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Abstract
Kirk and Shahzad have recently given, in this journal, fixed point theorems concerning
local radial contractions and metric transforms. In this article, we replace the metric
transforms by metric-preserving functions. This in turn gives several extensions of the
main results given by Kirk and Shahzad. Several examples are given. The fixed point
sets of metric transforms and metric-preserving functions are also investigated.
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1 Introduction
The concept of metric transforms is introduced by Blumenthal [, ] in  while the
concept of metric-preserving functions seems to be introduced byWilson [] in  and
is investigated in detail by many authors [–]. Recently, Petruşel et al. [] have shown
the role of equivalent metrics and metric-preserving functions in fixed point theory. In
addition, Kirk and Shahzad [] have given results concerningmetric transforms and fixed
point theorems. Their main results are as follows:

Theorem  (Kirk and Shahzad [, Theorem .]) Let (X,d) be a metric space and
g : X → X. Suppose there exist a metric transform φ on X and a number k ∈ (, ) such
that the following conditions hold:
(a) For each x ∈ X there exists εx >  such that for every u ∈ X

d(x,u) < ε ⇒ (φ ◦ d)(g(x), g(u)) ≤ kd(x,u).

(b) There exists c ∈ (, ) such that for all t >  sufficiently small

kt ≤ φ(ct).

Then g is a local radial contraction on (X,d).

Theorem (Kirk and Shahzad [, Theorem.]) Suppose, in addition to the assumptions
in Theorem , X is complete and rectifiably pathwise connected. Then g has a unique fixed
point x, and limn→∞ gn(x) = x for each x ∈ X.
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Our purpose is to show that the metric transform φ in Theorem  can be replaced by
a metric-preserving function. This in turn gives extensions to the main results given by
Kirk and Shahzad in [, Theorem ., Theorem ., Theorem ., Theorem ., and The-
orem.]. Now let us recall some basic definitions that will be used throughout this article.

Definition  Let f : [,∞)→ [,∞). Then
(i) f is said to be a metric transform if f () = , f is strictly increasing on [,∞), and f

is concave on [,∞),
(ii) f is said to be a metric-preserving function if for all metric spaces (X,d), f ◦ d is a

metric on X ,
(iii) f is said to be amenable if f –({}) = {},
(iv) f is said to be tightly bounded if there exists u >  such that f (x) ∈ [u, u] for all

x > ,
(v) f is said to be subadditive if f (a + b) ≤ f (a) + f (b) for all a,b ∈ [,∞).

Definition  Let (X,d) be ametric space and g : X → X. Then g is said to be a local radial
contraction if there exists k ∈ (, ) such that for each x ∈ X, there exists ε >  such that for
every u ∈ X,

d(x,u) < ε ⇒ d
(
g(x), g(u)

) ≤ kd(x,u).

Definition  Let (X,d) be a metric space and γ be a path in X, that is, a continuous map
γ : [a,b] → X. A partition Y of [a,b] is a finite collection of points Y = {y, . . . , yN } such
that a = y ≤ y ≤ y ≤ · · · ≤ yN = b. The supremum of the sums

∑
Y =

N∑
i=

d
(
γ (yi–),γ (yi)

)

over all the partitions Y of [a,b] is called the length of γ . A path is said to be rectifiable if
its length is finite. A metric space is said to be rectifiably pathwise connected if each two
points of X can be joined by a rectifiable path.

Wewill give some auxiliary results in Section . Then wewill give the results concerning
metric-preserving functions, local radial contractions, and uniform localmultivalued con-
tractions in Section  and Section . Finally, we investigate the fixed point sets of metric
transforms and metric-preserving functions in Section .

2 Lemmas
We need to use some properties of metric-preserving functions and some fixed point the-
orems. We give them in this section for the convenience of the reader. For more details of
the metric-preserving functions, we refer the reader to [, , ].

