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Abstract
In this paper, the new concepts of generalized Menger probabilistic metric spaces
and tripled common fixed point for a pair of mappings T : X × X × X → X and
A : X → X are introduced. Utilizing the properties of the pseudo-metric and the
triangular norm, some tripled common fixed point problems of hybrid probabilistic
contractions with a gauge function ϕ are studied. The obtained results generalize
some coupled common fixed point theorems in the corresponding literature. Finally,
an example is given to illustrate our main results.
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1 Introduction
Coupled fixed points were considered by Bhaskar and Lakshmikantham []. Recently,
some new results for the existence and uniqueness of coupled fixed points were presented
for the cases of partially ordered metric spaces, cone metric spaces and fuzzy metric
spaces (see [–]). The concept of probabilistic metric space was initiated and studied
by Menger which is a generalization of the metric space notion []. Many results on
the existence of fixed points or solutions of nonlinear equations under various types of
conditions in Menger spaces have been extensively studied by many scholars (see [–
]). In , Jachymski established a fixed point theorem for probabilistic ϕ-contractions
and give a characterization of function ϕ having the property that there exists a proba-
bilistic ϕ-contraction, which is not a probabilistic k-contraction (k ∈ [, )) []. In ,
Xiao et al. obtained some common coupled fixed point results for hybrid probabilistic
contractions with a gauge function ϕ in Menger probabilistic metric spaces and in non-
Archimedean Menger probabilistic metric spaces without assuming any continuity or
monotonicity conditions for ϕ [].
The purpose of this paper is to introduce the concept of generalizedMenger probabilis-

ticmetric spaces and tripled commonfixed point for a pair ofmappingsT : X×X×X → X
and A : X → X. Utilizing the properties of the pseudo-metric and the triangular norm,
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some tripled commonfixed points problems for pairs of commutativemappings under hy-
brid probabilistic contractions with a gauge function ϕ are studied in generalized Menger
PM-spaces and in generalized non-ArchimedeanMenger PM-space, respectively. The ob-
tained results generalize some coupled common fixed point theorems in corresponding
literatures. Finally, an example is given to illustrate our main results.

2 Preliminaries
Consistent with Menger [] and Zhang [], the following results will be needed in the
sequel.
Denote by R the set of real numbers, R+ the nonnegative real numbers, and Z+ the set

of all positive integers.
If ϕ : R+ → R+ is a function such that ϕ() = , then ϕ is called a gauge function. If t ∈ R+,

then ϕn(t) denotes the nth iteration of ϕ(t) and ϕ–({}) = {t ∈ R+ : ϕ(t) = }.
A mapping f : R → R+ is called a distribution function if it is nondecreasing and left-

continuous with inft∈R f (t) = , supt∈R f (t) = .
We shall denote by D the set of all distribution functions whileH will always denote the

specific distribution function defined by

H(t) =

{
, t ≤ ,
, t > .

Definition . ([]) A function � : [, ] × [, ] × [, ] → [, ] is called a triangular
norm (for short, a t-norm) if the following conditions are satisfied for any a,b, c,d, e, f ∈
[, ]:

(�-) �(a, , ) = a, �(, , ) = ;
(�-) �(a,b, c) =�(a, c,b) = �(c,b,a);
(�-) a≥ d,b ≥ e, c ≥ f ⇒ �(a,b, c) ≥ �(d, e, f );
(�-) �(a,�(b, c,d), e) =�(�(a,b, c),d, e) = �(a,b,�(c,d, e)).

Two typical examples of t-norms are�m(a,b, c) =min{a,b, c} and�p(a,b, c) = abc for all
a,b, c ∈ [, ].
We now introduce the definition of generalized Menger probabilistic metric space.

Definition . A triplet (X,F ,�) is called a generalized Menger probabilistic metric
space (for short, a generalized Menger PM-space) if X is a non-empty set, � is a t-norm
and F is a mapping from X ×X into D (we shall denote the distribution function F (x, y)
by Fx,y and Fx,y(t) will represent the value of Fx,y at t ∈ R) satisfying the following condi-
tions:

(GPM-) Fx,y() = ;
(GPM-) Fx,y(t) =H(t) for all t ∈ R if and only if x = y;
(GPM-) Fx,y(t) = Fy,x(t) for all x, y ∈ X and t ∈ R;
(GPM-) Fx,w(t + t + t)≥ �(Fx,y(t),Fy,z(t),Fz,w(t)) for all x, y, z,w ∈ X and t, t, t ∈ R+.

(X,F ,�) is called a generalized non-Archimedean Menger PM-space if it is a general-
ized Menger PM-space satisfying the following condition:

(GPM-) Fx,y(max{t, s, r})≥ �(Fx,z(t),Fz,w(s),Fw,y(r)) for all x, y, z,w ∈ X and t, s, r ∈ R+.
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Remark . In , Menger [] proposed a generalization of a metric space called a
Menger probabilistic metric space (briefly a Menger PM-space). Our definition of a gen-
eralized Menger PM-space is different from the one of Menger, since the t-norm we used
here is an associative function of three variables rather than a function of two variables.
Note that Definition . is first used by Chang to define a probabilistic -metric space.
Our definition is also different from the one of Chang since the distribution function of
the latter is from X ×X ×X to D .

Example . Suppose that X = [–, ] ⊂ R. Define F : X ×X → D by

F (x, y)(t) = Fx,y(t) =

{
( t
t+ )

|x–y|, t > ,
, t ≤ 

for x, y ∈ X. It is easy to verify that (X,F ,�p) is a generalized Menger PM-space. Now,
assume that t, s, r >  and x, y, z,w ∈ X. Then we have

�p
(
Fx,z(t),Fz,w(s),Fw,y(r)

)
=

(
t

t + 

)|x–z|( s
s + 

)|z–w|( r
r + 

)|w–y|

≤
(

max{t, s, r}
max{t, s, r} + 

)|x–z|+|z–w|+|w–y|

≤
(

max{t, s, r}
max{t, s, r} + 

)|x–y|

= Fx,y
(
max{t, s, r}).

