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Abstract
In this paper, we extend the result of Wardowski (Fixed Point Theory Appl. 2012:94,
2012) by applying some weaker conditions on the self map of a complete metric
space and on the mapping F, concerning the contractions defined by Wardowski.
With these weaker conditions, we prove a fixed point result for F-Suzuki contractions
which generalizes the result of Wardowski.
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1 Introduction and preliminaries
Throughout this article, we denote by R the set of all real numbers, by R+ the set of all
positive real numbers, and by N the set of all natural numbers.
In , Polish mathematician Banach [] proved a very important result regarding a

contraction mapping, known as the Banach contraction principle. It is one of the funda-
mental results in fixed point theory. Due to its importance and simplicity, several authors
have obtained many interesting extensions and generalizations of the Banach contraction
principle (see [–] and references therein). Subsequently, in , M Edelstein proved
the following version of the Banach contraction principle.

Theorem . [] Let (X, d) be a compact metric space and let T : X → X be a self-
mapping. Assume that d(Tx,Ty) < d(x, y) holds for all x, y ∈ X with x �= y. Then T has a
unique fixed point in X.

In , Suzuki [] proved generalized versions of Edelstein’s results in compact metric
space as follows.

Theorem. [] Let (X, d) be a compactmetric space and let T : X → X be a self-mapping.
Assume that for all x, y ∈ X with x �= y,



d(x,Tx) < d(x, y) ⇒ d(Tx,Ty) < d(x, y).

Then T has a unique fixed point in X.

In , Wardowski [] introduce a new type of contractions called F-contraction and
prove a new fixed point theorem concerning F-contractions. In this way, Wardowski []
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generalized the Banach contraction principle in a different manner from the well-known
results from the literature. Wardowski defined the F-contraction as follows.

Definition . Let (X,d) be a metric space. A mapping T : X → X is said to be an F-
contraction if there exists τ >  such that

∀x, y ∈ X,
[
d(Tx,Ty) > ⇒ τ + F

(
d(Tx,Ty)

) ≤ F
(
d(x, y)

)]
, ()

where F :R+ →R is a mapping satisfying the following conditions:
(F) F is strictly increasing, i.e. for all x, y ∈R+ such that x < y, F(x) < F(y);
(F) For each sequence {αn}∞n= of positive numbers, limn→∞ αn =  if and only if

limn→∞ F(αn) = –∞;
(F) There exists k ∈ (, ) such that limα→+ αkF(α) = .

Wedenote byF , the set of all functions satisfying the conditions (F)-(F). For examples
of the function F the reader is referred to [] and [].

Remark . From (F) and () it is easy to conclude that every F-contraction is necessarily
continuous.

Wardowski [] stated amodified version of the Banach contraction principle as follows.

Theorem . [] Let (X,d) be a complete metric space and let T : X → X be an F-
contraction. Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence
{Tnx}n∈N converges to x∗.

Very recently, Secelean [] proved the following lemma.

Lemma . [] Let F : R+ → R be an increasing mapping and {αn}∞n= be a sequence of
positive real numbers. Then the following assertions hold:
(a) if limn→∞ F(αn) = –∞, then limn→∞ αn = ;
(b) if infF = –∞, and limn→∞ αn = , then limn→∞ F(αn) = –∞.

By proving Lemma ., Secelean showed that the condition (F) in Definition . can be
replaced by an equivalent but a more simple condition,

(F′) infF = –∞
or, also, by

(F′′) there exists a sequence {αn}∞n= of positive real numbers such that limn→∞ F(αn) =
–∞.

Remark . Define FB : R+ → R by FB(α) = lnα, then FB ∈ F . Note that with F = FB the
F-contraction reduces to a Banach contraction. Therefore, the Banach contractions are
a particular case of F-contractions. Meanwhile there exist F-contractions which are not
Banach contractions (see [, ]).

In this paper, we use the following condition instead of the condition (F) in Defini-
tion .:

http://www.fixedpointtheoryandapplications.com/content/2014/1/210
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(F′) F is continuous on (,∞).

We denote by F the set of all functions satisfying the conditions (F), (F′), and (F′).

Example . Let F(α) = –
α
, F(α) = –

α
+ α, F(α) = 

–eα , F(α) =


eα–e–α . Then F,F,F,
F ∈ F.

