(α)

1∫
0

k1(s)ds

≤ δ1(α − 1)
�(α)

1∫
0

k1(s)

1∫
0

M0k2(r)
�(β)

(δ2u(r) + C5)dr ds +
C4(α − 1)

�(α)

1∫
0

k1(s)ds

≤ δ1δ2M0(α − 1)
�(α)�(β)

||u||
1∫

0

k1(s)

1∫
0

k2(r) dr ds − C6

≤ 1
4

||u|| + C6,

where

C6 =
δ1C5M0(α − 1)

�(α)�(β)

1∫
0

k1(s)

1∫
0

k2(r)dr ds +
C4(α − 1)

�(α)

1∫
0

k1(s) ds.

Thus, if we set p4 > max{2p3, 2C6} and Ω4 = {u Î E : ||u|| <p4}, then

||Tu|| ≤ ||u||, for u ∈ P ∩ ∂�4. (3:13)

Now, from (3.10), (3.13), and Lemma 2.7, we guarantee that T has a fix point

u ∈ P ∩ (�̄2\�1), and clearly (u, v) is a positive solution of (1.1). The proof is

completed.

Theorem 3.3 Assume that hypotheses (A2), (A3), and (A5) hold. Then the boundary

value problem (1.1) has at least two positive solutions (u1, v1) and (u2, v2).
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Proof. Set BN = {u Î E : ||u|| <N}. From (A5), for u Î P ∩ ∂BN , then we have

||Tu|| = max
0≤t≤1

|Tu(t)|

= max
0≤t≤1

∣∣∣∣∣∣
1∫

0

G1(t, s)f

⎛
⎝s,

1∫
0

G2(s, r)g(r, u(r)) dr

⎞
⎠ds

∣∣∣∣∣∣

≤ n1

1∫
0

f

⎛
⎝s,

1∫
0

G2(s, r)g(r, u(r)) dr

⎞
⎠ds

≤ n1

1∫
0

f

⎛
⎝s,

1∫
0

n2g(r, u(r)) dr

⎞
⎠ds

< n1

1∫
0

f

⎛
⎝s,

1∫
0

n2g(r,N)) dr

⎞
⎠ds < N.

Thus, ||Tu|| < ||u||, ∀ u Î P ∩ ∂BN. By (A2) and (A3), we can get

||Tu|| ≥ ||u||, ∀u ∈ P ∩ ∂�2,

||Tu|| ≥ ||u||, ∀u ∈ P ∩ ∂�3.

So, we can choose p2, p3, and N such that p3 <N <p2 and satisfy the above three

inequalities. By Lemma 2.8, we guarantee that T has two fix points u1 ∈ P ∩ (�̄2\BN)

and u2 ∈ P ∩ (BN\�3). Then the boundary value problem (1.1) at least two positive

solutions (u1, v1) and (u2, v2). This completes the proof.

In fact, from (3.1), we can also obtain the following integral equation

v(t) =

1∫
0

G2(t, s)g

⎛
⎝s,

1∫
0

G1(s, r)f (r, v(r)) dr

⎞
⎠ ds, t ∈ [0, 1].

Define the cone P’ ⊂ E by

P′ =
{
v ∈ E : v(t) ≥ (α − 2)q2(t)

M0
||v||, t ∈ [0, 1]

}
.

We define an operator T’: P’ ® E as follows

T′v(t) =
1∫

0

G2(t, s)g

⎛
⎝s,

1∫
0

G1(s, r)f (r, v(r))dr

⎞
⎠ds, t ∈ [0, 1].

For v Î P’, 0 ≤ t ≤ 1, by Lemma 2.6,

||T′v|| = max
0≤t≤1

|T′v(t)|

= max
0≤t≤1

∣∣∣∣∣∣
1∫

0

G2(t, s)g

⎛
⎝s,

1∫
0

G1(s, r)f (r, v(r)) dr

⎞
⎠ ds

∣∣∣∣∣∣

≤ 1
�(α)

1∫
0

M0k2(s)g

⎛
⎝s,

1∫
0

G1(s, r)f (r, v(r))dr

⎞
⎠ds,
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T′v(t) =
1∫

0

G2(t, s)g

⎛
⎝s,

1∫
0

G1(s, r)f (r, v(r)) dr

⎞
⎠ ds

≥
1∫

0

(α − 2)
�(α)

q2(t)k2(s)g

⎛
⎝s,

1∫
0

G1(s, r)f (r, v(r)) dr

⎞
⎠ ds

≥ (α − 2)q2(t)
M0

||Tv||.