Hence (X,F ,�p) is a generalized non-Archimedean Menger PM-space.

Proposition . Let (X,F ,�) be a generalized Menger PM-space and � be a continuous
t-norm. Then (X,F ,�) is a Hausdorff topological space in the (ε,λ)-topology T , i.e., the
family of sets

{
Ux(ε,λ) : ε > ,λ ∈ (, ],x ∈ X

}
is a base of neighborhoods of a point x for T , where

Ux(ε,λ) =
{
y ∈ X : Fx,y(ε) >  – λ

}
.

Proof It suffices to prove that:
(i) For any x ∈ X , there exists an U =Ux(ε,λ) such that x ∈ U .
(ii) For any given Ux(ε,λ) and Ux(ε,λ), there exist ε >  and λ > , such that

Ux(ε,λ) ⊂Ux(ε,λ)∩Ux(ε,λ).
(iii) For any y ∈Ux(ε,λ), there exist ε′ >  and λ′ > , such that Uy(ε′,λ′) ⊂Ux(ε,λ).
(iv) For any x, y ∈ X , x 
= y, there exist Ux(ε,λ) and Uy(ε,λ), such that

Ux(ε,λ)∩Uy(ε,λ) = ∅.
It is easy to check that (i)-(iii) are true.Nowweprove that (iv) is also true. In fact, suppose

that x, y ∈ X and x 
= y. Then there exist t >  and  ≤ a < , such that Fx,y(t) = a. Let

Ux =
{
r : Fx,r

(
t


)
> b

}
, Uy =

{
r : Fy,r

(
t


)
> b

}
,
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where  < b <  and �(b, ,b) > a (since � is continuous and �(, , ) = , such b exists).
Now suppose that there exists a point w ∈ Ux ∩ Uy, which implies that Fx,w( t ) > b and
Fy,w( t ) > b. Take v = w. Then we have

a = Fx,y(t)≥ �

(
Fx,w

(
t


)
,Fw,v

(
t


)
,Fv,y

(
t


))
≥ �(b, ,b) > a,

which is a contradiction. Thus the conclusion (iv) is proved. This completes the proof.
�

Definition . Let (X,F ,�) be a generalized Menger PM-space, � be a continuous
t-norm.

(i) A sequence {xn} in X is said to be T -convergent to x ∈ X if limn→∞ Fxn ,x(t) =  for
all t > .

(ii) A sequence {xn} in X is said to be a T -Cauchy sequence, if for any given ε >  and
λ ∈ (, ], there exists a positive integer N =N(ε,λ), such that Fxn ,xm (ε) >  – λ

whenever n,m ≥N .
(iii) (X,F ,�) is said to be T -complete, if each T -Cauchy sequence in X is

T -convergent to some point in X .

Definition . A t-norm � is said to be of H-type if the family of functions {�n(t)}∞n= is
equicontinuous at t = , where

�(t) = t, �n+(t) = �
(
t, t,�n(t)

)
, n = , , . . . , t ∈ [, ].

Definition . Let X be a non-empty set, T : X×X×X → X and A : X → X be twomap-
pings. A is said to be commutative with T , if AT(x, y, z) = T(Ax,Ay,Az) for all x, y, z ∈ X.
A point u ∈ X is called a tripled common fixed point of T and A, if u = Au = T(u,u,u).

Imitating the proof in [], we can easily obtain the following lemma.

Lemma . Let (X,F ,�) be a generalized Menger PM-space. For each λ ∈ (, ], define a
function dλ : X ×X → R+ by

dλ(x, y) = inf
{
t >  : Fx,y(t) >  – λ

}
. (.)

Then the following statements hold:
() dλ(x, y) < t if and only if Fx,y(t) >  – λ;
() dλ(x, y) = dλ(y,x) for all x, y ∈ X and λ ∈ (, ];
() dλ(x, y) =  if and only if x = y;
() dλ(x, z) ≤ dμ(x, y) + dμ(y, z) for all x, y, z ∈ X and μ ∈ (,λ].

The following lemmas play an important role in proving our main results in Sections 
and .

Lemma. ([]) Suppose that F ∈ D . For any n ∈ Z+, let Fn : R→ [, ] be nondecreasing,
and gn : (, +∞) → (, +∞) satisfy limn→∞ gn(t) =  for all t > . If Fn(gn(t)) ≥ F(t) for all
t > , then limn→∞ Fn(t) =  for all t > .
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Lemma . Let X be a nonempty set, T : X×X×X → X and A : X → X be twomappings.
If T(X ×X ×X)⊂ A(X), then there exist three sequences {xn}∞n=, {yn}∞n=, and {zn}∞n= in X,
such that Axn+ = T(xn, yn, zn), Ayn+ = T(yn,xn, zn), and Azn+ = T(zn,xn, yn).

Proof Let x, y, z be any given points in X. Since T(X × X × X) ⊂ A(X), we can choose
x, y, z ∈ X, such that Ax = T(x, y, z), Ay = T(y,x, z), and Az = T(z,x, y). Con-
tinuing this process, we can construct three sequences {xn}∞n=, {yn}∞n=, and {zn}∞n= in X,
such that Axn+ = T(xn, yn, zn), Ayn+ = T(yn,xn, zn), and Azn+ = T(zn,xn, yn). �

3 Tripled common fixed point results in generalized PM-spaces
Lemma . Let (X,F ,�) be a generalized Menger PM-space, {dλ}λ∈(,] be a family of
pseudo-metrics on X defined by (.). If � is a t-norm of H-type, then for each λ ∈ (, ],
there exists μ ∈ (,λ] such that for all m ∈ Z+ and x,x, . . . ,xm ∈ X,

dλ(x,xm) ≤
m–∑
i=

dμ(xi,xi+).

