
Iemoto et al. Fixed Point Theory and Applications 2014, 2014:51
http://www.fixedpointtheoryandapplications.com/content/2014/1/51

RESEARCH Open Access

Approximate solutions to variational
inequality over the fixed point set of a
strongly nonexpansive mapping
Shigeru Iemoto1, Kazuhiro Hishinuma2 and Hideaki Iiduka2*

*Correspondence:
iiduka@cs.meiji.ac.jp
2Department of Computer Science,
Meiji University, 1-1-1 Higashimita,
Tama-ku, Kawasaki-shi, Kanagawa,
214-8571, Japan
Full list of author information is
available at the end of the article

Abstract
Variational inequality problems over fixed point sets of nonexpansive mappings
include many practical problems in engineering and applied mathematics, and a
number of iterative methods have been presented to solve them. In this paper, we
discuss a variational inequality problem for a monotone, hemicontinuous operator
over the fixed point set of a strongly nonexpansive mapping on a real Hilbert space.
We then present an iterative algorithm, which uses the strongly nonexpansive
mapping at each iteration, for solving the problem. We show that the algorithm
potentially converges in the fixed point set faster than algorithms using firmly
nonexpansive mappings. We also prove that, under certain assumptions, the
algorithm with slowly diminishing step-size sequences converges to a solution to the
problem in the sense of the weak topology of a Hilbert space. Numerical results
demonstrate that the algorithm converges to a solution to a concrete variational
inequality problem faster than the previous algorithm.
MSC: 47H06; 47J20; 47J25
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1 Introduction
The paper presents an iterative algorithm for the variational inequality problem [–] for
a monotone, hemicontinuous operator A over a nonempty, closed convex subset C of a
real Hilbert space H with inner product 〈· , ·〉 and its induced norm ‖ · ‖,

find z ∈ C such that 〈y – z,Az〉 ≥  for all y ∈ C. ()

Problem () can be solved by using convex optimization techniques. A typical iterative
procedure for Problem () is the projected gradient method [, ], and it is expressed as
x ∈ C and xn+ = PC(I – rnA)xn for n = , , . . . , where PC stands for the metric projection
ontoC, I is the identitymapping onH , and {rn} ⊂ (,∞). However, as themethod requires
repetitive use of PC , it can only be applied when the explicit form of PC is known (e.g., C is
a closed ball or a closed cone). The following method, called the hybrid steepest descent
method (HSDM) [], enables us to consider the case in which C has a more complicated
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form: x ∈H and

xn+ = (I – rnA)Txn

for all n = , , . . . , where {rn} ⊂ (, ] and T : H → H is an easily implemented nonex-
pansive mapping satisfying Fix(T) := {x ∈ H : Tx = x} = C. HSDM converges strongly to a
unique solution to the variational inequality problem over Fix(T),

find z ∈ Fix(T) such that 〈y – z,Az〉 ≥  for all y ∈ Fix(T), ()

when A : H → H is strongly monotone and Lipschitz continuous. Problem () contains
many applications such as signal recovery problems [], beam-forming problems [],
power-control problems [, ], bandwidth allocation problems [–], and optimal
control problems []. References [, ], and [] presented acceleration methods for
solving Problem () when A is strongly monotone and Lipschitz continuous. Algorithms
were presented to solve Problem () when A is (strictly) monotone and Lipschitz continu-
ous [, ]. When H =R

N and A : RN →R
N is continuous (and is not necessarily mono-

tone), a simple algorithm, xn+ := αnxn + ( – αn)(/)(I + T)(xn – rnAxn) (αn, rn ∈ [, ]),
was presented in [] and the algorithm converges to a solution to Problem () under
some conditions.
Reference [] proposed an iterative algorithm for solving Problem () when A : H →H

is monotone and hemicontinuous and showed that the algorithm weakly converges to a
solution to the problem under certain assumptions. The results in [] are summarized
as follows: suppose that F :H →H is a firmly nonexpansive mapping with Fix(F) 
= ∅ and
that A :H →H is a monotone, hemicontinuous mapping with

VI
(
Fix(F),A

)
:=

{
z ∈ Fix(F) : 〈y – z,Az〉 ≥  for all y ∈ Fix(F)

} 
= ∅.