Thus we have T’ (P’) ⊂ P’.

The operator T’: P’ ® P’ is continuous in view of continuity of G(t, s), f(t, u), and g(t,

u). For any bounded set M’, T’ (M’) is uniformly bounded and equicontinuous. This

proof is similar to that of Lemma 3.1 in [21], so is omitted. By means of Arzela-Ascoli

Theorem, T’: P’ ® P’ is completely continuous.

Remark 3.1 Theorems 3.1 and 3.2 also hold for the boundary value problem (1.1).

Proof. This proof is similar to that of Theorems 3.1 and 3.2, so is omitted.

Theorem 3.4 If conditions (A5) in the Theorem 3.3 is replaced by

(A′
5)f(t, u) and g(t, u) are two increasing functions with respect to u, and there exists

N’ > 0 such that

n2g

⎛
⎝t,

1∫
0

n1f (r,N′) dr

⎞
⎠ < N′, for t ∈ [0, 1],

where n1 = max0 ≤ t,s ≤1 G1(t, s), n2 = max0 ≤ t,s ≤1 G2(t, s).

Then the conclusion of Theorem 3.3 also holds.

Proof. This proof is similar to that of Theorem 3.3, so is omitted.

Remark 3.2 In this article, conditions f(t, 0) ≡ 0 and g(t, 0) ≡ 0 are too strong for the

boundary value problem (1.1). So, we will give some new existence criteria for the

boundary value problem (1.1) without conditions f(t, 0) ≡ 0 and g(t, 0) ≡ 0 in a new

paper.

4 Examples
In this section, we will present examples to illustrate the main results.

Example 4.1 Consider the system of nonlinear differential equations
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−D

5
2
0+ u(t) = v(v + t − 1), 0 < t < 1,

D

7
2
0+ v(t) = u(u + t − 1), 0 < t < 1,

u(0) = u(1) = u′(0) = v(0) = v(1) = v′(0) = v′(1) = 0.

(4:1)

Choose f(t, v) = v(v + t -1), g(t, u) = u(u + t -1). Then

lim
u→0+

sup
t∈[0,1]

f (t, u)
u

= lim
u→0+

sup
t∈[0,1]

g(t, u)
u

= lim
u→0+

sup
t∈[0,1]

(u + t − 1) = 0,

lim
u→+∞ inf

t∈[0,1]
f (t, u)

u
= lim

u→+∞ inf
t∈[0,1]

g(t, u)
u

= lim
u→+∞ inf

t∈[0,1]
(u + t − 1) = +∞.
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So (A1) and (A2) hold. Thus, by Theorem 3.1, the boundary value problem (4.1) has a

positive solution.

Example 4.2 Discuss the system of nonlinear differential equations
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−D

7
3
0+ u(t) = v

1
2 (t + 1), 0 < t < 1,

D

7
2
0+ v(t) = u

1
2 (t + 1), 0 < t < 1,

u(0) = u(1) = u′(0) = v(0) = v(1) = v′(0) = v′(1) = 0.

(4:2)

Choose
f (t, v) = v

1
2 (t + 1)

,
g(t, u) = u

1
2 (t + 1)

. Then

lim
u→0+

inf
t∈[0,1]

f (t, u)
u

= lim
u→0+

inf
t∈[0,1]

g(t, u)
u

= lim
u→0+

inf
t∈[0,1]

t + 1

u
1
2

= +∞,

lim
u→+∞ sup

t∈[0,1]

f (t, u)
u

= lim
u→+∞ sup

t∈[0,1]

g(t, u)
u

= lim
u→+∞ sup

t∈[0,1]

t + 1

u
1
2

= 0.

So (A3) and (A4) hold. Thus, by Theorem 3.2, the boundary value problem (4.2) has a

positive solution.
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