Lemma  Let f : [,∞)→ [,∞). Then
(i) if f is metric preserving, then f is amenable,
(ii) if f is amenable and concave, then f is metric preserving.
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Proof The proof of (i) is easily obtained; see for example, in [, Lemma .]. The proof of
(ii) is given in [, Proposition .] and [, p.]. See also [, Proposition ] and [, p.].

�

Lemma  Let f : [,∞) → [,∞). If f is amenable, subadditive, and increasing, then f is
metric preserving.

Proof The proof can be found in [, Proposition .], [, Proposition .], and [, p.].
�

Lemma  If f : [,∞) → [,∞) is amenable and tightly bounded, then f is metric preserv-
ing.

Proof The proof is given in [, Proposition .], [, Proposition .], and [, p.]. �

Lemma  If f is metric preserving and  ≤ a ≤ b, then f (a)≤ f (b).

Proof The proof is given in [, Lemma .], and [, p.]. �

For a metric-preserving function f , let Kf denote the set

Kf =
{
k >  | f (x)≤ kx for all x ≥ 

}
.

Recall also that we define inf∅ = +∞. Then we have the following result.

Lemma  Let f : [,∞) → [,∞) be metric preserving. Then f ′() = infKf . In particular,
f ′() always exists in R∪ {+∞} and

(i) f ′() < +∞ if and only if Kf �= ∅, and
(ii) f ′() = +∞ if and only if Kf = ∅.

Proof The proof can be found in [, Theorem ], [, Theorem .], and [, pp.-].
�

The next lemma is probably well known but we give a proof here for completeness.

Lemma  If f : [,∞) → [,∞) is amenable and concave, then the function x 
→ f (x)
x is

decreasing on (,∞)

Proof Let a,b ∈ (,∞) and a < b. Since f is concave, we obtain

f (a) = f
((

 –
a
b

)
() +

(
a
b

)
(b)

)
≥

(
 –

a
b

)
f () +

a
b
f (b) =

a
b
f (b).

Therefore f (a)
a ≥ f (b)

b , as desired. �

Lemma  (Pokorný []) Let f : [,∞) → [,∞). Assume that f is amenable and there
is a periodic function g such that f (x) = x + g(x) for all x ≥ . Then f is metric preserving if
and only if f is increasing and subadditive.
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Proof The proof can be found in [, p.] and [, Theorem ]. �

Lemma  (Hu and Kirk []) Let (X,d) be a complete metric space for which each two
points can be joined by a rectifiable path, and suppose g : X → X is a local radial contrac-
tion. Then g has a unique fixed point x, and limn→∞ gn(x) = x for each x ∈ X.

As noted by Kirk and Shahzad [], an assertion in the proof of Lemma  given in []
was based on a false proposition of Holmes []. But Jungck [] proved that the assertion
itself is true. Hence the proof given in [] with minor changes is true. Kirk and Shahzad
[] apply Tan’s result [] to extend some of their theorems.Wewill also apply Tan’s result
as well.

Lemma  (Tan []) Let X be a topological space, let x ∈ X, and let g : X → X be a
mapping for which f := gN satisfies limn→∞ f n(x) = x for each x ∈ X. Then limn→∞ gn(x) =
x for each x ∈ X. (Also if x is the unique fixed point of f , it is also the unique fixed point
of g .)

We will use Nadler’s result concerning set-valued mappings. So let us recall some more
definitions. If ε >  is given, a metric space (X,d) is said to be ε-chainable if given a,b ∈ X
there exist x,x, . . . ,xn ∈ X such that a = x, b = xn, and d(xi,xi+) < ε for all i ∈ {, , . . . ,n–
}. The result of Nadler that we need is the following.

Lemma  (Nadler []) Let (X,d) be a complete ε-chainable metric space. If T : X →
CB(X) is an (ε,k)-uniform local multivalued contraction, then T has a fixed point.

3 Local radial contractions andmetric-preserving functions
In this section, we will give a generalization of Theorem  where the metric transform φ

is replaced by a metric-preserving function. In fact, we obtain a more general result as
follows.