Proof Since � is a t-norm ofH-type, {�n(t)}∞n= is equicontinuous at t = , and so for each
λ ∈ (, ], there exists μ ∈ (,λ], such that

�n( –μ) >  – λ, ∀n ∈ Z+. (.)

For any given m ∈ Z+ and x,x, . . . ,xm ∈ X, we write dμ(xi,xi+) = ti (i = , , . . . ,m – ).
For any ε > , it is evident that dμ(xi,xi+) < ti + ε. By Lemma ., we have

Fxi ,xi+ (ti + ε) >  –μ, i = , , . . . ,m – . (.)

It follows from (.)-(.), and (GPM-) that

Fx,xm

(m–∑
i=

ti +mε

)

≥ �
(
Fx,x (t + ε),Fx,x (t + ε),�

(
Fx,x (t + ε),Fx,x (t + ε),

�
(
. . . ,�

(
Fxm–,xm– (tm– + ε),Fxm–,xm– (tm– + ε),Fxm–,xm (tm– + ε)

) · · · )))
≥ �m( –μ) >  – λ.

Using Lemma . again, we have dλ(x,xm) <
∑m–

i= ti +mε. By the arbitrariness of ε, we
have

dλ(x,xm) ≤
m–∑
i=

ti =
m–∑
i=

dμ(xi,xi+).

This completes the proof. �

Theorem . Let (X,F ,�) be a complete generalized Menger PM-space with � a t-norm
of H-type, ϕ : R+ → R+ be a gauge function such that ϕ–({}) = {}, ϕ(t) < t, and
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limn→∞ ϕn(t) =  for any t > . Let T : X × X × X → X and A : X → X be two mappings
satisfying

FT(x,y,z),T(p,q,r)
(
ϕ(t)

) ≥ [
FAx,Ap(t)FAy,Aq(t)FAz,Ar(t)

] 
 (.)

for all x, y, z,p,q, r ∈ X and t > , where T(X × X × X) ⊂ A(X), A is continuous and com-
mutative with T . Then T and A have a unique tripled common fixed point in X .

Proof By Lemma ., we can construct three sequences {xn}∞n=, {yn}∞n=, and {zn}∞n= in X,
such that Axn+ = T(xn, yn, zn), Ayn+ = T(yn,xn, zn), and Azn+ = T(zn,xn, yn).
From (.), for all t >  we have

FAxn ,Axn+
(
ϕ(t)

)
= FT(xn–,yn–,zn–),T(xn ,yn ,zn)

(
ϕ(t)

)
≥ [

FAxn–,Axn (t)FAyn–,Ayn (t)FAzn–,Azn (t)
] 
 , (.)

FAyn ,Ayn+
(
ϕ(t)

)
= FT(yn–,xn–,zn–),T(yn ,xn ,zn)

(
ϕ(t)

)
≥ [

FAyn–,Ayn (t)FAxn–,Axn (t)FAzn–,Azn (t)
] 
 (.)

and

FAzn ,Azn+
(
ϕ(t)

)
= FT(zn–,xn–,yn–),T(zn ,xn ,yn)

(
ϕ(t)

)
≥ [

FAzn–,Azn (t)FAxn–,Axn (t)FAyn–,Ayn (t)
] 
 . (.)

Denote Pn(t) = [FAxn–,Axn (t)FAyn–,Ayn (t)FAzn–,Azn (t)]

 . From (.)-(.), we have

Pn+
(
ϕ(t)

)
=

[
FAxn ,Axn+

(
ϕ(t)

)
FAyn ,Ayn+

(
ϕ(t)

)
FAzn ,Azn+

(
ϕ(t)

)] 


≥ [
Pn(t)Pn(t)Pn(t)

] 
 = Pn(t),

which implies that

FAxn ,Axn+
(
ϕn(t)

) ≥ Pn
(
ϕn–(t)

) ≥ · · · ≥ P(t), (.)

FAyn ,Ayn+
(
ϕn(t)

) ≥ Pn
(
ϕn–(t)

) ≥ · · · ≥ P(t) (.)

and

FAzn ,Azn+
(
ϕn(t)

) ≥ Pn
(
ϕn–(t)

) ≥ · · · ≥ P(t). (.)

Since P(t) = [FAx,Ax (t)FAy,Ay (t)FAz,Az (t)]

 ∈ D and limn→∞ ϕn(t) =  for each t > ,

using Lemma ., we have

lim
n→∞FAxn ,Axn+ (t) = , lim

n→∞FAyn ,Ayn+ (t) = , lim
n→∞FAzn ,Azn+ (t) = . (.)

Thus

lim
n→∞Pn(t) = , ∀t > . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/158
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We claim that for any k ∈ Z+ and t > ,

FAxn ,Axn+k (t) ≥ �k
(
Pn

(
t – ϕ(t)



))
, (.)

FAyn ,Ayn+k (t) ≥ �k
(
Pn

(
t – ϕ(t)



))
(.)

and

FAzn ,Azn+k (t)≥ �k
(
Pn

(
t – ϕ(t)



))
. (.)

In fact, by (.)-(.), it is easy to see that (.)-(.) hold for k = . Assume that (.)-
(.) hold for some k. Since ϕ(t) < t, by (.) we have FAxn ,Axn+ (t) ≥ FAxn ,Axn+ (ϕ(t)) ≥
Pn(t). By (.) and (.)-(.), we have

FAxn+,Axn+k+
(
ϕ(t)

) ≥ [
FAxn ,Axn+k (t)FAyn ,Ayn+k (t)FAzn ,Azn+k (t)

] 


≥ �k
(
Pn

(
t – ϕ(t)



))
.