Define a sequence {xn} ⊂ H by x ∈H and

⎧⎨
⎩yn = F(I – rnA)xn,

xn+ = αnxn + ( – αn)yn
()

for all n = , , . . . , where {αn} ⊂ [, ) and {rn} ⊂ (, ). Assume that {Axn} in algo-
rithm () is bounded, and that there exists n ∈N such thatVI(Fix(F),A)⊂ � :=

⋂∞
n=n{x ∈

Fix(F) : 〈xn – x,Axn〉 ≥ }. If {αn} and {rn} satisfy lim supn→∞ αn < ,
∑∞

n= rn < ∞, and
limn→∞‖xn – yn‖/rn = , then {xn} weakly converges to a point in VI(Fix(F),A). To relax
the strongmonotonicity condition ofA considered in [], a firmly nonexpansive mapping
F is used in algorithm () in place of a nonexpansivemappingT . From the fact that a firmly
nonexpansive mapping F can be represented by the form, F = (/)(I + T), for some non-
expansive mapping T , algorithm () when αn :=  and F := (/)(I + T) can be simplified
as follows: x ∈H and

xn+ =


(I + T)(xn – rnAxn) =



(xn – rnAxn) +



T(xn – rnAxn). ()
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In constrained optimization problems, one is required to satisfy constraint conditions
early in the process of executing an iterative algorithm. From this viewpoint, we intro-
duce the following algorithm with a weighted parameter α, which is more than /:

xn+ = ( – α)(xn – rnAxn) + αT(xn – rnAxn)

=
[
( – α)I + αT

]
(xn – rnAxn) =: S(xn – rnAxn). ()

Algorithm () potentially converges in the fixed point set faster than algorithm (). Here,
we can see that the mapping, S := ( – α)I + αT , satisfies the strong nonexpansivity con-
dition [], which is a weaker condition than firm nonexpansivity. This implies that the
previous algorithms in [, ], which can be applied to Problem () when T is firmly
nonexpansive, cannot solve Problem () when T is strongly nonexpansive.
In this paper, we present an iterative algorithm for solving the variational inequality

problem with a monotone, hemicontinuous operator over the fixed point set of a strongly
nonexpansive mapping and show that the algorithm weakly converges to a solution to the
problem under certain assumptions.
The rest of the paper is organized as follows. Section  covers the mathematical prelim-

inaries. Section  presents the algorithm for solving the variational inequality problem for
a monotone, hemicontinuous operator over the fixed point set of a strongly nonexpansive
mapping, and its convergence analyses. Section  provides numerical comparisons of the
algorithm with the previous algorithm in [] and shows that the algorithm converges to
a solution to a concrete variational inequality problem faster than the previous algorithm.
Section  concludes the paper.

2 Preliminaries
Throughout this paper, we will denote the set of all positive integers by N and the set of all
real numbers by R. Let H be a real Hilbert space with inner product 〈· , ·〉 and its induced
norm ‖ · ‖. We denote the strong convergence and weak convergence of {xn} to x ∈ H by
xn → x and xn ⇀ x, respectively. It is well known that H satisfies the following condition,
called Opial’s condition []: for any {xn} ⊂ H satisfying xn ⇀ x, lim infn→∞‖xn – x‖ <
lim infn→∞‖xn – y‖ holds for all y ∈ H with y 
= x; see also [, , ]. To prove our main
theorems, we need the following lemma, which was proven in []; see also [, , ].

Lemma . ([]) Assume that {sn} and {en} are sequences of non-negative numbers such
that sn+ ≤ sn + en for all n ∈N. If

∑∞
n= en < ∞, then limn→∞ sn exists.

2.1 Strong nonexpansivity and fixed point set
Let T be a mapping of H into itself. We denote the fixed point set of T by Fix(T); i.e.,
Fix(T) = {z ∈ H : Tz = z}. A mapping T :H → H is said to be nonexpansive if ‖Tx – Ty‖ ≤
‖x – y‖ for all x, y ∈H . Fix(T) is closed and convex when T is nonexpansive [, , , ].
T :H →H is said to be strongly nonexpansive [] ifT is nonexpansive and if, for bounded
sequences {xn}, {yn} ⊂H , ‖xn – yn‖–‖Txn –Tyn‖ →  implies ‖xn – yn – (Txn –Tyn)‖ → .
The following properties for strongly nonexpansive mappings were shown in []:
• Fix(T) is closed and convex when T : H →H is strongly nonexpansive because T is
also nonexpansive.

http://www.fixedpointtheoryandapplications.com/content/2014/1/51
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• A strongly nonexpansive mapping, T :H →H , with Fix(T) 
= ∅ is asymptotically
regular [, ], i.e., for each x ∈H , limn→∞‖Tnx – Tn+x‖ = .