Theorem  Let (X,d) be a metric space and let g : X → X. Assume that there exist k ∈
(, ) and a metric-preserving function f satisfying the following conditions:
(a) for each x ∈ X , there exists ε >  such that for every u ∈ X

d(x,u) < ε ⇒ (f ◦ d)(g(x), g(u)) ≤ kd(x,u), and

(b) f ′() > k.
Then g is a local radial contraction.

We know from Lemma  that f ′() always exists in R∪ {+∞}. So condition (b) in The-
orem  makes sense. To prove this theorem, we will first show that g is continuous in the
following lemma.

Lemma  Suppose that the assumptions in Theorem  hold. Then the function g is con-
tinuous.

As a consequence of Theorem , we can replace the metric transform φ in Theorem 
by a metric-preserving function and obtain an extension of Theorem .

http://www.fixedpointtheoryandapplications.com/content/2014/1/179
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Theorem  With the same assumptions in Theorem  except that condition (b) is re-
placed by (b′): there exists c ∈ (, ) such that f (ct) ≥ kt for all t >  sufficiently small. Then
g is a local radial contraction.

Remark  As noted by Kirk and Shahzad [, Remark .], [, Proposition .], metric
transforms satisfying condition (b) in Theorem  are numerous. Proposition , Exam-
ple , and Example  (to be given after the proof of Theorem ) show that the class of
metric-preserving functions satisfying condition (b) in Theorem  is larger than the class
of metric transforms satisfying the same condition. Hence the class of such functions is
even more numerous and Theorem  is indeed an extension of Theorem .

Now let us give the proof of Lemma , Theorem , and Theorem  as follows.

Proof of Lemma  Let x ∈ X and let ε > . Since k < f ′() = limy→+
f (y)–f ()

y– = limy→+
f (y)
y ,

there exists δ >  such that

 < y≤ δ ⇒ f (y)
y

> k. ()

By condition (a), there exists δ >  such that for every u ∈ X,

d(x,u) < δ ⇒ (f ◦ d)(g(x), g(u)) ≤ kd(x,u). ()

Let δ =min{δ, δ, ε}. Then by (), we obtain

f (δ)
δ

> k. ()

Since f is metric preserving, we obtain by Lemma , and () that for every b ∈ [,∞)

b ≥ δ


⇒ f (b)≥ f (δ)


>
kδ


. ()

Now let δ = δ
 and u ∈ X be such that d(x,u) < δ. Then by (), we obtain

f
(
d
(
g(x), g(u)

)) ≤ kd(x,u) < kδ =
kδ


.

Then by (), d(g(x), g(u)) < δ
 ≤ ε

 < ε. This shows that g is continuous, as required. �

Proof of Theorem  Let c = 
 (

k
f ′() + ) where if f ′() = +∞, we define k

f ′() to be zero and
c = 

 ( + ) = 
 . Then  ≤ k

f ′() < c < . Consider

f ′() = lim
y→+

f (y) – f ()
y – 

= lim
y→+

f (y)
y

.

Since f ′() > k
c , there exists δ >  such that

 < y < δ ⇒ f (y)
y

>
k
c
. ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/179


Pongsriiam and Termwuttipong Fixed Point Theory and Applications 2014, 2014:179 Page 6 of 14
http://www.fixedpointtheoryandapplications.com/content/2014/1/179

To show that g is a local radial contraction with the contraction constant c, let x ∈ X. By
Lemma , g is continuous at x. So there exists δ >  such that for every u ∈ X,

d(x,u) < δ ⇒ d
(
g(x), g(u)

)
< δ. ()

By condition (a), there exists δ >  such that for every u ∈ X,

d(x,u) < δ ⇒ (f ◦ d)(g(x), g(u)) ≤ kd(x,u). ()