Hence, by the monotonicity of �, we have

FAxn ,Axn+k+ (t) = FAxn ,Axn+k+
(
t – ϕ(t) + ϕ(t)

)
≥ �

(
FAxn ,Axn+

(
t – ϕ(t)



)
,FAxn+,Axn+

(
t – ϕ(t)



)
,

FAxn+,Axn+k+
(
ϕ(t)

))

≥ �

(
Pn

(
t – ϕ(t)



)
,Pn

(
t – ϕ(t)



)
,�k

(
Pn

(
t – ϕ(t)



)))

= �k+
(
Pn

(
t – ϕ(t)



))
.

Similarly, we have FAyn ,Ayn+k+ (t) ≥ �k+(Pn( t–ϕ(t)
 )) and FAzn ,Azn+k+ (t) ≥ �k+(Pn( t–ϕ(t)

 )).
Therefore, by induction, (.)-(.) hold for all k ∈ Z+ and t > .
Suppose that λ ∈ (, ] is given. Since � is a t-norm of H-type, there exists δ >  such

that

�k(s) >  – λ, s ∈ ( – δ, ],k ∈ Z+. (.)

By (.), there existsN ∈ Z+, such that Pn( t–ϕ(t)
 ) > –δ for all n≥N . Hence, from (.)-

(.), we get FAxn ,Axn+k (t) >  – λ, FAyn ,Ayn+k (t) >  – λ, FAzn ,Azn+k (t) >  – λ for all n ≥ N ,
k ∈ Z+. Therefore {Axn}, {Ayn}, and {Azn} are Cauchy sequences.
Since (X,F ,�) is complete, there exist u, v,w ∈ X, such that limn→∞ Axn = u,

limn→∞ Ayn = v and limn→∞ Azn = w. By the continuity of A, we have

lim
n→∞AAxn = Au, lim

n→∞AAyn = Av, lim
n→∞AAzn = Aw.
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The commutativity of A with T implies that AAxn+ = AT(xn, yn, zn) = T(Axn,Ayn,Azn).
From (.) and ϕ(t) < t, we obtain

FAAxn+,T(u,v,w)(t) ≥ FAAxn+,T(u,v,w)
(
ϕ(t)

)
= FT(Axn ,Ayn ,Azn),T(u,v,w)

(
ϕ(t)

)
≥ [

FAAxn ,Au(t)FAAyn ,Av(t)FAAzn ,Aw(t)
] 
 . (.)

Letting n→ ∞ in (.), we have limn→∞ AAxn = T(u, v,w). Hence,T(u, v,w) = Au. Sim-
ilarly, we can show that T(v,u,w) = Av and T(w,u, v) = Aw.
Next we show that Au = v, Av = u, and Aw = w. In fact, from (.), for all t >  we have

FAu,Ayn
(
ϕ(t)

)
= FT(u,v,w),T(yn–,xn–,zn–)

(
ϕ(t)

)
≥ [

FAu,Ayn– (t)FAv,Axn– (t)FAw,Azn– (t)
] 
 , (.)

FAv,Axn
(
ϕ(t)

) ≥ [
FAv,Axn– (t)FAu,Ayn– (t)FAw,Azn– (t)

] 
 (.)

and

FAw,Azn
(
ϕ(t)

) ≥ [
FAw,Azn– (t)FAu,Axn– (t)FAv,Ayn– (t)

] 
 . (.)

DenoteQn(t) = FAu,Ayn (t)FAv,Axn (t)FAw,Azn (t). By (.)-(.), we haveQn(ϕ(t)) ≥Qn–(t),
and hence for all t > 

Qn
(
ϕn(t)

) ≥Qn–
(
ϕn–(t)

) ≥ · · · ≥Q(t).

Thus, for all t >  we have

FAu,Ayn
(
ϕn(t)

) ≥ [
Q(t)

] 
 , FAv,Axn

(
ϕn(t)

) ≥ [
Q(t)

] 
 ,

FAw,Azn
(
ϕn(t)

) ≥ [
Q(t)

] 
 .

Since [Q(t)]

 ∈ D and limn→∞ ϕn(t) =  for all t > , by Lemma ., we conclude that

lim
n→∞Axn = Av, lim

n→∞Ayn = Au, lim
n→∞Azn = Aw. (.)

This shows that Au = v, Av = u, and Aw = w. Hence, v = T(u, v,w), u = T(v,u,w), and
w = T(w,u, v). Finally, we prove that u = v. By (.), for all t >  we have

Fu,v
(
ϕ(t)

)
= FT(v,u,w),T(u,v,w)

(
ϕ(t)

)
≥ [

FAv,Au(t)FAu,Av(t)FAw,Aw(t)
] 
 =

[
Fu,v(t)

] 
 , (.)

which implies that Fu,v(ϕn(t)) ≥ [Fu,v(t)](

 )

n . Using Lemma ., we have Fu,v(t) =  for all
t > , i.e., u = v. Similarly, we can show that u = w. Hence, there exists u ∈ X, such that
u = Au = T(u,u,u).
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Finally, we show the uniqueness of the tripled common fixed point of T and A. Suppose
that u′ ∈ X is another tripled common fixed point of T and A, i.e., u′ = Au′ = T(u′,u′,u′).
By (.), for all t >  we have

Fu,u′
(
ϕ(t)

)
= FT(u,u,u),T(u′,u′ ,u′)

(
ϕ(t)

)
≥ [

FAu,Au′ (t)FAu,Au′ (t)FAu,Au′ (t)
] 


≥ FAu,Au′ (t) = Fu,u′ (t), (.)

which implies that Fu,u′ (ϕn(t))≥ Fu,u′ (t) for all t > . Using Lemma ., we have Fu,u′ (t) = 
for all t > , i.e., u = u′. This completes the proof. �

Corollary . Let (X,F ,�) be a complete generalizedMenger PM-space with � a t-norm
of H-type and � ≥ �p, ϕ : R+ → R+ be a gauge function such that ϕ–({}) = {} and∑∞

n= ϕ
n(t) < +∞, for each t > . Let T : X × X × X → X and A : X → X be two mappings

satisfying

FT(x,y,z),T(p,q,r)
(
ϕ(t)

) ≥ [
�

(
FAx,Ap(t),FAy,Aq(t),FAz,Ar(t)

)] 
 (.)

for all x, y, z,p,q, r ∈ X and t > , where T(X × X × X) ⊂ A(X), A is continuous and com-
mutative with T . Then T and A have a unique tripled common fixed point in X .

