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Abstract
In this paper, we introduce the notion of (α,ψ ,ξ )-contractive multivalued mappings
to generalize and extend the notion of α-ψ -contractive mappings to closed valued
multifunctions. We investigate the existence of fixed points for such mappings. We
also construct an example to show that our result is more general than the results of
α-ψ -contractive closed valued multifunctions.
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1 Introduction and preliminaries
Recently, Samet et al. [] introduced the notions of α-ψ-contractive and α-admissible
self-mappings and proved some fixed-point results for such mappings in complete met-
ric spaces. Karapınar and Samet [] generalized these notions and obtained some fixed-
point results. Asl et al. [] extended these notions to multifunctions by introducing the
notions of α∗-ψ-contractive and α∗-admissible mappings and proved some fixed-point
results. Some results in this direction are also given in [–]. Ali and Kamran [] further
generalized the notion of α∗-ψ-contractive mappings and obtained some fixed-point the-
orems for multivaluedmappings. Salimi et al. [] modified the notions of α-ψ-contractive
and α-admissible self-mappings by introducing another function η and established some
fixed-point theorems for such mappings in complete metric spaces. N. Hussain et al. []
extended these modified notions to multivalued mappings. Recently, Mohammadi and
Rezapour [] showed that the results obtained by Salimi et al. [] follow from correspond-
ing results for α-ψ-contractivemappings.More recently, Berzig andKarapinar [] proved
that the first main result of Salimi et al. [] follows from a result of Karapınar and Samet
[]. The purpose of this paper is to introduce the notion of (α,ψ , ξ )-contractive multival-
ued mappings to generalize and extend the notion of α-ψ-contractive mappings to closed
valued multifunctions and to provide fixed-point theorems for (α,ψ , ξ )-contractive mul-
tivalued mappings in complete metric spaces.
We recollect the following definitions, for the sake of completeness. Let (X,d) be ametric

space.We denote by CB(X) the class of all nonempty closed and bounded subsets of X and
by CL(X) the class of all nonempty closed subsets of X. For every A,B ∈ CL(X), let

H(A,B) =

⎧⎨
⎩
max{supx∈A d(x,B), supy∈B d(y,A)}, if the maximum exists;

∞, otherwise.
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Such amapH is called the generalizedHausdorffmetric induced by themetric d. Let� be
a set of nondecreasing functions, ψ : [,∞) → [,∞) such that

∑∞
n= ψ

n(t) < ∞ for each
t > , where ψn is the nth iterate of ψ . It is known that for each ψ ∈ � , we have ψ(t) < t
for all t >  and ψ() =  for t = . More details as regards such a function can be found in
e.g. [, ].

Definition . [] Let (X,d) be a metric space and α : X × X → [,∞) be a mapping.
A mapping G : X → CL(X) is α∗-admissible if

α(x, y)≥  ⇒ α∗(Gx,Gy) ≥ ,

where α∗(Gx,Gy) = inf{α(a,b) : a ∈Gx,b ∈Gy}.

2 Main results
We begin this section by considering a family� of functions ξ : [,∞)→ [,∞) satisfying
the following conditions:

(i) ξ is continuous;
(ii) ξ is nondecreasing on [,∞);
(iii) ξ () =  and ξ (t) >  for all t ∈ (,∞);
(iv) ξ is subadditive.

Example . Suppose that φ : [,∞) → [,∞) is a Lebesgue integrable mapping which
is summable on each compact subset of [,∞), for each ε > ,

∫ ε

 φ(t)dt > , and for each
a,b > , we have

∫ a+b


φ(t)dt ≤

∫ a


φ(t)dt +

∫ b


φ(t)dt.

Define ξ : [,∞)→ [,∞) by ξ (t) =
∫ t
 φ(w)dw for each t ∈ [,∞). Then ξ ∈ �.

Lemma . Let (X,d) is a metric space and let ξ ∈ �. Then (X, ξ ◦ d) is a metric space.

Lemma . Let (X,d) be a metric space, let ξ ∈ � and let B ∈ CL(X). Assume that there
exists x ∈ X such that ξ (d(x,B)) > . Then there exists y ∈ B such that

ξ
(
d(x, y)

)
< qξ

(
d(x,B)

)
,

where q > .

Proof By hypothesis we have ξ (d(x,B)) > . We choose

ε = (q – )ξ
(
d(x,B)

)
.