Now let ε = min{δ, δ, δ} and let u ∈ X be such that d(x,u) < ε. We need to show that
d(g(x), g(u))≤ cd(x,u). If d(g(x), g(u)) = , then we are done. So assume that d(g(x), g(u)) >
. Then  < d(x,u) < ε and we obtain by () that

(f ◦ d)(g(x), g(u))
d(x,u)

≤ k. ()

The left hand side of () is

(f ◦ d)(g(x), g(u))
d(x,u)

=
f (d(g(x), g(u)))
d(g(x), g(u))

· d(g(x), g(u))
d(x,u)

>
k
c
d(g(x), g(u))

d(x,u)
, ()

where the above inequality is obtained from () and (). From () and (), we obtain

k
c
d(g(x), g(u))

d(x,u)
< k,

which implies the desired result. This completes the proof. �

Proof of Theorem  By Lemma , we know that f ′() exists in R ∪ {+∞} and by Theo-
rem , it suffices to show that f ′() > k. So we can assume further that f ′() exists in R.
Now f ′() = limy→+

f (y)–f ()
y– = limy→+

f (y)
y . Since the limits involved in the following cal-

culation exist, we obtain

lim
y→+

f (y)
y

= lim
t→+

f (ct)
ct

≥ lim
t→+

kt
ct

=
k
c
> k.

Therefore f ′() > k, as desired. �

As noted earlier, we will show that the class of metric-preserving functions and the class
of metric-preserving functions satisfying condition (b) in Theorem  are, respectively,
larger than the class of metric transforms and the class of metric transforms satisfying
condition (b) in Theorem .

Proposition  Every metric transform is metric preserving.

Proof Let f be ametric transform. Since f () =  and f is strictly increasing, f is amenable.
Since f is amenable and concave, we obtain by Lemma (ii) that f is metric preserving.

�
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Corollary  Kirk and Shahzad’s result (Theorem ) holds.

Proof This follows immediately from Proposition  and Theorem . �

Example  Let f , g,h : [,∞)→ [,∞) be given by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩
, if x = ;

, if x >  and x ∈Q;

, if x ∈Qc,

g(x) =

⎧⎨
⎩
x, if x ∈ [, ];

, if x > ,

h(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x, x ∈ [, ];

, x ∈ [, ];

x – , x ∈ (, );

, x ≥ .

Since f (x) ∈ [, ] for all x > , f is tightly bounded. Therefore by Lemma , f is metric
preserving. It is easy to see that f is not increasing (and is not concave either). So f is
not a metric transform. It is easy to see that g is amenable and concave, so it is metric
preserving, by Lemma (ii). In addition, if c = k = 

 ∈ (, ), then g(ct) ≥ kt for all t ∈ [, ].
So g satisfies condition (b) in Theorem . But g is not a metric transform because it is
not strictly increasing. For h, we proved in [, Example ] that h is metric preserving.
Similar to g , the function h satisfies the condition (b) in Theorem . It is easy to see that h
is neither strictly increasing nor concave. Therefore h is not a metric transform.

We can generate more functions similar to g given in Example  as follows.

Example  Let a≥  and b > . Define fa,b : [,∞)→ [,∞) by

fa,b(x) =

⎧⎨
⎩
ax, if x ∈ [,b];

ab, if x > b.

Then fa,b is amenable and concave. So by Lemma (ii), fa,b is metric preserving. We also
have f ′

a,b() = a≥ . So it satisfies condition (b) in Theorem . However, fa,b is not ametric
transform because it is not strictly increasing. In particular, if we let X = [,∞), k = 

 , f , g :
X → X given by g(x) = 

x and f = f,, then f satisfies all the assumptions in Theorem .