• If S,T :H →H are strongly nonexpansive, then ST is also strongly nonexpansive, and
Fix(ST) = Fix(S)∩ Fix(T) when Fix(S)∩ Fix(T) 
= ∅.

• If S :H →H is strongly nonexpansive and if T :H →H is nonexpansive, then
αS + ( – α)T is strongly nonexpansive for α ∈ (, ). If Fix(S)∩ Fix(T) 
= ∅, then
Fix(αS + ( – α)T) = Fix(S)∩ Fix(T) []. In particular, since the identity mapping I is
strongly nonexpansive, the mapping U := αI + ( – α)T is strongly nonexpansive. Such
U is said to be averaged nonexpansive.

Example . LetD ⊂H be a closed convex set, which is simple in the sense that PD can be
calculated explicitly. Furthermore, let f : H →R be Fréchet differentiable and∇f : H →H
be Lipschitz continuous; i.e., there exists L >  such that ‖∇f (x) – ∇f (y)‖ ≤ L‖x – y‖ for
all x, y ∈H . Then, for r ∈ (, /L], Sr := PD(I – r∇f ) is nonexpansive [], [, Lemma .].
Define T : H → H by

T := αI + ( – α)Sr
(
α ∈ (, )

)
. ()

Then T is strongly nonexpansive and Fix(T) = {x ∈ D : f (x) =miny∈D f (y)}.

Example . Let Di ⊂ H (i = , , . . . ,m) be a closed convex set, which is simple in the
sense that PDi can be calculated explicitly. Define�(x) := (/)

∑m
i= ωi d(x,Di) for all x ∈H ,

where ωi ∈ (, ) with
∑m

i= ωi =  and d(x,Di) :=min{‖x– y‖ : y ∈Di} (i = , , . . . ,m). Also,
we define S : H →H and T : H →H as

S := PD

[ m∑
i=

ωiPDi

]
, T := αI + ( – α)S

(
α ∈ (, )

)
. ()

Then S is nonexpansive [, Proposition .] andFix(S) = C� := {x ∈D : �(x) =miny∈D �(y)}.
Hence, T is strongly nonexpansive and Fix(T) = C�. C� is referred to as a generalized con-
vex feasible set [, ] and is defined as the subset ofD that is closest toD,D, . . . ,Dm in
the mean square sense. Even if

⋂m
i=Di = ∅, C� is well defined. C� =

⋂m
i=Di holds when⋂m

i=Di 
= ∅. Accordingly, C� is a generalization of
⋂m

i=Di.

A mapping F :H → H is said to be firmly nonexpansive [] if ‖Fx – Fy‖ ≤ 〈x – y,Fx –
Fy〉 for all x, y ∈ H (see also [, , ]). Every firmly nonexpansive mapping F can be
expressed as F = (/)(I + T) given some nonexpansive mapping T [, , ]. Hence,
the class of averaged nonexpansive mappings includes the class of firmly nonexpansive
mappings.

2.2 Variational inequality
AnoperatorA : H →H is said to bemonotone if 〈x–y,Ax–Ay〉 ≥  for all x, y ∈H .A : H →
H is said to be hemicontinuous [, p.] if, for any x, y ∈ H , the mapping g : [, ] → H
defined by g(t) = A(tx + ( – t)y) is continuous, where H has a weak topology. Let C be
a nonempty, closed convex subset of H . The variational inequality problem [, ] for a
monotone operator A :H →H is as follows (see also [, , –]):

find z ∈ C such that 〈y – z,Az〉 ≥  for all y ∈ C.

http://www.fixedpointtheoryandapplications.com/content/2014/1/51
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We denote the solution set of the variational inequality problem by VI(C,A). The mono-
tonicity and hemicontinuity of A imply thatVI(C,A) = {z ∈ C : 〈y– z,Ay〉 ≥  for all y ∈ C}
[, Subsection .]. This means that VI(C,A) is closed and convex. VI(C,A) is nonempty
when A : H → H is monotone and hemicontinuous, and C ⊂ H is nonempty, compact,
and convex [, Theorem ..].