Remark . Note that the conditions (F) and (F′) are independent of each other. Indeed,
for p≥ , F(α) = –

αp satisfies the conditions (F) and (F) but it does not satisfy (F), while it
satisfies the condition (F′). Therefore, F�F . Again, for a > , t ∈ (, /a), F(α) = –

(α+[α])t ,
where [α] denotes the integral part of α, satisfies the conditions (F) and (F) but it does
not satisfy (F′), while it satisfies the condition (F) for any k ∈ (/a, ). Therefore, F � F.
Also, if we take F(α) = lnα, then F ∈ F and F ∈ F. Therefore, F ∩ F �= ∅.

In view of Remark ., it is meaningful to consider the result of Wardowski [] with the
mappings F ∈ F instead F ∈ F . Also, we define the F-Suzuki contraction as follows and
we give a new version of Theorem ..

Definition . Let (X,d) be a metric space. A mapping T : X → X is said to be an F-
Suzuki contraction if there exists τ >  such that for all x, y ∈ X with Tx �= Ty



d(x,Tx) < d(x, y) ⇒ τ + F

(
d(Tx,Ty)

) ≤ F
(
d(x, y)

)
,

where F ∈ F.

2 Main results
Theorem . Let T be a self-mapping of a complete metric space X into itself. Suppose
F ∈ F and there exists τ >  such that

∀x, y ∈ X,
[
d(Tx,Ty) > ⇒ τ + F

(
d(Tx,Ty)

) ≤ F
(
d(x, y)

)]
.

Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}∞n= con-
verges to x∗.

Proof Choose x ∈ X and define a sequence {xn}∞n= by

x = Tx, x = Tx = Tx, . . . , xn+ = Txn = Tn+x, ∀n ∈N. ()

If there exists n ∈N such that d(xn,Txn) = , the proof is complete. So, we assume that

 < d(xn,Txn) = d(Txn–,Txn), ∀n ∈N. ()

For any n ∈N we have

τ + F
(
d(Txn–,Txn)

) ≤ F
(
d(xn–,xn)

)
,

i.e.,

F
(
d(Txn–,Txn)

) ≤ F
(
d(xn–,xn)

)
– τ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/210
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Repeating this process, we get

F
(
d(Txn–,Txn)

) ≤ F
(
d(xn–,xn)

)
– τ

= F
(
d(Txn–,Txn–)

)
– τ

≤ F
(
d(xn–,xn–)

)
– τ

= F
(
d(Txn–,Txn–)

)
– τ

≤ F
(
d(xn–,xn–)

)
– τ

...

≤ F
(
d(x,x)

)
– nτ . ()

From (), we obtain limn→∞ F(d(Txn–,Txn)) = –∞, which together with (F′) and
Lemma . gives limn→∞ d(Txn–,Txn) = , i.e.,

lim
n→∞d(xn,Txn) = . ()

Now, we claim that {xn}∞n= is a Cauchy sequence. Arguing by contradiction, we assume
that there exist ε >  and sequences {p(n)}∞n= and {q(n)}∞n= of natural numbers such that

p(n) > q(n) > n, d(xp(n),xq(n)) ≥ ε, d(xp(n)–,xq(n)) < ε, ∀n ∈N. ()

So, we have

ε ≤ d(xp(n),xq(n)) ≤ d(xp(n),xp(n)–) + d(xp(n)–,xq(n))

≤ d(xp(n),xp(n)–) + ε

= d(xp(n)–,Txp(n)–) + ε.

It follows from () and the above inequality that

lim
n→∞d(xp(n),xq(n)) = ε. ()

On the other hand, from () there exists N ∈N, such that

d(xp(n),Txp(n)) <
ε


and d(xq(n),Txq(n)) <

ε


, ∀n≥N . ()

Next, we claim that

d(Txp(n),Txq(n)) = d(xp(n)+,xq(n)+) > , ∀n≥N . ()

Arguing by contradiction, there exists m ≥N such that

d(xp(m)+,xq(m)+) = . ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/210
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It follows from (), (), and () that

ε ≤ d(xp(m),xq(m)) ≤ d(xp(m),xp(m)+) + d(xp(m)+,xq(m))

≤ d(xp(m),xp(m)+) + d(xp(m)+,xq(m)+) + d(xq(m)+,xq(m))

= d(xp(m),Txp(m)) + d(xp(m)+,xq(m)+) + d(xq(m),Txq(m))

<
ε


+  +

ε


=

ε


.