Remark  Some natural questions concerning the relation ofmetric transforms,metric-
preserving functions, and condition (b) can be answered by Example  and Example :
Q: Is there a continuous metric-preserving function which is not a metric transform?
A: Yes, g and h given in Example  and fa,b given in Example  are such functions.
Q: Is there any nowhere continuous metric-preserving function which is not a metric

transform?
A: Yes, f given in Example  is such a function.
Q: Is there a nowhere monotone metric-preserving function which is not a metric

transform?
A: Yes, f given in Example  is such a function.

http://www.fixedpointtheoryandapplications.com/content/2014/1/179
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Q: Is there a metric-preserving function which is concave and satisfies condition (b) in
Theorem  but it is not a metric transform?

A: Yes, g given in Example  and fa,b given in Example  are such functions.

Now that we have obtained two extensions of Theorem , we give two generalizations
of Theorem  as follows.

Theorem  The following statements hold:
(a) Suppose, in addition to the assumptions in Theorem , X is complete and rectifiably

pathwise connected. Then g has a unique fixed point x, and limn→∞ gn(x) = x for
each x ∈ X .

(b) Suppose, in addition to the assumptions in Theorem , X is complete and rectifiably
pathwise connected. Then g has a unique fixed point x, and limn→∞ gn(x) = x for
each x ∈ X .

Proof Part (a) follows immediately from Theorem  and Lemma . Part (b) follows im-
mediately from Theorem  and Lemma . �

Finally, we remark that Kirk and Shahzad use Tan’s result (Lemma ) to extend Theo-
rem  further [, Theorem . and Theorem .]. We similarly apply their argument to
obtain the following.

Theorem Let X be ametric spacewhich is complete and rectifiably pathwise connected,
and suppose g : X → X is a mapping for which
(a) gN satisfies the assumptions in Theorem  for some N ∈N, or
(b) gM satisfies the assumptions in Theorem  for someM ∈N.

Then g has a unique fixed point x, and limn→∞ gn(x) = x for each x ∈ X.

Proof This follows immediately from Theorem , Theorem , Lemma , and Lem-
ma . �

Conclusion We have obtained extensions of the main results given by Kirk and Shahzad
in [, Theorem ., Theorem ., and Theorem .]. We will obtain more results in the
next section.

4 Set-valued contractions
Kirk and Shahzad [] also give an analog of Theorem  and Theorem  for set-valued
mappings. Our purpose in this section is to obtain an analog of Theorem  and The-
orem  for set-valued mappings as well. First let us recall some definitions and results
concerning set-valued mappings.
Let (X,d) be a metric space and let CB(X) be the family of nonempty, closed, and

bounded subsets of X. The usual Hausdorff distance on CB(X) is defined as

H(A,B) =max
{
ρ(A,B),ρ(B,A)

}
,

where A,B ∈ CB(X), ρ(A,B) = supx∈A d(x,B), ρ(B,A) = supx∈B d(x,A).

Definition  Let T : X → CB(X). Then

http://www.fixedpointtheoryandapplications.com/content/2014/1/179


Pongsriiam and Termwuttipong Fixed Point Theory and Applications 2014, 2014:179 Page 9 of 14
http://www.fixedpointtheoryandapplications.com/content/2014/1/179

(i) T is called a multivalued contraction mapping if there exists a constant k ∈ (, )
such that H(Tx,Ty) ≤ kd(x, y) for all x, y ∈ X .

(ii) For ε >  and k ∈ (, ), T is called an (ε,k)-uniform local multivalued contraction if
for every x, y ∈ X

d(x, y) < ε ⇒ H(Tx,Ty) ≤ kd(x, y).

(iii) A point x ∈ X is said to be a fixed point of T if x ∈ Tx.

Kirk and Shahzad’s results on set-valuedmappingswhichwill be extended are as follows.

Theorem  (Kirk and Shahzad [, Theorem .]) Let (X,d) be a metric space and T :
X → CB(X). Suppose there exist a metric transform φ and k ∈ (, ) such that the following
conditions hold:
(a) For each x, y ∈ X , φ(H(Tx,Ty)) ≤ kd(x, y).
(b) There exists c ∈ (, ) such that for t >  sufficiently small, kt ≤ φ(ct).