Letting A = I (I is the identity mapping) in Corollary ., we can obtain the following
corollary.

Corollary . Let (X,F ,�) be a complete generalizedMenger PM-space with� a t-norm
of H-type and � ≥ �p, ϕ : R+ → R+ be a gauge function such that ϕ–({}) = {} and∑∞

n= ϕ
n(t) < +∞, for any t > . Let T : X ×X ×X → X be a mapping satisfying

FT(x,y,z),T(p,q,r)
(
ϕ(t)

) ≥ [
�

(
Fx,p(t),Fy,q(t),Fz,r(t)

)] 


for all x, y, z,p,q, r ∈ X and t > . Then T has a unique fixed point in X.

Letting ϕ(t) = αt ( < α < ) in Corollary ., we can obtain the following corollary.

Corollary . Let (X,F ,�) be a complete generalizedMenger PM-space with� a t-norm
of H-type and � ≥ �p, T : X ×X ×X → X and A : X → X be two mappings satisfying

FT(x,y,z),T(p,q,r)(αt)≥
[
�

(
FAx,Ap(t),FAy,Aq(t),FAz,Ar(t)

)] 


for all x, y, z,p,q, r ∈ X and t > , where  < α < , T(X × X × X) ⊂ A(X), A is continuous
and commutative with T . Then T and A have a unique tripled common fixed point in X .

Letting A = I (I is the identity mapping) in Theorem ., we can obtain the following
corollary.

Corollary . Let (X,F ,�) be a complete generalizedMenger PM-space with� a t-norm
of H-type, ϕ : R+ → R+ be a gauge function such that ϕ–({}) = {}, ϕ(t) < t, and

http://www.fixedpointtheoryandapplications.com/content/2014/1/158
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limn→∞ ϕn(t) =  for any t > . Let T : X ×X ×X → X be a mapping satisfying

FT(x,y,z),T(p,q,r)
(
ϕ(t)

) ≥ [
Fx,p(t)Fy,q(t)Fz,r(t)

] 


for all x, y, z,p,q, r ∈ X and t > . Then T has a unique fixed point in X.

Letting ϕ(t) = αt ( < α < ) in Theorem ., we can obtain the following corollary.

Corollary . Let (X,F ,�) be a complete generalizedMenger PM-space with� a t-norm
of H-type, T : X ×X ×X → X and A : X → X be two mappings satisfying

FT(x,y,z),T(p,q,r)(αt)≥
[
FAx,Ap(t)FAy,Aq(t)FAz,Ar(t)

] 


for all x, y, z,p,q, r ∈ X and t > , where  < α < , T(X × X × X) ⊂ A(X), A is continuous
and commutative with T . Then T and A have a unique tripled common fixed point in X .

From the proof of Theorem ., we can similarly prove the following result.

Theorem . Let (X,F ,�) be a complete generalized Menger PM-space with � a t-norm
of H-type, ϕ : R+ → R+ be a gauge function such that ϕ–({}) = {}, ϕ(t) > t, and
limn→∞ ϕn(t) = +∞ for any t > . Let T : X × X × X → X and A : X → X be two map-
pings satisfying

FT(x,y,z),T(p,q,r)(t) ≥min
{
FAx,Ap

(
ϕ(t)

)
,FAy,Aq

(
ϕ(t)

)
,FAz,Ar

(
ϕ(t)

)}
(.)

for all x, y, z,p,q, r ∈ X and t > , where T(X × X × X) ⊂ A(X), A is continuous and com-
mutative with T . Then T and A have a unique tripled common fixed point in X .

Letting A = I (I is the identity mapping) in Theorem ., we can obtain the following
corollary.

Corollary . Let (X,F ,�) be a complete generalizedMenger PM-space with� a t-norm
of H-type, ϕ : R+ → R+ be a gauge function such that ϕ–({}) = {}, ϕ(t) > t, and
limn→∞ ϕn(t) = +∞ for any t > . Let T : X ×X ×X → X be a mapping satisfying

FT(x,y,z),T(p,q,r)(t) ≥min
{
Fx,p

(
ϕ(t)

)
,Fy,q

(
ϕ(t)

)
,Fz,r

(
ϕ(t)

)}

for all x, y, z,p,q, r ∈ X and t > . Then T has a unique fixed point in X.

4 Tripled common fixed point results in generalized non-Archimedean
PM-spaces

In this section, we will use the results in Section  to get some corresponding results in
generalized non-Archimedean Menger spaces.

Lemma . Let (X,F ,�) be a complete generalized non-ArchimedeanMenger PM-space,
{dλ}λ∈(,] be a family of pseudo-metrics on X defined by (.). If � is a t-norm of H-type,

http://www.fixedpointtheoryandapplications.com/content/2014/1/158
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then for each λ ∈ (, ], there existsμ ∈ (,λ], such that for all m ∈ Z+ and x,x, . . . ,xm ∈ X,

dλ(x,xm) ≤ max
≤i≤m–

dμ(xi,xi+).

Proof Since � is a t-norm ofH-type, {�n(t)}∞n= is equicontinuous at t = , and so for each
λ ∈ (, ], there exists μ ∈ (,λ] such that

�n( –μ) >  – λ, ∀n ∈ Z+. (.)