This contradiction establishes the relation (). Therefore, it follows from () and the as-
sumption of the theorem that

τ + F
(
d(Txp(n),Txq(n))

) ≤ F
(
d(xp(n),xq(n))

)
, ∀n≥N . ()

From (F′), (), and (), we get τ + F(ε) ≤ F(ε). This contradiction shows that {xn}∞n= is
a Cauchy sequence. By completeness of (X,d), {xn}∞n= converges to some point x in X.
Finally, the continuity of T yields

d(Tx,x) = lim
n→∞d(Txn,xn) = lim

n→∞d(xn+,xn) = d
(
x∗,x∗) = .

Now, let us to show that T has at most one fixed point. Indeed, if x, y ∈ X be two distinct
fixed points of T , that is, Tx = x �= y = Ty. Therefore,

d(Tx,Ty) = d(x, y) > ,

then we get

F
(
d(x, y)

)
= F

(
d(Tx,Ty)

)
< τ + F

(
d(Tx,Ty)

) ≤ F
(
d(x, y)

)
,

which is a contradiction. Therefore, the fixed point is unique. �

Theorem. Let (X,d) be a completemetric space andT : X → X be an F-Suzuki contrac-
tion. Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}∞n=
converges to x∗.

Proof Choose x ∈ X and define a sequence {xn}∞n= by

x = Tx, x = Tx = Tx, . . . , xn+ = Txn = Tn+x, ∀n ∈N. ()

If there exists n ∈N such that d(xn,Txn) = , the proof is complete. So, we assume that

 < d(xn,Txn), ∀n ∈N.

Therefore,



d(xn,Txn) < d(xn,Txn), ∀n ∈ N. ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/210
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For any n ∈N we have

τ + F
(
d
(
Txn,Txn

)) ≤ F
(
d(xn,Txn)

)
,

i.e.,

F
(
d(xn+,Txn+)

) ≤ F
(
d(xn,Txn)

)
– τ .

Repeating this process, we get

F
(
d(xn,Txn)

) ≤ F
(
d(xn–,Txn–)

)
– τ

≤ F
(
d(xn–,Txn–)

)
– τ

≤ F
(
d(xn–,Txn–)

)
– τ

...

≤ F
(
d(x,Tx)

)
– nτ . ()

From (), we obtain limm→∞ F(d(xn,Txn)) = –∞, which together with (F′) and Lem-
ma . gives

lim
m→∞d(xn,Txn) = . ()

Now, we claim that {xn}∞n= is a Cauchy sequence. Arguing by contradiction, we assume
that there exist ε >  and sequences {p(n)}∞n= and {q(n)}∞n= of natural numbers such that

p(n) > q(n) > n, d(xp(n),xq(n)) ≥ ε, d(xp(n)–,xq(n)) < ε, ∀n ∈N. ()

So, we have

ε ≤ d(xp(n),xq(n)) ≤ d(xp(n),xp(n)–) + d(xp(n)–,xq(n))

≤ d(xp(n),xp(n)–) + ε

= d(xp(n)–,Txp(n)–) + ε.

It follows from () and the above inequality that

lim
n→∞d(xp(n),xq(n)) = ε. ()

From () and (), we can choose a positive integer N ∈N such that



d(xp(n),Txp(n)) <



ε < d(xp(n),xq(n)), ∀n≥N .

So, from the assumption of the theorem, we get

τ + F
(
d(Txp(n),Txq(n))

) ≤ F
(
d(xp(n),xq(n))

)
, ∀n≥N .

http://www.fixedpointtheoryandapplications.com/content/2014/1/210
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It follows from () that

τ + F
(
d(xp(n)+,Txq(n)+)

) ≤ F
(
d(xp(n),xq(n))

)
, ∀n≥N . ()

From (F′), (), and (), we get τ + F(ε) ≤ F(ε). This contradiction shows that {xn}∞n= is
a Cauchy sequence. By completeness of (X,d), {xn}∞n= converges to some point x∗ in X.
Therefore,

lim
n→∞d

(
xn,x∗) = . ()

Now, we claim that



d(xn,Txn) < d

(
xn,x∗) or



d
(
Txn,Txn

)
< d

(
Txn,x∗), ∀n ∈N. ()