Example . Let g : H → R be convex and continuously Fréchet differentiable and A :=
∇g . Then A is monotone and hemicontinuous.
(i) Suppose that f : H → R is as in Example . and T : H → H is defined as in () and

set G := {z ∈D : f (z) =minw∈D f (w)}. Then

VI
(
Fix(T),A

)
=

{
x ∈G : g(x) =min

y∈G g(y)
}
.

A solution of this problem is a minimizer of g over the set of all minimizers of f over D.
Therefore, the problem has a triplex structure [, , ].
(ii) Suppose that T : H →H is defined as in (). Then

VI
(
Fix(T),A

)
=

{
x ∈ C� : g(x) = min

y∈C�

g(y)
}
.

This problem is to find a minimizer of g over the generalized convex feasible set [, ,
, , ].

3 Optimization of variational inequality over fixed point set
In this section, we present an iterative algorithm for solving the variational inequality
problem for a monotone, hemicontinuous operator over the fixed point set of a strongly
nonexpansive mapping and its convergence analyses. We assume that T : H → H is a
strongly nonexpansivemapping with Fix(T) 
= ∅ and thatA :H →H is a monotone, hemi-
continuous operator.

Algorithm .
Step . Choose x ∈H , r ∈ (, ), and α ∈ [, ) arbitrarily, and let n := .
Step . Given xn ∈H , choose rn ∈ (, ) and αn ∈ [, ) and compute xn+ ∈H as

yn := T(xn – rnAxn), xn+ := αnxn + ( – αn)yn.

Step . Update n := n + , and go to Step .

To prove our main theorems, we need the following lemma.

Lemma . Suppose that {xn} is a sequence generated by Algorithm . and that {Axn} is
bounded.Moreover, assume that
(A)

∑∞
n= rn < ∞, or

(B)
∑∞

n= rn < ∞, VI(Fix(T),A) 
= ∅, and the existence of an n ∈N satisfying
VI(Fix(T),A)⊂ � :=

⋂∞
n=n{x ∈ Fix(T) : 〈xn – x,Axn〉 ≥ }.

Then {xn} is bounded.

http://www.fixedpointtheoryandapplications.com/content/2014/1/51
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Proof Put zn := xn – rnAxn for all n ∈ N. We first assume that condition (A) is satisfied and
choose u ∈ Fix(T) arbitrarily. Accordingly, we see that, for any n ∈N,

‖xn+ – u‖ = ∥∥αnxn + ( – αn)yn – u
∥∥

≤ αn‖xn – u‖ + ( – αn)‖zn – u‖
= αn‖xn – u‖ + ( – αn)

∥∥(xn – u) – rnAxn
∥∥

≤ ‖xn – u‖ + rn‖Axn‖. ()

From
∑∞

n= rn <∞, the boundedness of {Axn}, and Lemma ., the limit of {‖xn–u‖} exists
for all u ∈ Fix(T), which implies that {xn} is bounded.
Next, suppose that condition (B) is satisfied, and let u ∈ Fix(T). Then, from the mono-

tonicity of A, we find that, for any n ∈ N,

‖xn+ – u‖ = ∥∥αnxn + ( – αn)yn – u
∥∥

≤ αn‖xn – u‖ + ( – αn)‖yn – u‖

≤ αn‖xn – u‖ + ( – αn)‖zn – u‖

= αn‖xn – u‖ + ( – αn)
∥∥(xn – u) – rnAxn

∥∥

= αn‖xn – u‖ + ( – αn)
(‖xn – u‖ + rn〈u – xn,Axn〉 + rn‖Axn‖

)
≤ ‖xn – u‖ + ( – αn)

(
rn〈u – xn,Axn〉 +Krn

)
= ‖xn – u‖ + ( – αn)

(
rn〈u – xn,Axn –Au〉

+ rn〈u – xn,Au〉 +Krn
)

≤ ‖xn – u‖ + rn( – αn)〈u – xn,Au〉 +Krn, ()

where K := sup{‖Axn‖ : n ∈ N} < ∞. Especially in the case of u ∈ VI(Fix(T),A) ⊂ �, it
follows from condition (B) that, for any n≥ n,

‖xn+ – u‖ ≤ ‖xn – u‖ + rn( – αn)〈u – xn,Axn〉 +Krn

≤ ‖xn – u‖ +Krn.

Hence, the condition,
∑∞

n= rn < ∞, and Lemma . guarantee that the limit of {‖xn – u‖}
exists for all u ∈ VI(Fix(T),A). We thus conclude that {xn} is bounded. �

Now, we are in the position to perform the convergence analysis on Algorithm . under
condition (A) in Lemma ..