By the definition of an infimum, since ξ ◦ d is a metric space, it follows that there exists
y ∈ B such that

ξ
(
d(x, y)

)
< ξ

(
d(x,B)

)
+ ε = qξ

(
d(x,B)

)
. �
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Definition . Let (X,d) be a metric space. A mapping G : X → CL(X) is called (α,ψ , ξ )-
contractive if there exist three functions ψ ∈ � , ξ ∈ � and α : X ×X → [,∞) such that

x, y ∈ X, α(x, y)≥  ⇒ ξ
(
H(Gx,Gy)

) ≤ ψ
(
ξ
(
M(x, y)

))
, (.)

whereM(x, y) =max{d(x, y),d(x,Gx),d(y,Gy), d(x,Gy)+d(y,Gx) }.

In case when ψ ∈ � is strictly increasing, the (α,ψ , ξ )-contractive mapping is called a
strictly (α,ψ , ξ )-contractive mapping.

Theorem . Let (X,d) be a complete metric space and let G : X → CL(X) be a strictly
(α,ψ , ξ )-contractive mapping satisfying the following assumptions:

(i) G is an α∗-admissible mapping;
(ii) there exist x ∈ X and x ∈Gx such that α(x,x)≥ ;
(iii) G is continuous.

Then G has a fixed point.

Proof By hypothesis, there exist x ∈ X and x ∈ Gx such that α(x,x)≥ . If x = x, then
we have nothing to prove. Let x 
= x. If x ∈ Gx, then x is a fixed point. Let x /∈ Gx.
Then from equation (.), we have

 < ξ
(
H(Gx,Gx)

)

≤ ψ

(
ξ

(
max

{
d(x,x),d(x,Gx),d(x,Gx),

d(x,Gx) + d(x,Gx)


}))

= ψ
(
ξ
(
max

{
d(x,x),d(x,Gx)

}))
, (.)

since d(x,Gx)
 ≤ max{d(x,x),d(x,Gx)}. Assume that max{d(x,x),d(x,Gx)} = d(x,

Gx). Then from equation (.), we have

 < ξ
(
d(x,Gx)

) ≤ ξ
(
H(Gx,Gx)

)
≤ ψ

(
ξ
(
max

{
d(x,x),d(x,Gx)

}))
= ψ

(
ξ
(
d(x,Gx)

))
, (.)

which is a contradiction. Hence,max{d(x,x),d(x,Gx)} = d(x,x). Then from equation
(.), we have

 < ξ
(
d(x,Gx)

) ≤ ξ
(
H(Gx,Gx)

) ≤ ψ
(
ξ
(
d(x,x)

))
. (.)

For q >  by Lemma ., there exists x ∈Gx such that

 < ξ
(
d(x,x)

)
< qξ

(
d(x,Gx)

)
. (.)

From equations (.) and (.), we have

 < ξ
(
d(x,x)

)
< qψ

(
ξ
(
d(x,x)

))
. (.)
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Applying ψ in equation (.), we have

 < ψ
(
ξ
(
d(x,x)

))
<ψ

(
qψ

(
ξ
(
d(x,x)

)))
. (.)

Put q = ψ(qψ(ξ (d(x,x))))
ψ(ξ (d(x,x)))

. Then q > . Since G is an α∗-admissible mapping, then α∗(Gx,
Gx) ≥ . Thus we have α(x,x) ≥ α∗(Gx,Gx) ≥ . If x ∈ Gx, then x is a fixed point.
Let x /∈Gx. Then from equation (.), we have

 < ξ
(
H(Gx,Gx)

)

≤ ψ

(
ξ

(
max

{
d(x,x),d(x,Gx),d(x,Gx),

d(x,Gx) + d(x,Gx)


}))

= ψ
(
ξ
(
max

{
d(x,x),d(x,Gx)

}))
, (.)

since d(x,Gx)
 ≤ max{d(x,x),d(x,Gx)}. Assume that max{d(x,x),d(x,Gx)} = d(x,

Gx). Then from equation (.), we have

 < ξ
(
d(x,Gx)

) ≤ ξ
(
H(Gx,Gx)

)
≤ ψ

(
ξ
(
max

{
d(x,x),d(x,Gx)

}))
= ψ

(
ξ
(
d(x,Gx)

))
, (.)

which is a contradiction. Hence,max{d(x,x),d(x,Gx)} = d(x,x). Then from equation
(.), we have

 < ξ
(
d(x,Gx)

) ≤ ξ
(
H(Gx,Gx)

) ≤ ψ
(
ξ
(
d(x,x)

))
. (.)