For any givenm ∈ Z+, and x,x, . . . ,xm ∈ X, write dμ(xi,xi+) = ti (i = , , . . . ,m– ). For
any ε > , we have Fxi ,xi+ (ti + ε) >  –μ. It follows from (.) and (GPM-) that

Fx,xm
(

max
≤i≤m–

ti + ε
)

≥ �
(
Fx,x (t + ε),Fx,x (t + ε),�

(
Fx,x (t + ε),Fx,x (t + ε),

�
(
. . . ,�

(
Fxm–,xm– (tm– + ε),Fxm–,xm– (tm– + ε),Fxm–,xm (tm– + ε)

) · · · )))
≥ �m( –μ) >  – λ.

By Lemma ., we have dλ(x,xm) <max≤i≤m– ti + ε. By the arbitrariness of ε, we have

dλ(x,xm) ≤ max
≤i≤m–

ti = max
≤i≤m–

dμ(xi,xi+).

This completes the proof. �

Theorem . Let (X,F ,�) be a complete generalized non-Archimedean Menger PM-
space such that sup<t< �(t, t, t) =  and � ≥ �p, ϕ : R+ → R+ be a gauge function such
that ϕ–({}) = {} and limn→∞ ϕn(t) = +∞ for any t > . Let T : X × X × X → X and
A : X → X be two mappings satisfying

FT(x,y,z),T(p,q,r)(t) ≥
[
�

(
FAx,Ap

(
ϕ(t)

)
,FAy,Aq

(
ϕ(t)

)
,FAz,Ar

(
ϕ(t)

))] 
 (.)

for all x, y, z,p,q, r ∈ X and t > , where T(X × X × X) ⊂ A(X), A is continuous and com-
mutative with T . Suppose that there exist b, c,d ∈ X, such that for any t > ,

lim
n→∞

∞∏
i=n

FAb,T(b,c,d)
(
ϕi(t)

)
= , lim

n→∞

∞∏
i=n

FAc,T(c,d,b)
(
ϕi(t)

)
= ,

lim
n→∞

∞∏
i=n

FAd,T(d,b,c)
(
ϕi(t)

)
= .

(.)

Then T and A have a unique tripled common fixed point in X .

Proof Take x = b, y = c, and z = d. By Lemma ., we can construct three sequences
{xn}∞n=, {yn}∞n=, and {zn}∞n= in X, such that Axn+ = T(xn, yn, zn), Ayn+ = T(yn,xn, zn), and
Azn+ = T(zn,xn, yn).
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From (.), for all t > , we have

FAxn ,Axn+ (t) = FT(xn–,yn–,zn–),T(xn ,yn ,zn)(t)

≥ [
�

(
FAxn–,Axn ,

(
ϕ(t)

)
,FAyn–,Ayn

(
ϕ(t)

)
,FAzn–,Azn

(
ϕ(t)

))] 
 , (.)

FAyn ,Ayn+ (t) = FT(yn–,xn–,zn–),T(yn ,xn ,zn)(t)

≥ [
�

(
FAyn–,Ayn

(
ϕ(t)

)
,FAxn–,Axn

(
ϕ(t)

)
,FAzn–,Azn

(
ϕ(t)

))] 
 (.)

and

FAzn ,Azn+ (t) = FT(zn–,xn–,yn–),T(zn ,xn ,yn)(t)

≥ [
�

(
FAzn–,Azn

(
ϕ(t)

)
,FAxn–,Axn

(
ϕ(t)

)
,FAyn–,Ayn

(
ϕ(t)

))] 
 . (.)

Denote Gn(t) = [�(FAxn–,Axn (t),FAyn–,Ayn (t),FAzn–,Azn (t))]

 . From (.)-(.), and � ≥

�p, we obtain

Gn+(t) ≥ [
�

(
Gn

(
ϕ(t)

)
,Gn

(
ϕ(t)

)
,Gn

(
ϕ(t)

))] 


≥ [
Gn

(
ϕ(t)

)
Gn

(
ϕ(t)

)
Gn

(
ϕ(t)

)] 
 =Gn

(
ϕ(t)

)
,

which implies that

Gn+(t) ≥Gn
(
ϕ(t)

) ≥Gn–
(
ϕ(t)

) ≥ · · · ≥G
(
ϕn(t)

)
. (.)

Thus, by (.)-(.), we have

FAxn ,Axn+ (t) ≥G
(
ϕn(t)

)
, FAyn ,Ayn+ (t)≥G

(
ϕn(t)

)
,

FAzn ,Azn+ (t) ≥G
(
ϕn(t)

)
.

(.)

Suppose that ε >  and λ ∈ (, ]. By (.), there exists N ∈ Z+, such that

n+k–∏
i=n

FAx,Ax

(
ϕi

(
ε

k

))
>  – λ,

n+k–∏
i=n

FAy,Ay

(
ϕi

(
ε

k

))
>  – λ

and

n+k–∏
i=n

FAz,Az

(
ϕi

(
ε

k

))
>  – λ

for all n ≥N and k ∈ Z+.
Hence, it follows from (.) and (GPM-) that

FAxn ,Axn+k (ε)

≥ �

(
FAxn ,Axn+

(
ε

k

)
,FAxn+,Axn+

(
ε

k

)
,�

(
FAxn+,Axn+

(
ε

k

)
,FAxn+,Axn+

(
ε

k

)
,
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�

(
. . . ,�

(
FAxn+k–,Axn+k–

(
ε

k

)
,FAxn+k–,Axn+k–

(
ε

k

)
,FAxn+k–,Axn+k

(
ε

k

))
· · ·

)))

≥ �

(
G

(
ϕn

(
ε

k

))
,G

(
ϕn+

(
ε

k

))
,�

(
G

(
ϕn+

(
ε

k

))
,G

(
ϕn+

(
ε

k

))
,

�

(
. . . ,�

(
G

(
ϕn+k–

(
ε

k

))
,G

(
ϕn+k–

(
ε

k

))
,G

(
ϕn+k–

(
ε

k

)))
· · ·

)))

≥
n+k–∏
i=n

G

(
ϕi

(
ε

k

))

≥
n+k–∏
i=n

[
FAx,Ax

(
ϕi

(
ε

k

))
FAy,Ay

(
ϕi

(
ε

k

))
FAz,Az

(
ϕi

(
ε

k

))] 


>  – λ. (.)