Theorem . Let {xn} be a sequence generated by Algorithm . and assume that {Axn} is
bounded and that the sequences {αn} ⊂ [, ) and {rn} ⊂ (, ) satisfy

lim sup
n→∞

αn < ,
∞∑
n=

rn < ∞, and lim
n→∞

‖xn – yn‖
rn

= .

Then Algorithm . converges weakly to a point in VI(Fix(T),A).

http://www.fixedpointtheoryandapplications.com/content/2014/1/51
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Proof Put zn := xn – rnAxn for all n ∈N. The proof consists of the following steps:
(a) Prove that {xn} and {zn} are bounded.
(b) Prove that limn→∞‖xn – yn‖ =  and limn→∞‖xn – Txn‖ =  hold.
(c) Prove that {xn} converges weakly to a point in VI(Fix(T),A).
(a) Choose u ∈ Fix(T) arbitrarily. From the inequality, ‖zn – u‖ = ‖(xn – rnAxn) – u‖ ≤

‖xn – u‖ + rn‖Axn‖, and Lemma ., we deduce that {zn} is bounded.
(b) Put c := limn→∞‖xn – u‖ for any u ∈ Fix(T). Then, from

∑∞
n= rn < ∞, for any ε > ,

we can choose m ∈ N such that |‖xn – u‖ – c| ≤ ε, and rn ≤ ε for all n ≥ m. Also, there
exists a >  such that αn < a <  for all n ≥ m because of lim supn→∞ αn < . Since yn =
(/( – αn))xn+ – (αn/( – αn))xn, we have

‖yn – u‖ ≥ 
 – αn

‖xn+ – u‖ – αn

 – αn
‖xn – u‖

for all n ∈N. We find that, for any n≥m,

‖yn – u‖ ≥ 
 – αn

(c – ε) –
αn

 – αn
(c + ε) = c –

 + αn

 – αn
ε ≥ c –

 + a
 – a

ε.

Hence, for any u ∈ Fix(T) and for any n≥m, we have

 ≤ ‖zn – u‖ – ‖Tzn – Tu‖ ≤ ‖xn – u‖ + rn‖Axn‖ – ‖yn – u‖

≤ c + ε +
√
Kε –

(
c –

 + a
 – a

ε

)
=

(


 – a
+

√
K

)
ε,

whereK = sup{‖Axn‖ : n ∈N} < ∞, which implies that limn→∞(‖zn–u‖–‖Tzn–Tu‖) = .
Since T is strongly nonexpansive, we get

lim
n→∞

∥∥(zn – u) – (Tzn – u)
∥∥ = lim

n→∞‖zn – Tzn‖ = lim
n→∞‖zn – yn‖ = . ()

From () and ‖xn – zn‖ = rn‖Axn‖ →  as n→ ∞, we also get

lim
n→∞‖xn – yn‖ = . ()

From ‖xn –Txn‖ ≤ ‖xn – yn‖+ ‖yn –Txn‖ ≤ ‖xn – yn‖+ ‖zn – xn‖, and (), we deduce that

lim
n→∞‖xn – Txn‖ = . ()

(c) From the boundedness of {xn}, there exists a subsequence {xni} of {xn} such that {xni}
converges weakly to a point v ∈H . From the nonexpansivity of T and (), it is guaranteed
that T is demiclosed (i.e., xn ⇀ u and ‖xn – Txn‖ →  imply u ∈ Fix(T)). Hence, we have
v ∈ Fix(T). From (), we get, for any u ∈ Fix(T) and for any n ∈N,

 ≤ (‖xn – u‖ + ‖xn+ – u‖)(‖xn – u‖ – ‖xn+ – u‖)
+ rn( – αn)〈u – xn,Au〉 +Krn,
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which means

 ≤ L‖xn – xn+‖
rn

+ ( – αn)〈u – xn,Au〉 +Krn

=
L( – αn)‖xn – yn‖

rn
+ ( – αn)〈u – xn,Au〉 +Krn

≤ L‖xn – yn‖
rn

+ ( – αn)〈u – xn,Au〉 +Krn,

where L := sup{‖xn – u‖ + ‖xn+ – u‖ : n ∈ N} < ∞. From ‖xn – yn‖/rn → , xn ⇀ v,
lim supn αn < , and rn → , we have

 ≤ 〈u – v,Au〉 for all u ∈ Fix(T).