Again, assume that there existsm ∈N such that



d(xm,Txm) ≥ d

(
xm,x∗) and



d
(
Txm,Txm

) ≥ d
(
Txm,x∗). ()

Therefore,

d
(
xm,x∗) ≤ d(xm,Txm) ≤ d

(
xm,x∗) + d

(
x∗,Txm

)
,

which implies that

d
(
xm,x∗) ≤ d

(
x∗,Txm

)
. ()

It follows from () and () that

d
(
xm,x∗) ≤ d

(
x∗,Txm

) ≤ 

d
(
Txm,Txm

)
. ()

Since 
d(xm,Txm) < d(xm,Txm), by the assumption of the theorem, we get

τ + F
(
d
(
Txm,Txm

)) ≤ F
(
d(xm,Txm)

)
.

Since τ > , this implies that

F
(
d
(
Txm,Txm

))
< F

(
d(xm,Txm)

)
.

So, from (F), we get

d
(
Txm,Txm

)
< d(xm,Txm). ()

It follows from (), (), and () that

d
(
Txm,Txm

)
< d(xm,Txm)

≤ d
(
xm,x∗) + d

(
x∗,Txm

)

http://www.fixedpointtheoryandapplications.com/content/2014/1/210
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≤ 

d
(
Txm,Txm

)
+


d
(
Txm,Txm

)

= d
(
Txn,Txn

)
.

This is a contradiction. Hence, () holds. So, from (), for every n ∈N, either

τ + F
(
d
(
Txn,Tx∗)) ≤ F

(
d
(
xn,x∗)),

or

τ + F
(
d
(
Txn,Tx∗)) ≤ F

(
d
(
Txn,x∗)) = F

(
d
(
xn+,x∗))

holds. In the first case, from (), (F′), and Lemma ., we obtain

lim
n→∞F

(
d
(
Txn,Tx∗)) = –∞.

It follows from (F′) and Lemma . that limn→∞ d(Txn,Tx∗) = . Therefore,

d
(
x∗,Tx∗) = lim

n→∞d
(
xn+,Tx∗) = lim

n→∞d
(
Txn,Tx∗) = .

Also, in the second case, from (), (F′), and Lemma ., we obtain

lim
n→∞F

(
d
(
Txn,Tx∗)) = –∞.

It follows from (F′) and Lemma . that limn→∞ d(Txn,Tx∗) = . Therefore,

d
(
x∗,Tx∗) = lim

n→∞d
(
xn+,Tx∗) = lim

n→∞d
(
Txn,Tx∗) = .

Hence, x∗ is a fixed point of T . Now let us show that T has at most one fixed point. Indeed,
if x∗, y∗ ∈ X are two distinct fixed points ofT , that is, Tx∗ = x∗ �= y∗ = Ty∗, then d(x∗, y∗) > .
So, we have  = 

d(x
∗,Tx∗) < d(x∗, y∗) and from the assumption of the theorem, we obtain

F
(
d
(
x∗, y∗)) = F

(
d
(
Tx∗,Ty∗)) < τ + F

(
d
(
Tx∗,Ty∗)) ≤ F

(
d
(
x∗, y∗)),

which is a contradiction. Thus, the fixed point is unique. �

Example . Consider the sequence {Sn}n∈N as follows:

S = × , S = ×  + × , . . . ,

Sn = ×  + ×  + · · · + n(n + ) =
n(n + )(n + )


, . . . .

Let X = {Sn : n ∈ N} and d(x, y) = |x – y|. Then (X,d) is complete metric space. Define the
mapping T : X → X by T(S) = S and T(Sn) = Sn– for every n > . Since

lim
n→∞

d(T(Sn),T(S))
d(Sn,S)

= lim
n→∞

Sn– – 
Sn – 

=
(n – )n(n + ) – 
n(n + )(n + ) – 

= ,

http://www.fixedpointtheoryandapplications.com/content/2014/1/210
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T is not a Banach contraction and a Suzuki contraction. On the other hand taking F(α) =
–
α
+ α ∈ F, we obtain the result that T is an F-contraction with τ = . To see this, let us

consider the following calculation. First observe that



d(Sn,TSn) < d(Sn,Sm) ⇔ [

( = n <m)∨ ( ≤m < n)∨ ( < n <m)
]
.