For q >  by Lemma ., there exists x ∈Gx such that

 < ξ
(
d(x,x)

)
< qξ

(
d(x,Gx)

)
. (.)

From equations (.) and (.), we have

 < ξ
(
d(x,x)

)
< qψ

(
ξ
(
d(x,x)

))
=ψ

(
qψ

(
ξ
(
d(x,x)

)))
. (.)

Applying ψ in equation (.), we have

 < ψ
(
ξ
(
d(x,x)

))
< ψ(qψ(

ξ
(
d(x,x)

)))
. (.)

Put q = ψ(qψ(ξ (d(x,x))))
ψ(ξ (d(x,x)))

. Then q > . Since G is an α∗-admissible mapping, then α∗(Gx,
Gx) ≥ . Thus we have α(x,x) ≥ α∗(Gx,Gx) ≥ . If x ∈ Gx, then x is a fixed point.
Let x /∈Gx. Then from equation (.), we have

 < ξ
(
H(Gx,Gx)

)

≤ ψ

(
ξ

(
max

{
d(x,x),d(x,Gx),d(x,Gx),

d(x,Gx) + d(x,Gx)


}))

=ψ
(
ξ
(
max

{
d(x,x),d(x,Gx)

}))
, (.)
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since d(x,Gx)
 ≤ max{d(x,x),d(x,Gx)}. Assume that max{d(x,x),d(x,Gx)} = d(x,

Gx). Then from equation (.), we have

 < ξ
(
d(x,Gx)

) ≤ ξ
(
H(Gx,Gx)

)
≤ ψ

(
ξ
(
max

{
d(x,x),d(x,Gx)

}))
= ψ

(
ξ
(
d(x,Gx)

))
, (.)

which is a contradiction to our assumption. Hence, max{d(x,x),d(x,Gx)} = d(x,x).
Then from equation (.), we have

 < ξ
(
d(x,Gx)

) ≤ ξ
(
H(Gx,Gx)

) ≤ ψ
(
ξ
(
d(x,x)

))
. (.)

For q >  by Lemma ., there exists x ∈ Gx such that

 < ξ
(
d(x,x)

)
< qξ

(
d(x,Gx)

)
. (.)

From equations (.) and (.), we have

 < ξ
(
d(x,x)

)
< qψ

(
ξ
(
d(x,x)

))
=ψ(qψ(

ξ
(
d(x,x)

)))
. (.)

Continuing the same process, we get a sequence {xn} in X such that xn+ ∈Gxn, xn+ 
= xn,
α(xn,xn+) ≥ , and

ξ
(
d(xn+,xn+)

)
< ψn(qψ(

ξ
(
d(x,x)

)))
for each n ∈N∪ {}. (.)

Let m > n, we have

ξ
(
d(xm,xn)

) ≤
m–∑
i=n

ξ
(
d(xi,xi+)

)
<

m–∑
i=n

ψ i–(qψ(
ξ
(
d(x,x)

)))
.

Since ψ ∈ � , we have

lim
n,m→∞ ξ

(
d(xm,xn)

)
= . (.)

This implies that

lim
n,m→∞d(xm,xn) = . (.)

Hence {xn} is a Cauchy sequence in (X,d). By completeness of (X,d), there exists x∗ ∈ X
such that xn → x∗ as n → ∞. Since G is continuous, we have

d
(
x∗,Gx∗) = lim

n→∞d
(
xn+,Gx∗) ≤ lim

n→∞H
(
Gxn,Gx∗) = .

Thus x∗ =Gx∗. �
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Theorem . Let (X,d) be a complete metric space and let G : X → CL(X) be a strictly
(α,ψ , ξ )-contractive mapping satisfying the following assumptions:

(i) G is an α∗-admissible mapping;
(ii) there exist x ∈ X and x ∈Gx such that α(x,x)≥ ;
(iii) if {xn} is a sequence in X with xn → x as n→ ∞ and α(xn,xn+) ≥  for each

n ∈N∪ {}, then we have α(xn,x)≥  for each n ∈ N∪ {}.
Then G has a fixed point.

Proof Following the proof of Theorem ., we know that {xn} is a Cauchy sequence in X
with xn → x∗ as n → ∞ and α(xn,xn+) ≥  for each n ∈ N ∪ {}. By hypothesis (iii), we
have α(xn,x∗) ≥  for each n ∈N∪ {}. Then from equation (.), we have

ξ
(
H

(
Gxn,Gx∗)) ≤ ψ

(
ξ

(
max

{
d
(
xn,x∗),d(xn,Gxn),d(

x∗,Gx∗),
d(xn,Gx∗) + d(x∗,Gxn)



}))
. (.)

