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Abstract
In Caballero et al. (Fixed Point Theory Appl. (2012). doi:10.1186/1687-1812-2012-231),
the authors prove a best proximity point theorem for Geraghty nonself contraction. In
this note, not only P-property has been weakened, but also an improved best
proximity point theorem will be presented by a short and simple proof. An example
which satisfies weak P-property but not P-property has been presented to
demonstrate our results.
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1 Introduction and preliminaries
Let A and B be nonempty subsets of a metric space (X,d). An operator T : A → B is said
to be contractive if there exists k ∈ [, ) such that d(Tx,Ty) ≤ kd(x, y) for any x, y ∈ A. The
well-known Banach contraction principle says: Let (X,d) be a complete metric space, and
T : X → X be a contraction of X into itself. Then T has a unique fixed point in X.
In , Geraghty introduced the Geraghty-contraction and obtained Theorem ..

Definition . ([]) Let (X,d) be a metric space. A mapping T : X → X is said to be a
Geraghty-contraction if there exists β ∈ � such that for any x, y ∈ X

d(Tx,Ty) ≤ β
(
d(x, y)

) · d(x, y),

where the class � denotes those functions β : [,∞)→ [, ) satisfying the following con-
dition:

β(tn) →  ⇒ tn → .

Theorem . ([]) Let (X,d) be a complete metric space and T : X → X be an operator.
Suppose that there exists β ∈ � such that for any x, y ∈ X,

d(Tx,Ty) ≤ β
(
d(x, y)

) · d(x, y).

Then T has a unique fixed point.
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Obviously, Theorem . is an extensive version of Banach contraction principle. In ,
Caballero et al. introduced generalized Geraghty-contraction as follows.

Definition . ([]) LetA, B be two nonempty subsets of ametric space (X,d). Amapping
T : A→ B is said to be aGeraghty-contraction if there exists β ∈ � such that for any x, y ∈ A

d(Tx,Ty) ≤ β
(
d(x, y)

) · d(x, y),

where the class � denotes those functions β : [,∞)→ [, ) satisfying the following con-
dition:

β(tn)→  ⇒ tn → .

Now we need the following notations and basic facts.
Let A and B be two nonempty subsets of a metric space (X,d). We denote by A and B

the following sets:

A =
{
x ∈ A : d(x, y) = d(A,B) for some y ∈ B

}
,

B =
{
y ∈ B : d(x, y) = d(A,B) for some x ∈ A

}
,

where d(A,B) = inf{d(x, y) : x ∈ A and y ∈ B}.
In [], the authors give sufficient conditions for when the sets A and B are nonempty.

In [], the author presents the following definition and proves that any pair (A,B) of
nonempty, closed and convex subsets of a real Hilbert space H satisfies the P-property.

Definition . ([]) Let (A,B) be a pair of nonempty subsets of a metric space (X,d) with
A �= ∅. Then the pair (A,B) is said to have the P-property if and only if for any x,x ∈ A

and y, y ∈ B,

⎧⎨
⎩
d(x, y) = d(A,B),

d(x, y) = d(A,B)
⇒ d(x,x) = d(y, y).

Let A, B be two nonempty subsets of a complete metric space and consider a mapping
T : A → B. The best proximity point problem is whether we can find an element x ∈ A
such that d(x,Tx) =min{d(x,Tx) : x ∈ A}. Since d(x,Tx) ≥ d(A,B) for any x ∈ A, in fact,
the optimal solution to this problem is the one for which the value d(A,B) is attained.

In [], the authors give a generalization of Theorem . by considering a nonself map
and they get the following theorem.

Theorem . ([]) Let (A,B) be a pair of nonempty closed subsets of a complete metric
space (X,d) such that A is nonempty. Let T : A → B be a Geraghty-contraction satisfying
T(A) ⊆ B. Suppose that the pair (A,B) has the P-property. Then there exists a unique x∗

in A such that d(x∗,Tx∗) = d(A,B).
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Remark In [], the proof of Theorem . is unnecessarily complex. In this note, not only
P-property has been weakened, but also an improved best proximity point theorem will
be presented by a short and simple proof. An example which satisfies weak P-property but
not P-property has been presented to demonstrate our results.

2 Main results
Before giving our main results, we first introduce the notion of weak P-property.

Weak P-property Let (A,B) be a pair of nonempty subsets of a metric space (X,d) with
A �= ∅. Then the pair (A,B) is said to have theweak P-property if and only if for any x,x ∈
A and y, y ∈ B,

⎧⎨
⎩
d(x, y) = d(A,B),

d(x, y) = d(A,B)
⇒ d(x,x) ≤ d(y, y).

Now we are in a position to give our main results.

Theorem . Let (A,B) be a pair of nonempty closed subsets of a complete metric space
(X,d) such that A �= ∅. Let T : A → B be a Geraghty-contraction satisfying T(A) ⊆ B.
Suppose that the pair (A,B) has the weak P-property. Then there exists a unique x∗ in A
such that d(x∗,Tx∗) = d(A,B).

Proof We first prove that B is closed. Let {yn} ⊆ B be a sequence such that yn → q ∈ B.
It follows from the weak P-property that

d(yn, ym) →  ⇒ d(xn,xm) → ,

as n,m → ∞, where xn,xm ∈ A and d(xn, yn) = d(A,B), d(xm, ym) = d(A,B). Then {xn} is
a Cauchy sequence so that {xn} converges strongly to a point p ∈ A. By the continuity of
metric d we have d(p,q) = d(A,B), that is, q ∈ B, and hence B is closed.
Let A be the closure of A, we claim that T(A) ⊆ B. In fact, if x ∈ A \A, then there

exists a sequence {xn} ⊆ A such that xn → x. By the continuity of T and the closeness of
B, we have Tx = limn→∞ Txn ∈ B. That is T(A)⊆ B.
Define an operator PA : T(A) → A, by PAy = {x ∈ A : d(x, y) = d(A,B)}. Since the

pair (A,B) has weak P-property and T is a Geraghty-contraction, we have

d(PATx,PATx)≤ d(Tx,Tx)≤ β
(
d(x,x)

) · d(x,x)

for any x,x ∈ A. This shows that PAT : A → A is a Geraghty-contraction from com-
plete metric subspace A into itself. Using Theorem ., we can get PAT has a unique
fixed point x∗. That is PATx∗ = x∗ ∈ A. It implies that

d
(
x∗,Tx∗) = d(A,B).

Therefore, x∗ is the unique one in A such that d(x∗,Tx∗) = d(A,B). It is easy to see that x∗

is also the unique one in A such that d(x∗,Tx∗) = d(A,B). �
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Remark In Theorem ., P-property is weakened to weak P-property. Therefore, Theo-
rem . is an improved result of Theorem .. In addition, our proof is shorter and simpler
than that in []. In fact, our proof process is less than one page. However, the proof process
in [] is three pages.

3 Example
Now we present an example which satisfies weak P-property but not P-property.
Consider (R,d), where d is the Euclidean distance and the subsets A = {(, )} and B =

{y =  +
√
 – x}.

Obviously, A = {(, )}, B = {(–, ), (, )} and d(A,B) =
√
. Furthermore,

d
(
(, ), (–, )

)
= d

(
(, ), (, )

)
=

√
,

however,

 = d
(
(, ), (, )

)
< d

(
(–, ), (, )

)
= .

We can see that the pair (A,B) satisfies the weak P-property but not the P-property.
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