Then for ε >  sufficiently small, T is an (ε, c)-uniform local multivalued contraction on
(X,d).

Theorem  (Kirk and Shahzad [, Theorem .]) If, in addition to the assumptions of
Theorem , X is complete and connected, then T has a fixed point.

Our aim is to replace the metric transform φ in Theorem  by a metric-preserving
function. We obtain the following theorem.

Theorem Let (X,d) be ametric space and T : X → CB(X). Suppose there exist ametric-
preserving function f and k ∈ (, ) such that the following conditions hold:
(a) For each x, y ∈ X , f (H(Tx,Ty))≤ kd(x, y).
(b) f ′() > k.

Then for ε >  sufficiently small, T is an (ε, c)-uniform local multivalued contraction on
(X,d).

Corollary  With the same assumptions in Theorem  except that condition (b) is re-
placed by (b′): there exists c ∈ (, ) such that for t >  sufficiently small, kt ≤ f (ct). Then
for ε >  sufficiently small, T is an (ε, c)-uniform local multivalued contraction on (X,d).

Theorem  If, in addition to the assumptions of Theorem  or Corollary , X is com-
plete and ε-chainable, then T has a fixed point. In particular, if X is complete and con-
nected, then T has a fixed point.

The proof of these results are similar to those in Section .

Proof of Theorem  We define c = 
 (

k
f ′() + ) as in the proof of Theorem . Then  ≤

k
f ′() < c <  and there exists δ >  such that for every z ∈ [,∞)

 < z ≤ δ ⇒ f (z)
z

>
k
c
. ()
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To show that T is an (ε, c)-uniform local multivalued contraction for ε >  sufficiently
small, we let  < ε < δ

 and let x, y ∈ X be such that d(x, y) < ε. By Lemma  and (), we
have for every b ∈ [,∞)

b ≥ δ


⇒ f (b)≥ f (δ)


>
kδ
c

>
kε
c

> kε. ()

By condition (a), we have f (H(Tx,Ty))≤ kd(x, y) < kε. Therefore we obtain by () that

H(Tx,Ty) <
δ


. ()

If d(x, y) =  or H(Tx,Ty) = , then it is obvious that H(Tx,Ty) ≤ cd(x, y) and we are done.
So assume that H(Tx,Ty) >  and d(x, y) > . Then

k
c
H(Tx,Ty)
d(x, y)

<
f (H(Tx,Ty))
H(Tx,Ty)

· H(Tx,Ty)
d(x, y)

=
f (H(Tx,Ty))

d(x, y)
≤ k,

where the first inequality is obtained by applying () and () and the last inequality is
merely the condition (a). This implies H(Tx,Ty) ≤ cd(x, y), as desired. �

Proof of Corollary  We can imitate the proof of Theorem  to obtain f ′() > k. SoCorol-
lary  follows immediately from Theorem . �

Proof of Theorem  This follows from Theorem , Corollary , and Lemma . The
other part follows from the fact that a connected metric space is ε-chainable for every
ε > . �

Conclusion We replace the metric transform φ by a metric-preserving function. There-
fore we obtain theorems more general than those of Kirk and Shahzad [, Theorem .,
Theorem ., Theorem ., Theorem ., and Theorem .].

5 Fixed point set of metric transforms andmetric-preserving functions
Recall that for a function f : X → X, we denote by Fix f the set of all fixed points of f . We
begin this section with the following lemma.

Lemma  Let f : [,∞)→ [,∞) be a metric transform. If  < a < b, f (a) = a, and f (b) =
b, then [a,b]⊆ Fix f .

Proof Since f is amenable and concave, the function x 
→ f (x)
x is decreasing on (,∞) by

Lemma . So if a≤ x ≤ b, then  = f (a)
a ≥ f (x)

x ≥ f (b)
b = , which implies f (x) = x. This shows

that [a,b]⊆ Fix f . �

Lemma  If f : [,∞) → [,∞) is a metric transform, then Fix f is a closed subset of
[,∞).