The monotonicity and hemicontinuity of A imply that v ∈ VI(Fix(T),A). Finally, we show
that {xn} converges weakly to v ∈VI(Fix(T),A). Assume that another subsequence {xnj} of
{xn} convergesweakly tow. Then, from the discussion above, we also getw ∈VI(Fix(T),A).
If v 
= w, Opial’s theorem [] guarantees that

lim
n→∞‖xn – v‖ = lim

i→∞‖xni – v‖

< lim
i→∞‖xni –w‖

= lim
n→∞‖xn –w‖

= lim
j→∞‖xnj –w‖

< lim
j→∞‖xnj – v‖

= lim
n→∞‖xn – v‖.

This is a contradiction. Thus, v = w. This implies that every subsequence of {xn} con-
verges weakly to the same point in VI(Fix(T),A). Therefore, {xn} converges weakly to
v ∈VI(Fix(T),A). This completes the proof. �

Remark . The numerical examples in [, , ] show that Algorithm . satisfies
limn→∞‖xn – yn‖/rn =  when T is firmly nonexpansive and rn := /nα ( ≤ α < ). How-
ever, when α ≥ , there are counterexamples that do not satisfy limn→∞‖xn – yn‖/rn = 
[, , ].

Remark . If the sequence {xn} satisfies the assumptions in Theorem ., we need not
assume that VI(Fix(T),A) 
= ∅ or that n ∈ N exists such that VI(Fix(T),A) ⊂ � in condi-
tion (B) (see also [, Remark (c)]).

Remark . Let us provide the sufficient condition of the boundedness of {Axn}. Suppose
that Fix(T) is bounded and A is Lipschitz continuous. Then we can set a bounded set V
with Fix(T) ⊂ V onto which the projection can be computed within a finite number of
arithmetic operations (e.g., V is a closed ball with a large enough radius). Accordingly, we

http://www.fixedpointtheoryandapplications.com/content/2014/1/51
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can compute

xn+ := PV
(
αnxn + ( – αn)yn

)
(n = , , . . .) ()

instead of xn+ in Algorithm .. Since {xn} ⊂ V and V is bounded, {xn} is bounded. The
Lipschitz continuity of A means that ‖Axn – Ax‖ ≤ L‖xn – x‖ (x ∈ H), where L (> ) is a
constant, and hence, {Axn} is bounded. We can prove that Algorithm . with Equation
() and {αn} and {rn} satisfying the conditions in Theorem . (or Theorem .) weakly
converges to a point in VI(Fix(T),A) by referring to the proof of Theorem . (or Theo-
rem .).

We prove the following theorem under condition (B) in Lemma .. The essential parts
of a proof are similar those of Lemma . and Theorem ., so we will only give an outline
of the proof below.

Theorem . Let {xn} be a sequence generated by Algorithm .. Assume that {Axn} is
bounded and that {αn} ⊂ [, ) and {rn} ⊂ (, ) satisfy

lim sup
n→∞

αn < ,
∞∑
n=

rn <∞, and lim
n→∞

‖xn – yn‖
rn

= .

If VI(Fix(T),A) 
= ∅ and if there exists n ∈N such that VI(Fix(T),A)⊂ ⋂∞
n=n{x ∈ Fix(T) :

〈xn – x,Axn〉 ≥ }, then the sequence {xn} converges weakly to a point in VI(Fix(T),A).

Proof Put zn := xn – rnAxn for all n ∈ N. As in the proof of Theorem ., we proceed with
the following steps:
(a) Prove that {xn} and {zn} are bounded.
(b) Prove that limn→∞‖xn – Txn‖ =  holds.
(c) Prove that {xn} converges weakly to a point in VI(Fix(T),A).
(a) From Lemma ., it follows that the limit of {‖xn –u‖} exists for all u ∈VI(Fix(T),A),

and hence {xn} and {zn} are bounded.
(b) Let u ∈VI(Fix(T),A) and put c := limn→∞‖xn –u‖. Since∑∞

n= rn < ∞, the condition,
rn → , holds. As in the proof of Theorem .(b), for any ε > , there exists m ∈ N such
that

∣∣‖xn – u‖ – c
∣∣ ≤ ε, and ‖yn – u‖ ≥ c –

 + a
 – a

ε

for all n ≥ m. By lim supn→∞ αn < , there exists a >  such that αn < a < . Since the in-
equality ‖zn – u‖ = ‖(xn – rnAxn) – u‖ ≤ ‖xn – u‖ + rn‖Axn‖ holds, we have