This shows that {Axn} is a Cauchy sequence. Similarly, we can show that {Ayn} and {Azn}
are Cauchy sequences.
Since (X,F ,�) is complete, there exist u, v,w ∈ X, such that limn→∞ Axn = u,

limn→∞ Ayn = v, and limn→∞ Azn = w. By the continuity of A, we have

lim
n→∞AAxn = Au, lim

n→∞AAyn = Av, lim
n→∞AAzn = Aw. (.)

From (.) and the commutativity of A with T , we have

FAAxn+,T(u,v,w)(t) = FAT(xn ,yn ,zn),T(u,v,w)(t) = FT(Axn ,Ayn ,Azn),T(u,v,w)(t)

≥ [
�

(
FAAxn ,Au

(
ϕ(t)

)
,FAAyn ,Av

(
ϕ(t)

)
,FAAzn ,Aw

(
ϕ(t)

))] 


≥ [
FAAxn ,Au

(
ϕ(t)

)
FAAyn ,Av

(
ϕ(t)

)
FAAzn ,Aw

(
ϕ(t)

)] 
 . (.)

Letting n→ ∞ in (.), we have limn→∞ AAxn = T(u, v,w). Hence,T(u, v,w) = Au. Sim-
ilarly, we have T(v,u,w) = Av and T(w,u, v) = Aw.
Next we claim that Au = v, Av = u, and Aw = w. In fact, by (.), we have

FAu,Ayn (t) = FT(u,v,w),T(yn–,xn–,zn–)(t)

≥ [
�

(
FAu,Ayn–

(
ϕ(t)

)
,FAv,Axn–

(
ϕ(t)

)
,FAw,Azn–

(
ϕ(t)

))] 


≥ [
FAu,Ayn–

(
ϕ(t)

)
FAv,Axn–

(
ϕ(t)

)
FAw,Azn–

(
ϕ(t)

)] 
 , (.)

FAv,Axn (t) ≥
[
FAv,Axn–

(
ϕ(t)

)
FAu,Ayn–

(
ϕ(t)

)
FAw,Azn–

(
ϕ(t)

)] 
 (.)

and

FAw,Azn (t)≥
[
FAw,Azn–

(
ϕ(t)

)
FAu,Axn–

(
ϕ(t)

)
FAv,Ayn–

(
ϕ(t)

)] 
 . (.)

Denote Qn(t) = FAu,Ayn (t)FAv,Axn (t)FAw,Azn (t). It follows from (.)-(.) that

Qn(t)≥Qn–
(
ϕ(t)

) ≥ · · · ≥Q
(
ϕn(t)

)
,
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and thus

FAu,Ayn (t)≥
[
Q

(
ϕn(t)

)] 
 , FAv,Axn (t)≥

[
Q

(
ϕn(t)

)] 
 ,

FAw,Azn (t) ≥
[
Q

(
ϕn(t)

)] 
 .

(.)

Since limn→∞ ϕn(t) = +∞, we have

[
Q

(
ϕn(t)

)] 
 =

[
FAu,Ay

(
ϕn(t)

)
FAv,Ax

(
ϕn(t)

)
FAw,Az

(
ϕn(t)

)] 
 → ,

as n→ ∞. From (.), we have

lim
n→∞Axn = Av, lim

n→∞Ayn = Au, lim
n→∞Azn = Aw. (.)

Hence, Au = v, Av = u, and Aw = w, i.e., v = T(u, v,w), u = T(v,u,w), and w = T(w,u, v).
Now we prove that u = v. In fact, by (.), we have

Fu,v(t) = FT(v,u,w),T(u,v,w)(t)

≥ [
�

(
FAv,Au

(
ϕ(t)

)
,FAu,Av

(
ϕ(t)

)
,FAw,Aw

(
ϕ(t)

))] 


≥ [
Fu,v

(
ϕ(t)

)] 
 , (.)

which implies that Fu,v(t) ≥ [Fu,v(ϕn(t))](  )n . Letting n → ∞, we have Fu,v(t) =  for all
t > , i.e., u = v. Similarly, we can show that v = w. Hence, there exists u ∈ X, such that
u = Au = T(u,u,u).
Finally, we show the uniqueness of the tripled common fixed point of T and A. Suppose

that u′ ∈ X is another tripled common fixed point of T and A, i.e., u′ = Au′ = T(u′,u′,u′).
By (.), for all t > , we have

Fu,u′ (t) = FT(u,u,u),T(u′,u′ ,u′)(t)

≥ [
�

(
FAu,Au′

(
ϕ(t)

)
,FAu,Au′

(
ϕ(t)

)
,FAu,Au′

(
ϕ(t)

))] 


≥ FAu,Au′
(
ϕ(t)

)
= Fu,u′

(
ϕ(t)

)
, (.)

which implies that Fu,u′ (t) ≥ Fu,u′ (ϕn(t)) for all t > . Letting n → ∞, we have Fu,u′ (t) = 
for all t > , i.e., u = u′. This completes the proof. �

Letting A = I (I is the identity mapping) in Theorem ., we can obtain the following
corollary.