Suppose that d(x∗,Gx∗) 
= .
We let xn → x∗. Taking ε = d(x∗ ,Gx∗)

 we can find N ∈ N such that

d
(
x∗,xm

)
<
d(x∗,Gx∗)


for eachm ≥N. (.)

Moreover, as {xn} is a Cauchy sequence, there exists N ∈ N such that

d(xm,Gxm) ≤ d(xm,xm+) <
d(x∗,Gx∗)


for eachm ≥N. (.)

Furthermore,

d
(
x∗,Gxm

) ≤ d
(
x∗,xm+

)
<
d(x∗,Gx∗)


for eachm ≥N. (.)

As d(xm,Gx∗) → d(x∗,Gx∗). Taking ε = d(x∗ ,Gx∗)
 we can find N ∈N such that

d
(
xm,Gx∗) < d(x∗,Gx∗)


for eachm ≥N. (.)

It follows from equations (.), (.), (.), and (.) that

max

{
d
(
xm,x∗),d(xm,Gxm),d(

x∗,Gx∗), d(xm,Gx∗) + d(x∗,Gxm)


}

= d
(
x∗,Gx∗),

form ≥N =max{N,N,N}. Moreover, form ≥N , by the triangle inequality, we have

ξ
(
d
(
x∗,Gx∗)) ≤ ξ

(
d
(
x∗,xm+

))
+ ξ

(
H

(
Gxm,Gx∗))

≤ ξ
(
d
(
x∗,xm+

))
+ψ

(
ξ

(
max

{
d
(
xm,x∗),d(xm,Gxm),d(

x∗,Gx∗),
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d(xm,Gx∗) + d(x∗,Gxm)


}))

= ξ
(
d
(
x∗,xm+

))
+ψ

(
ξ
(
d
(
x∗,Gx∗))). (.)

Letting m → ∞ in the above inequality, we have

ξ
(
d
(
x∗,Gx∗)) ≤ ψ

(
ξ
(
d
(
x∗,Gx∗))). (.)

This is not possible if ξ (d(x∗,Gx∗)) > . Therefore, we have ξ (d(x∗,Gx∗)) = , which implies
that d(x∗,Gx∗) = , i.e., x∗ =Gx∗. �

Example . Let X =R be endowed with the usual metric d. Define G : X → CL(X) by

Gx =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(–∞, ] if x < ,

{, x } if  ≤ x < ,

{} if x = ,

[x,∞) if x > 

and α : X ×X → [,∞) by

α(x, y) =

⎧⎨
⎩
 if x, y ∈ [, ],

 otherwise.

Take ψ(t) = t
 and ξ (t) =

√
t for each t ≥ . Then G is an (α,ψ , ξ )-contractive mapping.

For x =  and  ∈ Gx we have α(, ) = . Also, for each x, y ∈ X with α(x, y) = , we
have α∗(Gx,Gy) = . Moreover, for any sequence {xn} in X with xn → x as n → ∞ and
α(xn,xn+) =  for each n ∈N∪ {}, we have α(xn,x) =  for each n ∈N∪ {}. Therefore, all
conditions of Theorem . are satisfied and G has infinitely many fixed points. Note that
Nadler’s fixed-point theorem is not applicable here; see, for example, x = . and y = .

3 Consequences
It can be seen, by restricting G : X → X and taking ξ (t) = t for each t ≥  in Theorems .
and ., that:
• Theorem . and Theorem . of Samet et al. [] are special cases of Theorem . and
Theorem ., respectively;

• Theorem . of Asl et al. [] is a special case of Theorem .;
• Theorem . of Amiri et al. [] is a special case of Theorem .;
• Theorem . of Salimi et al. [] is a special case of Theorems . and ..

Further, it can be seen, by considering G : X → CB(X) and ξ (t) = t for each t ≥ , that
• Theorem . and Theorem . of Mohammadi et al. [] are special cases of our
results;

• Theorem . of Amiri et al. [] is a special case of Theorem ., when ψ ∈ � is
sublinear.

Remark . Observe that, in case G : X → X, ψ may be a nondecreasing function in
Theorem . and Theorem ..

http://www.fixedpointtheoryandapplications.com/content/2014/1/7
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Remark . Note that in Example ., ξ (t) =
√
t. Therefore, one may not apply the afore-

mentioned results and, as a consequence, conclude that G has a fixed point.
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