 ≤ ‖zn – u‖ – ‖Tzn – Tu‖
≤ ‖xn – u‖ + rn‖Axn‖ – ‖yn – u‖

≤ c + ε +
√
Kε –

(
c –

 + a
 – a

ε

)

=
(


 – a

+
√
K

)
ε,
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where K = sup{‖Axn‖ : n ∈N} <∞. This implies that limn→∞(‖zn – u‖– ‖Tzn –Tu‖) = .
From the strong nonexpansivity of T , we get limn→∞‖zn –Tzn‖ = . The rest of the proof
is the same as the proof of Theorem .(b). Accordingly, we obtain limn→∞‖xn –Txn‖ = .
(c) Following the proof of Theorem .(c), there exists a subsequence {xni} ⊂ {xn} such

that {xni} converges weakly to v ∈VI(Fix(T),A). Assume that another subsequence {xnj} of
{xn} converges weakly to w. Then we also have w ∈VI(Fix(T),A). Since the limit of {‖xn –
u‖} exists for u ∈ VI(Fix(T),A), Opial’s theorem [] guarantees that v = w. This implies
that every subsequence of {xn} converges weakly to the same point in VI(Fix(T),A), and
hence, {xn} converges weakly to v ∈VI(Fix(T),A). This completes the proof. �

As we mentioned in Section , to solve constrained optimization problems whose fea-
sible set is the fixed point set of a nonexpansive mapping T , Algorithm . must converge
in Fix(T) early in the execution. Therefore, it would be useful to use a large parameter α

(∈ (, )) when a strongly nonexpansive mapping is represented by ( – α)I + αT . Theo-
rem . has the following consequences.

Corollary . Let T :H →H be a nonexpansivemapping with Fix(T) 
= ∅ and let A :H →
H be amonotone, hemicontinuousmapping. Let {xn} be a sequence generated by x ∈H and

⎧⎨
⎩yn = (( – α)I + αT)(xn – rnAxn),

xn+ = αnxn + ( – αn)yn
()

for all n ∈N,where {αn} ⊂ [, ),α ∈ (, ) and {rn} ⊂ (, ).Assume that {Axn} is a bounded
sequence and that

lim sup
n→∞

αn < ,
∞∑
n=

rn < ∞, and lim
n→∞

‖xn – yn‖
rn

= .

Then {xn} converges weakly to a point in VI(Fix(T),A).

Proof Since every averaged nonexpansive mapping is strongly nonexpansive and Fix(( –
α)I + αT) = Fix(T) for α ∈ (, ), Theorem . implies Corollary .. �

By following the proof of Theorem . and Corollary ., we get the following.

Corollary . Let T : H → H be a nonexpansive mapping with Fix(T) 
= ∅ and let A :
H →H be amonotone, hemicontinuous mapping. Let {xn} be a sequence in algorithm ().
Assume that {Axn} is a bounded sequence and that

lim sup
n→∞

αn < ,
∞∑
n=

rn <∞, and lim
n→∞

‖xn – yn‖
rn

= .

If VI(Fix(T),A) 
= ∅ and if there exists n ∈N such that VI(Fix(T),A)⊂ ⋂∞
n=n{x ∈ Fix(T) :

〈xn – x,Axn〉 ≥ }, then {xn} converges weakly to a point in VI(Fix(T),A).

http://www.fixedpointtheoryandapplications.com/content/2014/1/51
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4 Numerical examples
Let us apply Algorithm . and the algorithm in [] to the following variational inequality
problem.

Problem . Define f : R, →R and Ci (⊂R
,) (i = , ) by

f (x) :=


〈x,Qx〉 (

x ∈R
,),

Ci :=
{
x ∈ R

, : 〈ai,x〉 ≤ bi
}

(i = , ),

where Q ∈R
,×, is positive semidefinite, ai := (a()i ,a()i , . . . ,a(,)i ) ∈ R

,, and bi ∈
R+ (i = , ). Find z ∈VI(C ∩C,∇f ).