Corollary . Let (X,F ,�) be a complete generalized non-Archimedean Menger PM-
space such that sup<t< �(t, t, t) =  and � ≥ �p, ϕ : R+ → R+ be a gauge function such
that ϕ–({}) = {} and limn→∞ ϕn(t) = +∞ for any t > . Let T : X × X × X → X be a
mapping satisfying

FT(x,y,z),T(p,q,r)(t) ≥
[
�

(
Fx,p

(
ϕ(t)

)
,Fy,q

(
ϕ(t)

)
,Fz,r

(
ϕ(t)

))] 

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for all x, y, z,p,q, r ∈ X and t > . Suppose that there exist b, c,d ∈ X, such that for any t > ,

lim
n→∞

∞∏
i=n

Fb,T(b,c,d)
(
ϕi(t)

)
= , lim

n→∞

∞∏
i=n

Fc,T(c,d,b)
(
ϕi(t)

)
= ,

lim
n→∞

∞∏
i=n

Fd,T(d,b,c)
(
ϕi(t)

)
= .

(.)

Then T has a unique fixed point in X.

In a similar way, we can obtain the following result.

Theorem . Let (X,F ,�) be a complete generalized non-Archimedean Menger PM-
space such that � is a t-norm of H-type, ϕ : R+ → R+ be a gauge function such that
ϕ–({}) = {} and limn→∞ ϕn(t) =  for any t > . Let T : X × X × X → X and A : X → X
be two mappings satisfying

FT(x,y,z),T(p,q,r)
(
ϕ(t)

) ≥min
{
FAx,Ap(t),FAy,Aq(t),FAz,Ar(t)

}
(.)

for all x, y, z,p,q, r ∈ X and t > , where T(X × X × X) ⊂ A(X), A is continuous and com-
mutative with T . Then T and A have a unique tripled common fixed point in X .

Letting A = I (I is the identity mapping) in Theorem ., we can obtain the following
corollary.

Corollary . Let (X,F ,�) be a complete generalized non-Archimedean Menger PM-
space such that � is a t-norm of H-type, ϕ : R+ → R+ be a gauge function such that
ϕ–({}) = {} and limn→∞ ϕn(t) =  for any t > . Let T : X × X × X → X be a mapping
satisfying

FT(x,y,z),T(p,q,r)
(
ϕ(t)

) ≥min
{
Fx,p(t),Fy,q(t),Fz,r(t)

}
(.)

for all x, y, z,p,q, r ∈ X and t > . Then T has a unique fixed point in X.

Letting ϕ(t) = αt ( < α < ) in Theorem ., we can obtain the following corollary.

Corollary . Let (X,F ,�) be a complete generalized non-Archimedean Menger PM-
space such that � is a t-norm of H-type. Let T : X × X × X → X and A : X → X be two
mappings satisfying

FT(x,y,z),T(p,q,r)(αt)≥min
{
FAx,Ap(t),FAy,Aq(t),FAz,Ar(t)

}
for all x, y, z,p,q, r ∈ X and t > , where  < α < , T(X × X × X) ⊂ A(X), A is continuous
and commutative with T . Then T and A have a unique tripled common fixed point in X .

Remark . If (X,F ,�) is a generalized non-Archimedean Menger PM-space, then the
hypotheses concerning gauge functions can be weakened. Let us note that in Theorem .
the gauge function only satisfies limn→∞ ϕn(t) =  for all t > , and it does not necessarily
satisfy ϕ(t) < t for all t > .
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5 An application
In this section, we shall provide an example to show the validity of the main results of this
paper.

Example . Suppose that X = [–, ] ⊂ R, � = �m. Then �m is a t-norm of H-type and
�m ≥ �p. Define F : X ×X → D by

F (x, y)(t) = Fx,y(t) =

{
e–

|x–y|
t , t > ,x, y ∈ X,

, t ≤ ,x, y ∈ X.

We claim that (X,F ,�m) is a generalized Menger PM-space. In fact, it is easy to verify
(GPM-), (GPM-), and (GPM-). Assume that for any s, t, r >  and x, y, z,w ∈ X,

�m
(
Fx,z(t),Fz,w(s),Fw,y(r)

)
=min

{
e–

|x–z|
t , e–

|z–w|
s , e–

|w–y|
r

}
= e–

|x–z|
t .

Then we have t|z –w| ≤ s|x – z|, t|w – y| ≤ r|x – z|, and so t+s+r
t |x – z| = |x – z| + s

t |x – z| +
r
t |x – z| ≥ |x – z| + |z –w| + |w – y| ≥ |x – y|. It follows that

Fx,y(t + s + r) = e–
|x–y|
t+s+r ≥ e–

|x–z|
t =�m

(
Fx,z(t),Fz,w(s),Fw,y(r)

)
.

Hence (GPM-) holds. It is obvious that (X,F ,�m) is complete. Suppose that ϕ(t) = t
 .

For x, y, z ∈ X, define T : X ×X ×X → X as follows:

T(x, y, z) =



–
x


–
y


–

|z|


.

Then for each t >  and x, y, z,p,q, r ∈ X, we have

∣∣p – x + q – y + 
(|r| – |z|)∣∣ ≤ |p – x|(|p| + |x|) + |q – y|(|q| + |y|) + |r – z|

≤ max
{|x – p|, |y – q|, |z – r|},

and so

FT(x,y,z),T(p,q,r)
(
ϕ(t)

)
= FT(x,y,z),T(p,q,r)

(
t


)

= e–
|p–x+q–y+(|r|–|z|)|

t

≥ min
{
e–

|x–p|
t , e–

|y–q|
t , e–

|z–r|
t

}
=

(
min

{
e–

|x–p|
t , e–

|y–q|
t , e–

|z–r|
t

}) 


=
[
�m

(
Fx,p(t),Fy,q(t),Fz,r(t)

)] 
 .

Thus, all the conditions of Corollary . are satisfied. Therefore,T has a unique fixed point
in X.
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