Proof Let (an) be a sequence in Fix f and an → a. If a =  or a = an for some n ∈ N, then
a ∈ Fix f and we are done. So assume that a >  and a �= an for any n ∈ N. Since a >  and
an → a, an >  for all large n. By passing to the subsequence, we can assume that an > 

http://www.fixedpointtheoryandapplications.com/content/2014/1/179
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for every n ∈ N. It is well known that every sequence of real numbers has a monotone
subsequence (see e.g. [, p.]). By passing to the subsequence again, we can assume that
(an) is monotone. Now suppose that (an) is increasing. Then by Lemma ,

[a,an]⊆ [a,a]∪ [a,a]∪ · · · ∪ [an–,an] ⊆ Fix f for every n ∈N.

Since (an) is increasing and an → a, if a ≤ x < a, then there exists N ∈ N such that a ≤
x < aN , which implies that x ∈ Fix f , by Lemma . This shows that [a,a) ⊆ Fix f . Since f
is increasing and an < a, an = f (an) ≤ f (a) for every n ∈ N. Since an ≤ f (a) for every n ∈ N

and an → a, we have

a ≤ f (a). ()

In addition, we obtain by Lemma  and the fact that a ≥ a that

f (a)
a

≤ f (a)
a

= . ()

From () and (), we obtain f (a) = a, as required. The case where (an) is decreasing can
be proved similarly. This completes the proof. �

Lemma  Let f : [,∞) → [,∞) be a metric transform. Then Fix f = [,∞) if and only
if supFix f = +∞.

Proof It is enough to show that supFix f = +∞ implies (,∞) ⊆ Fix f . So suppose that
supFix f = +∞ but there exists x ∈ (,∞) such that f (x) �= x. Since supFix f = +∞, there
exists a > x such that f (a) = a. Similarly, there exists b > a such that f (b) = b. Since f is
amenable and concave, we obtain by Lemma 

f (x)
x

≥ f (a)
a

= .

Since f (x) �= x, f (x) > x. Since x < a < b, there exists t ∈ (, ) such that a = ( – t)x + tb. By
the concavity of f , we obtain

a = f (a) = f
(
( – t)x + tb

) ≥ ( – t)f (x) + tf (b) > ( – t)x + tb = a,

a contradiction. This completes the proof. �

Theorem  If a > , then each set of the form {}, {,a}, [,a], and [,∞) is a fixed point
set of ametric transform.Conversely, if f is ametric transform, then Fix f = {}, {,a}, [,a],
or [,∞) for some a ∈ (,∞).

Proof Define f, f, f, f : [,∞) → [,∞) by

f(x) =
x

, f(x) =

√
ax, f(x) = x, f(x) =

⎧⎨
⎩
x, x ∈ [,a];
x+a
 , x > a.
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It is easy to verify that the functions f, f, f, f are metric transforms and Fix f = {},
Fix f = {,a}, Fix f = [,∞), and Fix f = [,a]. This proves the first part.
Next let f be a metric transform such that Fix f �= {} and Fix f �= [,∞). We let a =

supFix f and assert that Fix f = {,a} or [,a]. Note that since Fix f �= {}, a > . It is
obtained by Lemma  that a < +∞. Now apply Lemma  to get a ∈ Fix f . Therefore
{,a} ⊆ Fix f . By the definition of a, we see that x /∈ Fix f for every x > a. Now if x /∈ Fix f
for every  < x < a, then Fix f = {,a} andwe are done. So assume that there exists  < x < a
such that x ∈ Fix f . We will show that Fix f = [,a]. Since a = supFix f , it is obvious that
Fix f ⊆ [,a]. Suppose for a contradiction that there exists  < y < a such that f (y) �= y.
Since  < x < a and x,a ∈ Fix f , we obtain by Lemma  that y /∈ [x,a]. So y < x. By
Lemma  we have

f (y)
y

≥ f (x)
x

= .