We set Q as a diagonal matrix with diagonal components , , . . . ,  and choose
a(j)i ∈ (, ) (i = , , j = , , . . . , ,) to be Mersenne Twister pseudo-random num-
bers given by the random-real function of srfi-, Gauche.a We also set b := ,
and b := ,. The compiler used in this experiment was gcc.b The double-precision
floating points were used for arithmetic processing of real numbers. The language was C.
In the experiment, we used the following algorithm:

⎧⎨
⎩yn := (( – α)I + αPCPC )(xn –

–
(n+). ∇f (xn)),

xn+ := 
xn +


yn (n ∈N),

()

where α ∈ (, ). Note that the projection PCi (i = , ) can be computed within a finite
number of arithmetic operations [, p.] because Ci (i = , ) is halfspace. More pre-
cisely,

PCi (x) = x +
min{,bi – 〈ai,x〉}

‖ai‖ ai
(
x ∈R

,, i = , 
)
.

We can see that algorithm () with α := / coincides with the previous algorithm in
[]. Hence, we comparec algorithm () with α := / with algorithm () with α := /
and verify that algorithm () with α := / converges in C ∩ C = Fix(PCPC ) faster
than algorithm () with α := /. We selected one hundred initial points x = x(k) ∈R

,

(k = , , . . . , ) as pseudo-random numbers generated by the rand function of the C
Standard Library. We executed algorithm () with α := / and algorithm () with α :=
/ for these initial points. Let {xn(k)} be the sequence generated by x(k) and algorithm
(). Here, we define

Dn :=




∑
k=

∥∥xn(k) – PCPC

(
xn(k)

)∥∥ (n ∈N).

The convergence of {Dn} to  implies that algorithm () converges to a point in C ∩C.
Corollary . guarantees that algorithm () converges to a solution to Problem . if

{∇f (xn)} is bounded and if

lim
n→∞(n + ).‖xn – yn‖ = . ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/51


Iemoto et al. Fixed Point Theory and Applications 2014, 2014:51 Page 12 of 14
http://www.fixedpointtheoryandapplications.com/content/2014/1/51

Figure 1 Behavior of Dn for algorithm (15) with
α := 9/10 and algorithm (15) with α := 1/2.

Figure 2 Behavior of Xn for algorithm (15) with
α := 9/10 and algorithm (15) with α := 1/2.

To verify whether algorithm () satisfies condition (), we employed

Xn :=




∑
k=

(n + ).
∥∥xn(k) – yn(k)

∥∥ (n ∈N),

where yn(k) := (( – α)I + αPCPC )(xn(k) – (–/(n + ).)∇f (xn(k))) (k = , , . . . , ,
n ∈ N). The convergence of {Xn} to  implies that algorithm () satisfies condition ().
We also used

Fn :=




∑
k=

f
(
xn(k)

)
(n ∈N)

to check that algorithm () is stable.
Figure  indicates the behaviors of Dn for algorithm () with α := / and algorithm

() with α := /. This figure shows that {Dn} in algorithm () with α := / converges
to  faster than {Dn} in algorithm () with α := /; i.e., algorithm () with α := /
converges in C ∩C faster than the previous algorithm in [].
Figure  compares the behaviors of Xn for algorithm () with α := / and algorithm

() with α := / and shows that the {Xn} generated by each algorithm converges to ; i.e.,
they each satisfy (). Therefore, from Corollary ., we can conclude that they can find a
solution to Problem ..
We can see fromFigure  that {Fn} generated by the two algorithms converge to the same

value. Figures , , and  indicate that algorithm () with α := / converges to a solu-
tion to Problem . faster than the previous algorithm in []. This is because algorithm
() uses a parameter (α := /) that is larger than / and algorithm () with α > /

http://www.fixedpointtheoryandapplications.com/content/2014/1/51


Iemoto et al. Fixed Point Theory and Applications 2014, 2014:51 Page 13 of 14
http://www.fixedpointtheoryandapplications.com/content/2014/1/51

Figure 3 Behavior of Fn for algorithm (15) with
α := 9/10 and algorithm (15) with α := 1/2.

potentially converges in the constraint set C ∩ C faster than the previous algorithm in
[] with α := /.

5 Conclusion
We studied a variational inequality problem for a monotone, hemicontinuous operator
over the fixed point set of a strongly nonexpansive mapping in a Hilbert space and de-
vised an iterative algorithm for solving it. Our convergence analyses guarantee that the
algorithm weakly converges to a solution under certain assumptions. We gave numerical
results to support the convergence analyses on the algorithm. The results showed that the
algorithm converges to a solution to a concrete variational inequality problem faster than
the previous algorithm.
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