For  = n <m, we have

∣∣T(Sm) – T(S)
∣∣ = |Sm– – S| = ×  + ×  + · · · + (m – )m,

|Sm – S| = ×  + ×  + · · · +m(m + ). ()

Sincem >  and –
×+×+···+(m–)m < –

×+×+···+m(m+) , we have

 –


×  + ×  + · · · + (m – )m
+

[
×  + ×  + · · · + (m – )m

]

<  –


×  + ×  + · · · +m(m + )
+

[
×  + ×  + · · · + (m – )m

]

≤ –


 +  + · · · +m
+

[
×  + ×  + · · · + (m – )m

]
+m(m + )

= –


 +  + · · · +m
+

[
×  + ×  + · · · + (m – )m +m(m + )

]
.

So, from (), we get

 –


|T(Sm) – T(S)| +
∣∣T(Sm) – T(S)

∣∣ < –


|Sm – S| + |Sm – S|.

For ≤m < n, similar to  = n <m, we have

 –


|T(Sm) – T(S)| +
∣∣T(Sm) – T(S)

∣∣ < –


|Sm – S| + |Sm – S|.

For  < n <m, we have

∣∣T(Sm) – T(Sn)
∣∣ = n(n + ) + (n + )(n + ) + · · · + (m – )m,

|Sm – Sn| = (n + )(n + ) + (n + )(n + ) + · · · +m(m + ). ()

Sincem > n > , we have

(m + )m≥ (n + )(n + ) = n(n + ) + (n + ) ≥ n(n + ) + .

We know that –
n(n+)+(n+)(n+)+···+(m–)m < –

(n+)(n+)+(n+)(n+)+···+m(m+) . Therefore

 –


n(n + ) + (n + )(n + ) + · · · + (m – )m

+
[
n(n + ) + (n + )(n + ) + · · · + (m – )m

]
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<  –


(n + )(n + ) + (n + )(n + ) + · · · +m(m + )

+
[
n(n + ) + (n + )(n + ) + · · · + (m – )m

]

= –


(n + )(n + ) + (n + )(n + ) · · · +m(m + )

+  + n(n + ) +
[
(n + )(n + ) + · · · + (m – )m

]

≤ –


(n + )(n + ) + (n + )(n + ) + · · · +m(m + )

+m(m + ) +
[
(n + )(n + ) + · · · + (m – )m

]

= –


(n + )(n + ) + (n + )(n + ) + · · · +m(m + )

+
[
(n + )(n + ) + · · · + (m – )m

]
.

So from (), we get

 –


|T(Sm) – T(Sn)| +
∣
∣T(Sm) – T(Sn)

∣
∣ < –


|Sm – Sn| + |Sm – Sn|.

Therefore τ +F(d(T(Sm),T(Sn)))≤ d(Sm,Sn) for allm,n ∈ N. Hence T is an F-contraction
and T(S) = S.

For F(α) = ln(α), F(α) = ln(α) + α, F(α) = –
α
+ α, and F(α) = –√

α+[α] + α in the above
example, we compare the rate of convergence of the Banach contraction (F-contraction)
and F-contractions for F ∈F ∩ F, F ∈ (F –F ), and F ∈ (F – F) in Table .

Table 1 The generated iterations start from a point x0 = S30. CF denotes
F(d(S1,Sn)) – F(d(T(S1),T(Sn)))

n xn CF1 CF2 CF3 CF4
3 7308 1.098612 13.09861 12.111111 12.12201
4 6552 0.727214 20.74721 20.02924 20.05196
5 5850 0.581922 30.58192 30.01161 30.02896
...

...
...

...
...

...
27 20 0.109231 756.1092 756.0000 756.0005
28 8 0.105388 812.1054 812.0000 812.0004
29 2 0.101807 870.1018 870.0000 870.0004
30 2 0.09846093 930.0983 930 930.0004
31 2 0.0923895 1056.092 1056 1056
32 2 0.08962648 1122.09 1122 1122
33 2 0.08702411 1190.087 1190 1190
...

...
...

...
...

...
314 2 0.00953902 98910.01 98910 98910
315 2 0.00950879 99540.01 99540 99540
316 2 0.00947875 100172 100172 100172
317 2 0.00944889 100806 100806 100806
318 2 0.00941922 101442 101442 101442
...

...
...

...
...

...
3× 103 2 0.00099983 9003000 9003000 9003000

n → ∞ T (2) = 2 tends to 0 ≥ τ = 1 ≥ τ = 1 ≥ τ = 1
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