Since f (y) �= y, f (y) > y. Since y < x < a, there exists t ∈ (, ) such that x = ( – t)y + ta. By
the concavity of f , we obtain

x = f (x) = f
(
( – t)y + ta

) ≥ ( – t)f (y) + tf (a) > ( – t)y + ta = x,

a contradiction. This completes the proof. �

Since everymetric transform ismetric preserving, we immediately obtain the result that
each set of the form {}, {,a}, [,a], and [,∞) is a fixed point set of a metric-preserving
function. However, there is a metric-preserving function f where Fix f is not of this form.
Let us show this more precisely.

Corollary  If a > , then each set of the form {}, {,a}, [,a], and [,∞) is a fixed point
of a metric-preserving function.

Proof This follows immediately from Theorem  and Proposition . �

Example  Let f , g,h : [,∞) → [,∞) be given by

f (x) = �x�, g(x) =

⎧⎪⎪⎨
⎪⎪⎩
, x = ;

, x ∈Q – {};√
, x ∈Qc,

h(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

, x = ;

,  < x < ;

x, x ∈ Q∩ [, ];

, x ∈ (Qc ∩ [, ])∪ (,∞).

(Recall that �x� is the smallest integer which is larger than or equal to x.) It is easy to verify
that f is amenable, increasing, and subadditive. So by Lemma , f is metric preserving.
Since g and h are amenable and tightly bounded, we obtain by Lemma  that g and h
are metric-preserving. It is easy to see that Fix f = N ∪ {}, Fix g = {, ,√}, and Fixh =
{} ∪ (Q∩ [, ]).
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By generating a function similar to h we obtain a more general result as follows.

Proposition  Let A⊆ [u, u] for some u > .Then A∪{} is a fixed point set of ametric-
preserving function.

Proof We define f : [,∞)→ [,∞) by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩
, if x = ;

x, if x ∈ A;

u, if x /∈ A∧ x /∈ {,u},

and if u /∈ A, then define f (u) = u. Then f is amenable and tightly bounded. Therefore, by
Lemma , f is metric preserving. It is easy to see that Fix f = A ∪ {}. This completes the
proof. �

From Example  and Proposition , we see that the fixed point set of a metric-
preserving function may not be of the form {}, {,a}, [,a], and [,∞). Other natural
questions and answers are the following:
Q: Is there a metric-preserving function which does not satisfy the result in

Lemma ?
A: Every function given in Example  is such a function.
Q: Is there a metric-preserving function which does not satisfy the result in

Lemma ?
A: The function h given in Example  and the function f given in Proposition 

(with a suitable set A) are such functions.
Q: Is there a metric-preserving function which does not satisfy the result in

Lemma ?
A: The function f given in Example  is such a function.

We see that the fixed point sets of metric-preserving functions are quite difficult to be
completely characterized.We leave this problem to the interested reader. Nowwe end this
article by giving continuous metric-preserving functions which do not satisfy the results
in Lemma  and Lemma .

Example  Let f , g : [,∞) → [,∞) be given by f (x) = �x� + √
x – �x� and g(x) = x +

| sinx|. (Recall that �x� is the largest integer which is less than or equal to x.) We will use
Lemma  to show that f and g are metric-preserving. First, the function x 
→ | sinx| is
periodic with period π .

∣∣sin(x + y)
∣∣ = | sinx cos y + cosx sin y| ≤ | sinx| + | sin y|.

So the function x 
→ | sinx| is also subadditive. From this, we easily see that g satisfies
the condition in Lemma . So g is metric preserving. It is not difficult to verify that f
is also satisfies the assumption in Lemma  and we will leave the details to the reader.
It is also easy to see that Fix f = N ∪ {} and Fix g = {nπ | n ∈ N ∪ {}}. So f and g are
continuous metric preserving functions of which fixed point sets do not satisfy the results
in Lemma  and Lemma .
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